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ABSTRACT. In this article, we study a problem on propagation of coupled
porosity, fluid concentration flux, and temperature waves. We use a model
formulated in previous papers for porous media saturated by a fluid flow, in
the framework of non-equilibrium thermodynamics. We derive three modes of
propagation in the one-dimensional and perfect isotropic case, and then we test
the validity of the model. The waves propagation velocities are represented
in diagrams as functions of the wave number. The derived results have appli-
cations in technological sectors such as seismology, medical sciences, geology
and nanotechnology.

1. INTRODUCTION

In a previous article [5] a problem of propagation of coupled porosity and fluid
concentration waves was studied, using a theory developed in [0, 23, 24, 25| [26].
These papers use a theory describing porous media filled by a fluid flow formulated
using the procedures of extended thermodynamics with internal variables; see [I]
3, [T, 12, (13, [15] 17, [18, 19} 22].

In this article, we focus our attention on a problem of coupled porosity, fluid
concentration flux, and temperature waves, in perfect isotropic porous media. This
problem has applications in technological sectors such as seismic waves, medical
sciences, biology, geology, and nanotechnology. In nanostructures the volume ele-
ment size L along a direction is comparable or smaller than the free mean path of
the heat carriers [, i.e. % > 1. Furthermore there are situations of propagation of
high-frequency waves and the rate variation of properties of these porous media are
faster than the time scale of the relaxation times of the fluxes to their equilibrium
values.

In Section 2 the temperature equation and the rate equations for the porosity
field, its flux, the heat flux and the fluid concentration flux for the considered media
are presented in the anisotropic case (see [25],26]). In Section 3 we particularize the
above equations in a special case and when the geometric, transport and thermal
properties of the media are invariant for all rotations and inversions of the frame
axes. In Section 4, assuming that the porous medium filled by a fluid flow occupies
the whole space, we derive the propagation velocities of the coupled waves of the
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porosity, fluid concentration flux, and thermal fields in the one-dimesional case. For
a given numerical set of the several coefficients present in the equations, the waves
propagation speeds are represented in diagrams. Then the validity of the model is
tested. The appendices present a detailed derivation of the rate and temperature
equations in the case of perfect isotropic media. Monographs [, 27] present a
study of the porous media filled by a fluid flux. While the authors in [7] study a
thermodynamic model for erosion and/or deposition in elastic porous media.

2. MODEL EQUATIONS

We consider a porous structure presenting a network of very thin tubes saturated
by a fluid flow, whose mechanical, thermal and transport properties are analyzed
using a model formulated in the framework of the extended thermodynamics (see
[23, 241 25] 26]). There the porosity field is described by an internal variable, the
structural permeability tensor by r;; as in Kubik [16], its gradient by r;;  and its
flux by Viji. (a comma in the lower indices indicates the spatial derivation.)

Also, we assume that medium is elastic, and the inside the mechanical phenom-
ena are described by the symmetric stress tensor 7;; and the small-strain tensor
;5. The thermal processes are described by the temperature 7', its gradient T,
and the heat flux ¢;. The fluid flux through the porous channels is described by
the fluid concentration c, its gradient c;, and its flux jf.

Thus, we choose the thermodynamic state vector

C= {Eija c, Ta Tij, ];:7 qiy Ciy T‘,ia Tij,ks Vijk}a
where €;; = %(um +u;j,;), with u; the displacement field. We refer to the configura-
tion at time ¢, K¢, and use the standard Cartesian tensorial notation in rectangular
coordinate systems. Furthermore, we assume that the porous skeleton filled by a
fluid flow is a mixture of two components, so that we have

p=p1+pa, (2.1)

with p the density of the medium as a whole, p; the density of the fluid, and py the
density of the elastic skeleton.
We consider the continuity equation, where the source term has been neglected
(see [3,[25])
pé + jé; =0, (2.2)

. . . . . . . d _ 6 8
where a superimposed dot indicates the material derivative (i.e. 3 = 5 + Ty gy

where Einstein convention for repeated indices is used). The concentration of the
fluid is defined by ¢ = p;1/p and its flux j¢ by j¢ = p1(v1; — v;), with vy,; the fluid
velocity and wv; the barycentric velocity of the mixture. These velocities satisfy
PU; = p1V1; + p2v9;, where vo; is the porous structure velocity.

In the following the mass density p will be assumed constant. In [25 26] the
constitutive equations and rate equations were obtained (to close the systems of
balance equations, see [25]) obeying the objectivity and frame indifference principles
[9) 20, 21). In particular the rate equations for r;;, and the fluxes j¢, ¢; and Vij
have the form

Fij + Vijkk = Bijrcrt + Bimamht + Bisrdt + Bije
+ 6%klmrkl,m + ﬂiﬁjkc,k + 5;‘krka
. 1 . 3 4 5
T4 = X595 — € + XijTikl + XigCq — Xij L (2.4)

(2.3)
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TG = =5 €05 i — Eeg + €T, (2.5)
Vijk = %'ljkljf + ’YEJMQI + ’Y?jkzmnvlmn + '7z4jleJ + ’Y?jle,l + ’Y%anrlm,m (2.6)

where the phenomenological tensors are assumed constant.
In this article for the sake of simplicity we choose

Vijk = —Dyrijk, (2.7)
with D,, a diffusive coefficient, and thus equation (2.3)) keeps the form

. _ a1 2 3 e 4 5
Tij — Durijek = Bijriert + Bijramhl + Bijkdk + Bijrk + BijkimTklm

(2.8)
+ /B?jkc,k + BngT,k
In [26] the generalized telegraph temperature equation was deduced as
T+ T = =5 (1935 + i) + (T8 + &) + 1ij (7973 + 745) (2.9)

+ ICijTJ'i — I/iljj]c-,i + Duys’jklrjk,li — V;ljc,jia
where the phenomenological coefficients are assumed constant, K;; is the thermal
diffusivity tensor, and (2.7) has taken into account.

Equations 7, (12.8), describe disturbances having finite velocity of
propagation and their own relaxation times to reach their respective thermodynamic
equilibrium values.

In the phenomenological tensors X%j, lej, and ij are the thermodiffusive
kinetic tensor, thermodiffusive tensor, and phenomenological tensor. These tensors
describe the influences of the fluid concentration flux, the concentration gradient,
and the porosity field gradient on the heat flux, respectively. The phenomenological
tensor X?j is the thermal conductibility.

Equation is a generalization of the anisotropic transport equation Maxwell-
Vernotte-Cattaneo for the heat flux 79¢; = —q; — x3;T;, where 79 is the relaxation
time of the field ¢;, having finite propagation velocity. When the relaxation time 79
is null this equation reduces to the anisotropic Fourier law ¢; = —Xg’jTJ- describing
thermal signals having infinite velocities of propagation (see [2, [§]).

In equation the phenomenological tensors fizj, f’j, and f?jkz describe the
influences of the heat flux, porosity field gradient, and temperature gradient on the
fluid concentration flux field, respectively. Furthermore, &}, is the diffusion tensor.

Equation generalizes the anisotropic transport equation Fick-Nonnenmacher

4

. . ;Cc . ;C . . .
for the fluid concentration flux 77 ji = —jf — & j, where 77 is the relaxation time

of the field j¢, having finite propagation velocity. When the relaxation time 77 ‘s
vanishing, this equation reduces to the anisotropic Fick law j{ = fgqu 7, where the
fluid concentration flux has infinite propagation velocity.

Equations and describe the evolution of the porosity field and its flux,
and in their right-hand sides the sources terms represent contributions of several
fields. Also, from the evolution equation of the thermal field, it is seen that

several fields influence the propagation of the field T

3. EQUATIONS GOVERNING THE EVOLUTION OF POROSITY, FLUID
CONCENTRATION FLUX, AND TEMPERATURE FIELDS IN A SPECIAL CASE

For the treatment of the problem of coupled porosity, fluid concentration flux
and temperature waves, we take into account the system of differential equations

(2.8), (2.5) and (2.9), and we assume the following:
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(i) the considered porous medium is at rest,

(ii) in equation the influence of the field ¢;; can be neglected,

(iii) in the rate equation the influence of the fields ¢; and c; can be disre-
garded,

(iv) in equation the influence of the first time and second time derivatives
of the small deformations field ;; and the concentration field ¢, the second
time derivative of the porous field r;;, the fluid concentration flux gradient
and the gradient of the concentration gradient can be neglected.

Thus, we obtain

Orij 2 3 c 4 5
5 Dyrijek = Bijrark + Bijrik + Bijedk + BjrimTki,m (3.1)
+ B?jkc,k + 5i7jkT,k7
3¢ a]zc . 3 5
T o T Ui + &mrikg + 65T (3.2)
02T T Ori;
Tqiatg + o = M 78; + i T ji + Dyvf’jkﬁjk,zz'- (3.3)

In the rate equation (3.1)), because of the symmetry of r;; = r;;, the phenomenolog-

ical coefficients 3° (s = 2,...,7) present some symmetries. For the fourth tensor
341> present in equation (3.1), we have
2 2 2 2
Bijkl = ﬂjikl and Bz'jkl = ﬁijlkv (3.4)

which are equivalent to

2 2 2 2
ﬂijkl = ﬁjikl = ﬂijlk = 5jz‘lk-

Furthermore,
/gipjk = /szk: (p = 37 4a 6a 7)7
5 _ b5 _ b _ Qb5 (35)
Bijklm - FMjiklm — Bijlkm - Bjilkm'

Also, from the symmetry properties of 7;; and 7y 1, 7, (in the indexes {j, k} and
{l,4} respectively) and of T j; (in the indexes {j,4}), in the rate equations (3.2]) and
(3-3) we have for the following phenomenological symmetries:

3 _ ¢3 _ _ 3 _ .3 3 _ .3
fijkl = fz‘kjlv Mij = Nji,  Kij =Ky, Vijkl = Vikjl>  Vijkl = Vijki - (3.6)
Relations (3.6)4 and (3.5))5 are equivalent to
3 _ .3 _ .3 _ 3
Viiklt = Vikjl = Vijki = Vikji- (3.7)

The symmetry relations (3.4)-(3.7) reduce the number of the significant compo-
nents of the above phenomenological tensors in equations —. The number
of these significant components can have a further reduction if we suppose the
considered media are perfect isotropic.

3.1. Perfect isotropic media. In this subsection we consider perfect isotropic
systems, having invariant symmetry properties with respect all rotations and the
inversion of the frame axes. These properties simplify the form of the temperature
and rate equations f in such a way that the number of the significant
Cartesian components of the phenomenological tensors have a further reduction
(see [6l 10 [T4]). In fact, in this case the phenomenological tensors of order two ffj,
Kij, and n;; take the form

i5j = &0y, Ky =Kdij,  nij = 1dij; (3.8)
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the tensors of order three and five vanish,

51'3;'1@ = ijk = 61’5jklm = 5%1@ = 5ij = 0; (3.9)
the tensors of order four have the form
Lijki = L1060k + L2001 + L3010, (3.10)

where L (s = 1,2,3) are the 3 significant components of Lijxi, so that 57, &y
and V” ; have three s1gn1ﬁcant components Because of these tensors satisfy also
the symmetry properties (3.4) 3, 1, and (3.7)), in the appendix we show that the
tensors ﬁmkl, g”kl, and Z/U,Cl have only two szgmﬁcant components.

Furthermore, in the following we will consider only the scalar (or spherical) part
rd;; of ry;, with r defined by

1
r = grkk, (31].)

having split r;; in its deviatoric part 7;; = r;; — rd;;, and its spherical part 74;;.

By this assumption we have

Tij = 105, Tijkk = T kkOijs  Tkim = T,mOki,

3.12

Tikd = 7105k,  Tjkli = T 105k (312)

From equatlons 1 -i taking mto consideration the results and re-
latlons 1 g)), , ), (4.4), and (4.5) for the phenomenologlcal tensors (see
detailed calculatlons in Appendlces I ), we derive the following simplified sys-

tem of equations governing the evolution of porosity, fluid concentration flux and
temperature fields

or

5 Dyrpp = —a,r, (3.13)
j° 9ji _ ¢
T = Ui +aer; + 8.1, (3.14)
2
%tg + %1; KT yi, + arr gk — 3na,r, (3.15)
where
a, = ()71 >0 (3.16)

is the inverse of the relaxation time of the field r, given by relation of Appendix
Qe, Be, and ag are coupling coeflicients reflecting some cross-kinetic effects of the
porosity gradient field and the temperature gradient on the the fluid concentration
flux, and the effect of the field r i on the temperature field, respectively (see
relations and 1.] of Appendices@ and' 7| respectively). A detailed derivation

of equatlons -(3.15)) has been obtained in Appendix [5

3.2. Propagation velocities of the coupled waves. The aim of this Subsection
is to find the dispersion relation, the propagation velocities of the coupled porosity,
fluid concentration flux, and temperature waves as functions of the wave number.

We assume that the porous medium occupies the whole space, and confine our
study to one-dimensional waves, that propagate along the x direction, so that j¢ =
(7¢,0,0). Thus, we assume that the solutions of the set of equations —
keep the form

r(x,t) = 7eREv0 e 1) = jee* @t (g t) = Teik—vt) (3.17)
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where v is the wave velocity, k is the wave number and 7, jAC and T are the amplitudes
of the waves r(z,t), j°(z,t) and T(x,t) (3.17); v is defined by v = w/k [ms™!], with
w the angular frequency, w = 27 f [s~!], being f the wave frequency, k the wave
number, given by k = 27/X [m~!], and A the wavelength.

Thus, inserting the relations and their suitable derivatives into -
(3-15), we obtain the system of equations

(Duk + a — ikv) T =0, (3.18)
a ik + (175 ikv — 1) ¢ + BeikT = 0, (3.19)
(—ark® — 3na, )7 + (T9%*0* + ikv — Kk?) T =0, (3.20)
which has non-trivial solutions only if its determinant vanishes, i.e.
D, k? + o, —ikv ' 0 0
D= ik 7 %ikv — 1 Beik =0. (3.21)
—ark? — 3na, 0 T1k202 + ikv — Kk?

Developing D we obtain the following dispersion relation for the waves propagation
velocities v concerning possible propagation modes:

I T3t 4 k2 [Tju + 79 4 71 (Dl,k:2 + ozr) }v?’
— k[ (77" ) (DK + o) + 77 kK2 41 (3.22)
—i [(/cffk? +1) (DJk? +a,) + /Ckﬂ v+ Kk (D& + a,) =0,

From the real part of this dispersion relation, we obtain

I T2yt — {(ch +79) (D E* + o) + I KCk? 4 1} v?

(3.23)
+ K (Dyk* + o) =0,
from which we derive two possible modes
’U(l) = «d"‘ %2—%, ’U(Q) = o — %2—%7 (324)
where
KR+ 1+ (77" +79) (DK +
o =1 (T_C ™) ( a), with &7 > 0, (3.25)
27 Tak2
K (D, k* + a,
P — M with 2 > 0. (3.26)
TI“Tk2

The velocity v(y) is real when
A*—B>0 and o +\ A%~ B >0. (3.27)
Condition (3.27)); is satisfied when
.c -c 2 -c
|:TJ Kk +1+ (T] + 7"1) (D,,k‘2 + ozr)} — A7 UK (D,,k2 + aT) >0, (3.28)

whereas ([3.27))2 is always satisfied, if (3.28)) holds, because it is a sum of two positive
terms.
The velocity v(g) is real when: (i) expression (3.28) holds, and from (3.24))> we

have
A — A2 — B >0, (3.29)
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from which we derive Z > 0, that is always true.
From the imaginary part of the dispersion relation (3.22)), we derive

[0 4+ 70477 (DR + o) o

. 3.30
—[ (]CTJ K+ 1) (D k* + a,) + Kk*]v = 0, (3:30)
from which we obtain the values
B [ KE2+ (K79°k2 + 1) (D, k2 + o)
'U(B) - 07 U(4) - \/kQ [ch + 74 + chTq (Dyk2 T O[T)] . (331)

Notice that the velocity vy is real for all £ # 0 because in the radicand is
always positive. Thus, we have obtained three possible modes of propagation: v ),
v(2) and vy

In Figures the propagation speeds v(1), v(2), and v(4) as functions of k,
solving the real part or the imaginary part (3.30)) of the dispersion relation
, are represented in the case where, as an example, we have considered a given
numerical set of the several coefficients present in the equations of the examined
problem: D, =102m?s™ !, K =10"*m?s™ !, 77" =1072s, 79 = 1025, and o, =
102s~!. In this assumption condition is satisfied for all k£ and furthermore
the velocities v(1) and v(y) are real. We recall that the velocity vy is real for all

k 4 0.

) 20 ) 3 50 100

FIGURE 1. Representation of the wave propagation speed v(1) (in
blue color) as function of k, for a given numerical set of the several
coefficients present in the examined problem. The horizontal line
in fuchsia color is its horizontal asymptote.

CONCLUSIONS

In this article we worked out for a perfect isotropic porous media filled by a fluid
flow, a system of rate equations for the porosity, a fluid concentration flux, and
temperature fields to study the propagation of coupled waves of these fields. We
used a model formulated in previous papers, in the framework of rational extended
irreversible thermodynamics with internal variables. A structural permeability ten-
sor r;;, its gradient r;;x, and its flux V;;; were introduced in the thermodynamic
state vector and the mass density of the mixture consisting of the porous skeleton
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0.075 |

0.055]

100 200 300 400 500

FIGURE 2. Representation of the wave propagation speed v(9) (in
blue color) as function of k, for a given numerical set of the several
coefficients present in the studied problem.The horizontal line in
fuchsia color is its horizontal asymptote.

~

FIGURE 3. Representation of the wave propagation speed v(4) (in
blue color) as function of k, for a given numerical set of the several
coefficients present in the examined problem. The horizontal line
in fuchsia color is its horizontal asymptote.

and the fluid flowing inside of it was assumed constant. The body was supposed
occupying the whole space. The dispersion relation was derived, three possible
propagation modes were obtained, and the corresponding wave propagation veloc-
ities as functions of the wave number k, were represented in diagrams, for a given
set of the several phenomenological coefficients present in the studied problem.

4. APPENDIX A: PERFECT ISOTROPIC TENSORS WITH SPECIAL SYMMETRY
PROPERTIES

Here we consider perfect isotropic tensors of fourth order, having special symme-
try properties, and thus a reduced number of significant components. In particular,
we demonstrate that the tensors 5%- Ll ff’j g and l/;?)’j p can be expressed only by two
significant independent components.
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Case (a) Let us consider the fourth order perfect isotropic tensor ,ijkl, present
in equation (3.1) and having the symmetries 37, = 53, = 57, = B3, Using

relation (3.10) we obtain

sz‘ikl = B20;i0k1 + Br010u + B2510:k (4.1)
and an analogous expression for ﬂfj x- Matching the two relations obtained by the
help of (3.10)), the tensor ﬁfjkl can be written as

2k = B0ii0k + B3 (6inbj0 + 0udje), with 87 = B2, B3 = (Bp + B2)/2.  (4.2)

Case (b) Let us consider the fourth order perfect isotropic tensor ff’jkl, present in
equation (3.2) and having the symmetry

3 3
Skt = &ikji-

From relation (3.10) we have

?ka = 361051+ €050kt + E25:61; (4.3)
and an analogous result for ffk j1- Matching the two results we have
?jkl = &880k + €5 (8ij0k1 + 0i1651)- (4.4)

Case (c) The perfect isotropic fourth tensor Vf’jkl, present in equation (3.3]), has
the symmetries l/?j Kl = Vf’kjl = l/f’jki = I/l?’kji. Thus, by an analogous method used in
the cases (a) and (b) the tensor ijk

V?jkl = l/io’éiléjk + Vg(éij(Skl + 6ik5jl)~ (4.5)

, can be written as

5. APPENDIX B: DERIVATION OF THE RATE EQUATION FOR POROSITY FIELD

To obtain equation (3.13)), we use (3.9), (3.12)1, (3.12))2, and the special form
(4.2) assumed by the fourth order tensor ,ijkl, so that (3.1]) takes the form

or

ot

where 32, B3 are the 2 significant independent components of the fourth tensor
51'23'“' Then, from (5.1]) we obtain

or

8ij — Dur ki0ij = (876011 + B3 (81 + 6116 %)]70k1, (5.1)

a&j — Dyr ubij = (381 + 283) 165, (5.2)
i.e. equation (3.13)), when ¢ = j and we define
(367 +263) = —a, = — ("), (5.3)

where 7" the relaxation time of the porosity field.

6. APPENDIX C: DERIVATION OF THE RATE EQUATION FOR THE FLUID
CONCENTRATION FLUX

To derive (3.14), we use (3.2) and the special forms (3.8); and (4.4) for the

tensors f?j and ffjk“ respectively, so that we obtain
i< 05F

o = i+ [€00uds + & (G0m + dindi)lradin + €Ti, (6.1)
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where £, &3 are the 2 significant independent components of the fourth tensor
ff’j o and € is the only significant component of the second order tensor ffj. Thus,

equation ([6.1)) keeps the form

J- 03¢

v (367 +263)ri + €°T, (6.2)
i.e. equation (3.14)), when we define
BC = 557 Qe = 35113 + 2§S (63)

7. APPENDIX D: DERIVATION OF TEMPERATURE EQUATION

To deduce (3.15)), we use (3.3) , (3.11)), 1, and (3.12)5, and the special
forms (3.8)2, (3.8)s , and (4.5)) of the tensors KC;;, 7;; and V?jkl, so that we obtain

0*T oOT or
qu + o= 3775 + KT 4+ Dy, (3601 + 3 (8i50k1 + 6ik651)] 70idsm,  (7.1)

where 13, 13 are the 2 significant independent components of the fourth tensor ij Kl

and IC, n are the only significant components of the second order tensors K;; and
;5. Then equation (7.1)) reads
q o*r oT ar

_ 3 3
T W + a = 37]5 =+ ICT“ =+ Dl/ (31/1 =+ 21/2) T,ii' (72)
Using (3.13)), equation (7.2]) assumes the form
0*T  oT
qu + a = ]CT“ + Dl, (3V? + 21/3 + 377) Tai — 37]C¥r7', (73)
i.e. equation (3.15)), when we define
ar =D, (3v{ + 2v3 + 3n) . (7.4)
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