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OSCILLATORY BEHAVIOR FOR NONLINEAR HOMOGENEOUS

NEUTRAL DIFFERENCE EQUATIONS OF SECOND ORDER

WITH COEFFICIENT CHANGING SIGN

AJIT KUMAR BHUYAN, LAXMI NARAYAN PADHY, RADHANATH RATH

Abstract. In this article, we obtain sufficient conditions so that all solutions

of the neutral difference equation

∆2
(
yn − pnL(yn−s)

)
+ qnG(yn−k) = 0,

and all unbounded solutions of the neutral difference equation

∆2
(
yn − pnL(yn−s)

)
+ qnG(yn−k)− unH(yα(n)) = 0

are oscillatory, where ∆yn = yn+1 − yn, ∆2yn = ∆(∆yn). Different types of
super linear and sub linear conditions are imposed on G to prevent the solution

approaching zero or ±∞.

1. Introduction

In this article, we obtain sufficient conditions so that all solutions of the neutral
difference equation

∆2
(
yn − pnL(yn−s)

)
+ qnG(yn−k) = 0, n ≥ n0, (1.1)

and all unbounded solutions of the neutral difference equation

∆2
(
yn − pnL(yn−s)

)
+ qnG(yn−k)− unH(yα(n)) = 0, n ≥ n0 (1.2)

are oscillatory, where ∆ is the forward difference operator ∆yn = yn+1−yn, ∆2yn =
∆(∆yn), {qn} and {un} are sequences of real numbers with qn > 0, un ≥ 0, and
G,H,L ∈ C(R,R). We assume that α(n) < n− 1 and it approaches ∞ as n→∞,
and s, k are positive integers. Further, we assume that

G(−x) = −G(x), H(−x) = −H(x), L(−x) = −L(x), ∀x ∈ R
xG(x) > 0, xH(x) > 0, xL(x) > 0 ∀x > 0.

(1.3)

Some of the following assumptions are used later in this article.

(A1) There exists δ > 0 such that for each x > 0, L(x) ≤ δx;
(A2) qn > 0 and

∑∞
n=n0

qn =∞;

(A3)
∑∞
n=n1

q∗n =∞, where q∗ = min{qn, qn−s};
(A4) lim infn→∞ qn > 0;
(A5) G is non decreasing;
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(A6)
∑∞
n=n0

nun <∞;

(A7) H is bounded.

For the sequence {pn} we state the following conditions:

0 ≤ pn ≤ p, (1.4)

0 ≤ pn ≤ 1, (1.5)

−p ≤ pn < 0, (1.6)

pn changes sign and − p ≤ pn ≤ p, (1.7)

1 ≤ pn ≤ p, (1.8)

−1 < −b ≤ pn ≤ 0, (1.9)

where p and b are positive constants.
As of now, many researchers all over the world are engaged to find necessary or

sufficient conditions for oscillation or non oscillation for neutral difference equations,
because of its important applications in different fields of science and technology.
For the fundamentals and some recent results on the subject, one may go through
the monograph [1, 5] and the research articles [2, 4, 12, 14] and the references cited
there in. Sufficient conditions are found, in [3, 4, 7, 12, 13, 14, 15, 16], and more
recently in [2, 3], so that every solutions of the non linear neutral difference equation

∆2
(
yn − pnyn−s

)
+ qnG(yn−k)− unH(yn−r) = fn, n ≥ n0, (1.10)

(or of its particular case un ≡ 0, fn ≡ 0) oscillates or tends to zero or to ±∞ at
∞. The asymptotic behavior of the solution is probably due to the presence of the
forcing term fn in (1.10).

The objective of this work is to find sufficient conditions so that all solutions of
(1.2) are oscillatory under different cases of pn > 0, pn < 0 or pn changing sign. For
that, we had to prevent the bounded solutions of (1.2) from approaching zero by
imposing a sub linear condition (4.4) or (4.1) on G as well as stop the unbounded
solution of (1.2) from approaching ±∞ by imposing a super linear condition (3.5) or
(3.2) on G. Then the results for (1.2) are applied to study the oscillatory behavior
of the unbounded solutions of neutral difference equation

∆2
(
yn − pnL(yn−s)

)
+ vnG(yn−k) = 0, n ≥ n0, (1.11)

where vn changes sign. Our results generalize and extend some results in [2, 11].
Let n0 be a fixed nonnegative integer. Let ρ = min

{
n0−s, n0−k, infn≥n0

{α(n)}
}

.
By a solution of (1.2) we mean a real sequence {yn} which is defined for all integers
n ≥ ρ and satisfies (1.2) for n ≥ n0. Clearly if the initial condition

yn = an for ρ ≤ n ≤ n0 + 1, (1.12)

is given then equation (1.2) has a unique solution satisfying (1.12). A non trivial
solution {yn} of (1.2) is said to be oscillatory if for every positive integer n0 > 0,
there exists n ≥ n0 such that ynyn+1 ≤ 0, otherwise {yn} is said to be non-
oscillatory.

2. Some lemmas

In this section, we present some lemmas to be applied in next section.
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Lemma 2.1. [5, Theorem 7.6.1, page 184] Let {rn} be a non negative sequence of
real numbers, k a positive integer and

lim inf
n→∞

n−1∑
i=n−k

ri >
( k

k + 1

)k+1

. (2.1)

Then the following statements are true.

(a) ∆xn+rnxn−k ≤ 0 has no eventually positive solutions, which implies ∆xn+
rnxn−k ≥ 0 has no eventually negative solutions.

(b) ∆xn−rnxn+k ≥ 0 has no eventually positive solutions, which implies ∆xn−
rnxn+k ≤ 0 has no eventually negative solutions.

Lemma 2.2. Suppose that (A6) and (A7) hold, and yn is an eventually positive
solution of (1.2). Then the sequence

cn = −
∞∑
i=n

(i− n+ 1)uiH(yα(i)) (2.2)

satisfies
lim
n→∞

cn = 0, cn ≤ 0, ∆cn ≥ 0, (2.3)

for n large enough, and

∆2cn = −unH(yα(n)). (2.4)

Proof. Clearly, applying ∆2 to (2.2), we obtain ∆2cn = −unH(yα(n)). By (A6) and

(A7),
∑∞
i=n iuiH(yα(i)) < ∞. Comparing this infinite series with (2.2), we show

that {cn} converges absolutely to zero. The other statements follow easily. �

Note that if yn is eventually negative, then cn ≥ 0 and ∆cn ≤ 0. Next, we prove
an important lemma to be used later.

Lemma 2.3. Let (A1), (A6), (A7) hold, yn be an eventually positive solution of
(1.2), and cn be defined by (2.2). Then for the sequences

zn = yn − pnL(yn−s), (2.5)

wn = zn + cn (2.6)

we have the following statements:

(a) If (A2) and (A5) hold and pn satisfy (1.4), then either ∆wn < 0 for large
n which implies

lim
n→∞

wn = −∞, (2.7)

or ∆wn > 0 for large n which implies

lim
n→∞

wn = 0, (2.8)

wn < 0, lim
n→∞

∆wn = 0. (2.9)

(b) If in addition pδ ≤ 1, then only (2.8) and (2.9) hold.

Proof. Suppose that yn is an eventually positive solution of (1.2). Then there exits
an integer n1 ≥ n0 such that yn > 0, yn−s > 0, yn−k and yα(n) > 0 for n ≥ n1.
Then setting cn, zn and wn as in (2.2), (2.5), (2.6), and using (1.2), (2.5), (2.6),
and Lemma 2.2, we obtain

∆2wn = −qnG(yn−k) ≤ 0 for n > n1 . (2.10)
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Then ∆wn is decreasing. Hence ∆wn is monotonic and of single sign for n large
enough. It follows that either ∆wn < 0 or ∆wn > 0. If ∆wn < 0, then wn is
decreasing, and using that ∆wn is decreasing, we have

lim
n→∞

∆wn = −∞. (2.11)

If ∆wn > 0, then wn is increasing, and using that ∆wn is decreasing, we have

lim
n→∞

∆wn = ζ (a finite number). (2.12)

Let us prove part (a). If (2.11) holds then clearly (2.7) follows. If (2.12) holds
then, summing (2.10) from n2 > n1 to ∞ we obtain

∞∑
n=n2

qnG(yn−k) <∞, (2.13)

which by using (A2) yields
lim inf
n→∞

yn = 0. (2.14)

Then we find a subsequence {ynk
} such that ynk

→ 0 as k →∞. Now using (1.4),
(A1) and Lemma 2.2 we obtain

wnk
< ynk

+ cnk
→ 0 as k →∞ (2.15)

and

wnk+s > −pδynk
+ cnk+s → 0 as k →∞. (2.16)

Since wn is monotonic, it follows that limn→∞ wn = 0, which is (2.8). Then (2.9)
follows from (2.8). The proof of part (a) is complete.

To prove part (b) of the lemma, we show that (2.7) cannot happen; therefore (2.8)
and (2.9) must occur. To obtain a contradiction, let us assume that limn→∞ wn =
−∞. Note that from (2.6) and Lemma 2.2 we have

lim
n→∞

wn = lim
n→∞

zn; (2.17)

thus limn→∞ zn = −∞. This implies that for large n, there exists η > 0, however
large, such that for n ≥ n3 implies zn < −η which implies by (A1) that yn <
−η + pδyn−s < yn−s. Then yn is bounded. Consequently zn and wn are bounded,
which contradicts (2.7). As a result, (2.7) cannot hold and so, (2.8) holds, which
implies (2.9). The proof is complete. �

Remark 2.4. If yn is an eventually negative solution of (1.2), then using (1.3),
we observe that xn = −yn is a positive solution of (1.2). So that all the oscillation
results for the positive solutions also apply to negative solutions.

Lemma 2.5. Let yn be an eventually positive solution of (1.2), with wn as in (2.6).
Then the following statements hold.

(a) If (2.7) holds, then (2.10) implies

∆wn+1 + qnG(yn−k) ≤ 0, (2.18)

which further implies

∆zn+1 + qnG(yn−k) ≤ 0 . (2.19)

(b) If (2.8) holds, then (2.10) implies

∆wn − qnG(yn−k) ≥ 0. (2.20)
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Proof. If (2.7) holds then ∆wn < 0 and ∆w2
n < 0. We write (2.10) as

∆wn+1 + qnG(yn−k) = ∆wn ≤ 0.

Thus, (2.18) holds. From (2.6), it follows that ∆wn+1 = ∆zn+1+∆cn+1. Therefore
(2.18) implies ∆zn+1 + qnG(yn−k) = −∆cn+1 ≤ 0 by Lemma 2.2. Hence (a) is
proved. Let us prove (b). If (2.8) holds then (2.9) follows as a consequence, which
implies wn < 0 and ∆wn > 0. Using (2.9), we write (2.10), as

−∆wn + qnG(yn−k) = −∆wn+1 ≤ 0,

which implies
∆wn − qnG(yn−k) = ∆wn+1 ≥ 0.

This proves of (b), and completes the proof. �

Lemma 2.6. Let (A1), (A3), (A6), (A7) hold. Assume that there exists λ > 0 such
that for all x, y ∈ R with x+ y > 0, we have

G(x) +G(y) ≥ λG(x+ y). (2.21)

Further, we assume that

G(x)G(y) ≥ G(xy) for all x, y > 0. (2.22)

Let yn be an eventually positive solution of (1.2). Define cn, zn and wn as in (2.2),
(2.5) and (2.6) respectively. If pn satisfies (1.6) or (1.7), then limn→∞ wn = 0.
Consequently, (2.9) holds.

Proof. Suppose yn is an eventually positive or eventually negative solution of (1.2)
and pn satisfies (1.6). From (1.2), using (2.6), (2.5), (2.2) and Lemma 2.2, we obtain
(2.10). This implies wn and ∆wn are monotonic and single sign. Hence, it follows
that (2.17) holds and let limn→∞ zn = β. Clearly, zn > 0 by (1.6). This implies, β
in (2.17), cannot be in negative. If β > 0, then then there exists a positive scalar
χ such that zn > χ > 0 for large n. Clearly, ∆wn > 0, otherwise, β = −∞, a
contradiction. Since ∆wn is decreasing, limn→∞∆wn exists. If x > y then using
(1.3) and (2.21), we note that 0 < λG(x−y) ≤ G(x)+G(−y) = G(x)−G(y). Thus,
(A5) holds, i.e; G is non decreasing. Then using (A5), (A1) and (1.6) in (2.5), we
have

zn ≤ yn + pδyn−s. (2.23)

From (2.10), by using (A3), (2.21), (2.22) and (2.23) it follows that

0 ≥ ∆2wn + qnG(yn−k) +G(pδ)[∆2wn−s + qnG(yn−s−k)]

≥ ∆2wn +G(pδ)∆2wn−s + q∗n
(
G(yn−k) +G(pδ)G(yn−s−k)

)
≥ ∆2wn +G(pδ)∆2wn−s + λq∗n

(
G(zn−k)

)
≥ ∆2wn +G(pδ)∆2wn−s + λG(χ)q∗n

(2.24)

for n ≥ n2 > n1. Then taking summation in (2.24) from n2 to l − 1 and then
letting l → ∞, we obtain a contradiction to (A3). Thus β = limn→∞ wn = 0,
which implies (2.9).

Suppose pn satisfies (1.7). If β > 0 then proceeding as above, we obtain a similar
contradiction. If β < 0 then using (1.7), we have wn ≥ −pδyn−s + cn. This implies
yn ≥ cn+s

pδ −
wn+s

pδ . Then taking limit inferior on both sides of this inequality, we

obtain

lim inf
n→∞

yn ≥ lim inf
n→∞

cn+s
pδ

+ lim inf
n→∞

−wn+s
pδ

≥ −β/pδ > 0.
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In the above we used limn→∞ cn = 0 and limn→∞ wn = β < 0. For −β/(3pδ) = ε >
0, we find n3 ≥ n2 such that n > n3 implies yn > 2ε. As cn → 0, from (2.6) it follows
that pnL(yn−s) > yn + cn > ε > 0. This further implies pn+s >

ε
L(yn)

≥ ε
δyn

> 0,

for n ≥ n3, which contradicts that pn changes sign. Thus β cannot be in negative,
hence limn→∞ wn = β = 0. Consequently (2.9) holds. Similarly, if yn be an
eventually negative solution of (1.2) then proceeding with substitution xn = −yn
and taking note of Remark 2.4, it could be shown β = limn→∞ wn = 0 and the
proof is complete. �

Next we have the following remark, which would be helpful in proving results
concerned with neutral equation (1.1).

Remark 2.7. Lemmas 2.3, 2.5 and 2.6 hold for un ≡ 0. In that case cn = 0 and
wn = zn.

The following Lemmas follow from Lemmas 2.3, 2.5, and 2.6 as a consequence
of the above remark.

Lemma 2.8. Assume (A1) holds. Let yn be an eventually positive solution of (1.1),
and zn be defined as in (2.5). Then

∆2zn = −qnG(yn−k) ≤ 0, (2.25)

and the following statements hold.

(a) If (A2), (A5) hold and pn satisfies (1.4), then either ∆wn < 0 for large n
which implies

lim
n→∞

zn = −∞, (2.26)

or ∆wn > 0 for large n which implies

lim
n→∞

zn = 0, (2.27)

zn < 0, ∆zn > 0, lim
n→∞

∆zn = 0. (2.28)

(b) If in addition δ ≤ 1 and if pn satisfy (1.5), then only (2.27) and (2.28)
hold.

Lemma 2.9. If yn is any eventually positive solution of (1.1), with zn as in (2.5),
then the following statements hold.

(a) If (2.26) holds then, (2.25) implies (2.19), i.e;

∆zn+1 + qnG(yn−k) ≤ 0.

(b) If (2.27) holds, then (2.25) implies

∆zn − qnG(yn−k) ≥ 0. (2.29)

Lemma 2.10. Let (A1), (A3), (2.21), and (2.22) hold, let yn be an eventually
positive or eventually negative solution of (1.1), and let zn be as in (2.5). If pn
satisfies (1.6) or (1.7) then limn→∞ zn = 0. Consequently, zn < 0, ∆zn > 0 for
yn > 0 and zn > 0, ∆zn < 0 for yn < 0.



EJDE-2020/87 OSCILLATION FOR SECOND ORDER NEUTRAL EQUATIONS 7

3. Main results part I

In this section, we find sufficient conditions, so that, all unbounded solutions of
(1.2) oscillate.

Remark 3.1 ([6, Remark 4.8]). Assumption (A4) and the condition

∞∑
j=1

qnj
=∞, where qnj

is any subsequence of qn (3.1)

are equivalent.

Theorem 3.2. Let (A1), (A4)–(A7) hold, and s > k + 1, (1.4) be satisfied. If∣∣ ∫ ∞
a

du

G(u)

∣∣ <∞, ∀a ∈ R, (3.2)

then every unbounded solution of (1.2) oscillates.

Proof. To obtain a contradiction, let yn be an eventually positive solution of (1.2).
Setting zn, wn and cn as in (2.5), (2.6) and (2.2) respectively, we obtain (2.10).
Note that (A4) implies (A2). Hence, by Lemma 2.3(a), we observe that either (2.7)
or (2.8) holds.

First we consider the case when (2.7) holds. Using Lemma 2.5(a), we show
that (2.10) implies (2.19). From (2.7), (2.17) and Lemma 2.2, it follows that
limn→∞ zn = −∞, which implies ∆zn < 0 and zn < 0 for large n. If pn = 0
then zn = yn < 0, a contradiction. Hence pn > 0. From (2.5), we find yn−k ≥
−zn+s−k/(pδ). Using this in (2.19), we obtain

∆zn+1 + qnG(
−zn+s−k

pδ
) ≤ 0. (3.3)

Note that −zn/(pδ) = vn implies ∆zn = −pδ∆vn. Then, substituting this expres-
sion in the above, we obtain

pδ∆vn+1 − qnG(vn+s−k) ≥ 0.

Note that vn > 0, limn→∞ vn = ∞ and vn is increasing. Dividing both sides by
G(vn+s−k), we obtain

pδ
∆vn+1

G(vn+s−k)
≥ qn. (3.4)

Then writing ∆vn+1 =
∫ vn+2

vn+1
dx, where vn+1 ≤ x ≤ vn+2, and using s− k ≥ 2, we

obtain

qn ≤ pδ
∫ vn+2

vn+1

dx

G(x)
.

Summing n2 to l − 1, and then taking limit l→∞, we obtain
∞∑

n=n2

qn ≤ pδ
∫ ∞
vn2+1

dx

G(x)
<∞ ,

by (3.2), which contradicts (A2).
Now we consider the case when (2.8) holds. Consequently, we obtain (2.9). Then

taking summation in (2.10) from n2 to∞ we find (2.13). As yn is unbounded, we can
find a subsequence {ynj

} of {yn} which approaches∞ as j →∞. Then there exists

η > 0 such that ynj
> η for large j. Then

∑∞
j=n3

qnj
G(ynj

) > G(η)
∑∞
j=n3

qnj
→
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+∞ by (A4). This contradicts (2.13) which follows from (2.8). The proof for the
case yn < 0, and unbounded is similar. Thus, the proof is complete. �

Theorem 3.3. Let (A1), (A4)–(A7), and (3.2), s > k+ 1, (1.8) be satisfied. Then
every unbounded solution of (1.2) oscillates.

The proof of the above theorem is similar to that of theorem 3.2; we omit it.

Theorem 3.4. Let (A1), (A4)–(A7) hold. Suppose pn satisfies (1.8), s > k + 1,
and

lim inf
|x|→∞

G(x)

x
> γ > 0. (3.5)

Suppose that

lim inf
n→∞

n−1∑
i=n−s+k+1

qi >
pδ

γ

(s− k − 1

s− k

)s−k
(3.6)

Then every unbounded solution of (1.2) oscillates.

Proof. To obtain a contradiction, let yn be an eventually positive solution of (1.2).
Proceeding as in the proof of theorem 3.2, we show that if (2.7) holds then

∆zn+1 + qnG(−zn+s−k
pδ

) ≤ 0.

Applying (3.5) to the above inequality, we obtain

∆zn+1 − γqn(
zn+s−k
pδ

) ≤ 0.

Note that zn < 0 for large n. Substituting (zn+1/(pδ)) = vn and ∆zn+1 = pδ∆vn,
in the above we obtain

∆vn −
γ

pδ
qnvn+s−k−1 ≤ 0.

Since s−k−1 > 0 this is an advanced difference inequality with a negative solution
vn, which contradicts Lemma 2.1(b).

Next consider the case that (2.8) holds. Proceeding as in the proof of theorem
3.2 we obtain a contradiction. The proof for the case yn < 0, and unbounded is
similar. Thus, the proof is complete. �

Remark 3.5. Condition (3.6) implies (A2). If (3.6) holds and (A2) fails, we have∑∞
n=n1

qn <∞ which implies

pδ

γ

(s− k − 1

s− k

)s−k
< lim inf

n→∞

n−1∑
i=n−s+k

qi ≤ lim sup
n→∞

( n−1∑
i=n1

qi −
n−s+k−1∑
i=n1

qi

)
= 0,

a contradiction.

Theorem 3.6. Suppose (A1), (A4)–(A7) hold, and (1.5) and δ ≤ 1 are satisfied.
Then every unbounded solution of (1.2) oscillates.

Proof. Let yn be an unbounded and eventually positive solution of (1.2). Setting
cn, zn and wn as in (2.2), (2.5) and (2.6) respectively, we obtain (2.10). By Lemma
2.3(b), we have limn→∞ wn = 0. Using this, unboundedness of yn and (A4), and
proceeding as in the last part of the proof of theorem 3.2 we obtain a contradic-
tion. A similar contradiction could be obtained if yn be an eventually negative and
unbounded solution of (1.2). This completes the proof. �
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Theorem 3.7. Suppose (A1), (A3), (A4), (A6), (A7) hold, (1.6) or (1.7), and
(2.21) and (2.22) be satisfied. Then every unbounded solution of (1.2) oscillates.

Proof. On the contrary suppose yn be an eventually positive and unbounded solu-
tion of (1.2). Setting zn and wn as in (2.5) and (2.6), we obtain (2.10). Application
of Lemma 2.6 yields β = limn→∞ wn = 0, wn < 0 and ∆wn > 0. Then using
this, unboundedness of yn, (A4) and proceeding as in the last part of the proof of
theorem 3.2 we obtain a contradiction. A similar contradiction could be obtain if
yn be an eventually negative and unbounded solution of (1.2). This completes the
proof. �

Note that the condition

lim inf
n→∞

|xn| > 0 implies lim inf
n→∞

|G(xn)| > 0. (3.7)

is equivalent to

lim inf
u→±∞

G(u) 6= 0 (3.8)

and note that (A5) implies (3.8). Consequently, we quote a particular case of [13,
theorem 2.5, p.236 ] for fn ≡ 0 as our next result.

Theorem 3.8. Suppose (A2), (A6), (A7) hold, and (1.9) and (3.8) are satisfied. If
L(x) = x, then every non-oscillatory solution of (1.2) is bounded. Or equivalently
every unbounded solution of (1.2) oscillates.

4. Main results part II

In this section, we find sufficient conditions so that all solutions of (1.1) oscillate
under condition (A2), which is less restrictive than (A4).

Theorem 4.1. Suppose (A1), (A2), (A5) hold, and (1.4) and s < k are satisfied.
If ∣∣ ∫ ±c

0

du

G(u)

∣∣ <∞, for any finite positive c ∈ R, (4.1)

Then every bounded solution of (1.1) oscillates.

Proof. On the contrary let yn be a bounded eventually positive solution of (1.1).
Setting zn as in (2.5) we obtain (2.25). Then zn is bounded and by Lemma 2.8(a),
we find that (2.26) cannot hold because boundedness of zn, as a result, (2.27) holds.
Then (2.28) follows as a consequence which implies that zn < 0 and increasing. If
pn = 0, then zn = yn < 0, is a contradiction. Hence pn > 0. From (A1) and (1.4)
it follows that yn−k ≥ zn+s−k

−pδ . Hence, (2.25) with Lemma 2.9 (b) yields

∆zn − qnG(zn+s−k/(−pδ)) ≥ 0.

Substituting vn = zn/(−pδ), which implies −pδ∆vn = ∆zn, we find that

pδ∆vn + qnG(vn+s−k) ≤ 0, (4.2)

which together with s < k and vn is positive and decreasing, implies

pδ∆vn + qnG(vn) ≤ 0,

Then dividing both sides of the above by G(vn) we obtain

pδ∆vn
G(vn)

+ qn ≤ 0.
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Then using ∆vn =
∫ vn+1

vn
dx and taking vn+1 ≤ x ≤ vn we have

pδ

∫ vn+1

vn

dx

G(vn)
+ qn ≤ 0,

which implies, because of the nondecreasing character of G that

pδ

∫ vn+1

vn

dx

G(x)
+ qn ≤ 0.

Summing from n = n1 to l − 1 we obtain

pδ

∫ vl

vn1

dx

G(x)
+

l−1∑
n1

qn ≤ 0.

As l→∞, vl → 0, and so in the limiting case, we obtain

∞∑
n1

qn ≤ pδ
∫ vn1

0

dx

G(x)
<∞

by (4.1), which contradicts (A2). The proof for the case yn being eventually negative
is similar and this completes the proof. �

Theorem 4.2. Suppose (A1), (A2), (A5) hold, and (1.5), (4.1) , δ ≤ 1 and s < k
are satisfied. Then every solution of (1.1) oscillates.

Proof. On the contrary, let yn be an eventually positive solution of (1.1). Setting
zn as in (2.5), we obtain (2.25). Then by Lemma 2.8(b), we find that (2.27) holds.
Then (2.28), follows as a consequence and zn < 0. If pn = 0 then zn = yn < 0
which is a contradiction. Hence from (2.25), and Lemma 2.9(b) we obtain

∆zn − qnG(yn−k) ≥ 0.

Using δ ≤ 1 and (1.5), we find yn−k ≥ zn+s−k

−δ ≥ −zn+s−k. Therefore,

∆zn − qnG(−zn+s−k) ≥ 0.

Substituting −zn = vn, which implies ∆zn = −∆vn, in the above, we obtain

∆vn + qnG(vn+s−k) ≤ 0. (4.3)

Then further using s < k and vn > 0 and decreasing, we obtain

∆vn + qnG(vn) ≤ 0.

Dividing both sides of the above inequality, by G(vn), we obtain

∆vn
G(vn)

+ qn ≤ 0.

Taking vn+1 ≤ v ≤ vn and using ∆vn =
∫ vn+1

vn
dv, we proceed as in the proof of

theorem 4.1 to obtain
∞∑

n=n1

qn ≤
∫ vn1

0

dv

G(v)
<∞

by (4.1), which contradicts (A2). The proof for the case when yn is eventually
negative is similar. �
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Theorem 4.3. Suppose (A1), (A2), (A5) hold, and (1.5), δ ≤ 1 and s < k are
satisfied. If

lim inf
|x|→0

G(x)

x
> γ > 0. (4.4)

and

lim inf
n→∞

n−1∑
i=n−k+s

qi >
1

γ

( k − s
k − s+ 1

)k−s+1

, (4.5)

then every solution of (1.1) oscillates.

Proof. As s < k and 0 < δ ≤ 1 proceeding as in the proof of the theorem 4.2, we
obtain the first order delay difference inequality (4.3), which by (4.4), yields

∆vn + γqnvn+s−k ≤ 0

which has a positive solution. This, contradicts Lemma 2.1(a). The proof for the
case when yn is eventually negative is similar. This completes the proof. �

Theorem 4.4. Suppose (A1), (A3) hold, and (1.6), (2.21) and (2.22) are satisfied.
Then every solution of (1.1) oscillates.

Proof. On the contrary, suppose yn be an eventually positive solution of (1.1).
Setting zn as in (2.5), we obtain (2.25). Then applying Lemma 2.10, we obtain
β = limn→∞ zn = 0, which implies zn < 0, a contradiction because zn ≥ 0 by (1.6).
The proof for the case when yn is eventually negative, is similar and thus, the proof
is complete. �

Theorem 4.5. Suppose (A1), (A3) hold, and (1.7), (2.21) and (2.22) are satisfied.
Then every solution of (1.1) oscillates.

Proof. On the contrary, assume yn be an eventually positive solution of (1.1). Set-
ting zn as in (2.5), we obtain (2.25). Then application of Lemma 2.10 yields
β = limn→∞ zn = 0. Consequently ∆zn > 0 and zn < 0. Again, this would
lead to pn >

yn
L(yn−s)

> 0 for large n, which is a contradiction, because pn changes

sign. For the proof of the case, when yn is eventually negative, we may proceed
with xn = −yn and complete the proof. �

Theorem 4.6. Suppose (A2), (A5) hold, L(x) = x, and pn satisfies (1.9). Then
every solution of (1.1) oscillates.

Proof. On the contrary assume yn be an eventually positive solution of (1.1). Set-
ting zn as in (2.5), we obtain (2.25). Note that (A5) implies (3.8). Then applying
Theorem 3.8 for un = 0, we show that yn is bounded, which implies zn is bounded.
As zn is monotonic, limn→∞ zn = β ∈ R. Summing (2.25) from n1 to ∞, we
obtain (2.13), which implies lim infn→∞ yn = 0. By [9, Lemma 2.1], we have
limn→∞ zn = 0. As a consequence (2.28) holds, which implies zn < 0. However,
by (1.9) we have zn > 0, a contradiction. The proof for the case yn < 0 is similar.
Thus proof is complete. �

Next, we give some examples to illustrate the results.

Example 4.7. Consider the neutral difference equation

∆2
(
yn − pyn−4

)
+ 18

( 1

22n
+ 1− p

16

)
yn−1 −

( 72

22n
+

9

2n

)
H(yn−3) = 0 (4.6)
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where |p| < 16. Suppose p = ±2 or p = ±1/2. Here, s = 4, k = 1, qn =
18
(

1
22n + 1 − p

16

)
, un =

(
72
22n + 9

2n

)
and H(u) = u/(1 + |u|). Clearly, the neutral

difference equation (4.6) satisfies all the conditions of Theorems 3.4, 3.6, 3.7 and
3.8. As a result, it has an unbounded solution yn = 2n(−1)n, which is oscillatory.

Example 4.8. Consider the neutral difference equation

∆2
(
yn − byn−2

)
+
(

9(1− b/4)(2n + 128) + 2−2n
)
G(yn−7)− unH(yn−7) = 0 (4.7)

where |b| < 4 is suitably selected constant. Suppose b = ±1/2. Here, s = 2, k = 7,

un = 2+2n−7

22n(1+2n−7) , qn =
(
9(1 − b/4)(2n + 128) + 2−2n

)
, G(u) = u/(1 + |u|) and

H(u) = u/(2 + |u|). Clearly, the neutral difference equation (4.7) satisfies all the
conditions of Theorems 3.6 and 3.8. Consequently, it has an unbounded solution
yn = 2n(−1)n, which is oscillatory.

Example 4.9. Consider the neutral difference equation

∆2
(
yn − pL(yn−3)

)
+
[ 4(1 + a+ p)

(1 + a)(1 + γ)

]
G(yn−5) = 0 (4.8)

where p > 0 is any scalar. Here L(x) = x/(a + |x|) and G(u) = u(γ + |u|) where
a and γ are positive constants. This neutral equation satisfies all the conditions of
Theorems 4.3. As such, it has a solution yn = (−1)n, which is oscillatory.

Example 4.10. Consider the neutral difference equation

∆2
(
yn + p(−1)nL(yn−5)

)
+ 4y

1/3
n−1 = 0 (4.9)

where p > 0 is any scalar. Here pn changes sign and satisfies (1.7). Further,
L(x) = x/(a + |x|). This neutral equation satisfies all the conditions of Theorem
4.5. Hence, it has a solution yn = (−1)3n, which is oscillatory.

It seems, no result in the literature, could be applied to the neutral equations
(4.8)–(4.9) given in the examples above, because of the non linear term inside ∆2,

5. Application to neutral difference equations with oscillating
coefficients

In this section, we find sufficient conditions so that every unbounded solution of
the second order neutral difference equation (1.11) oscillates, where vn is allowed
to change sign. Let v+n = max{vn, 0} and v−n = max{−vn, 0}. Then vn = v+n − v−n
and the equation (1.11) can be written as

∆2
[
yn − pnL(yn−s)

]
+ v+nG(yn−k)− v−nG(yn−k) = 0. (5.1)

Now we proceed as in the previous section by setting qn = v+n , un = v−n and
H(x) = G(x). Assumptions (A4), (A3) and (A6) become

∞∑
n=n0

v+n =∞. (5.2)

lim inf
n→∞

v+n > 0. (5.3)

∞∑
n=n0

V +
n =∞ where V +

n = min{v+n , v+n−s}. (5.4)
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∞∑
n=n0

nv−n <∞. (5.5)

respectively, which are feasible conditions. Therefore, the study of (1.11) reduces
to the study of (5.1), which could be achieved, by following the study of (1.2) for
different results in section 3. The following results for (1.11) (with vn changing
sign) follow from Theorems 3.6, 3.7 and 3.8, by replacing qn by v+n , un by v−n and
H by G.

Theorem 5.1. Suppose that (A1) holds with δ ≤ 1, (A5) holds, pn satisfies (1.5),
G is bounded, and (5.3) and (5.5) are satisfied. Then every unbounded solution of
(1.11) (with vn changing sign) oscillates.

Theorem 5.2. Suppose pn satisfies (1.6) or (1.7), G is bounded, (A1) holds, and
(2.21), (2.22), (5.3), (5.4), and (5.5) are satisfied. Then every unbounded solution
of (1.11) (with vn changing sign) oscillates.

Theorem 5.3. Suppose pn satisfy (1.9), G is bounded, (3.8), (5.2) and (5.5) are
satisfied. If L(x) = x, then every unbounded solution of (1.11) oscillates.

6. Final comments

Before we close this article, we would like to give our concluding remarks, which
may be helpful for further research. In this paper, some oscillatory results are
obtained for the neutral difference equation (1.2) and (1.1) by imposing different
super linear conditions like (3.5) or (3.2), and sublinear conditions like (4.4) or (4.1)
on G. Note that the super linear condition (3.5) and the sub linear condition (4.4)
on G include their corresponding linear case G(x) = x. Authors while studying the
oscillatory and asymptotic behavior of (1.2) or (1.1), very often find difficulty in
tackling, the case of pn ≥ 1, i.e; when (1.8) or (1.4) are satisfied. That is why, the
results [10, Theorems 2.6 and 2.7] appear to be wrong, as the neutral equation

∆2(yn − 4yn−1) + 4(n+1)/3y
1/3
n−2 = 0

satisfies all the conditions of the theorems, but, it admits a non oscillatory solution
yn = 2n, which tends to ∞, as n → ∞, contradicting the theorems. With the
super linear G with (3.2) or (3.5), we proved in Theorems 3.2 and 3.4 that (A4)
is sufficient for all unbounded solutions of (3.2) to be oscillatory which is more
restrictive than (A2). Hence, one may extend this study to improve the results
(Theorems 3.2 and 3.4)by attempting to answer the following problem.

Problem 6.1. Suppose that L(x) = x, or (A1) holds, and 1 ≤ pn ≤ p. Assuming
(A2), (A5) and (3.2) can we prove that every unbounded solution of (1.1) oscillates?
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