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TOPOLOGICAL STRUCTURE OF THE SOLUTION SET
FOR A FRACTIONAL p-LAPLACIAN PROBLEM
WITH SINGULAR NONLINEARITY

MARCOS R. MARCIAL, OLIMPIO H. MIYAGAKI, GILBERTO A. PEREIRA

ABSTRACT. We establish the existence of connected components of positive
solutions for the equation (—Ap)*u = Af(u), under Dirichlet boundary con-
ditions, where the domain is a bounded in RV and has smooth boundary,
(—Ap)® is the fractional p-Laplacian operator, and f : (0,00) — R is a contin-
uous function which may blow up to oo at the origin.

1. INTRODUCTION

We establish the existence of a continuum of positive solutions to the problem
(—Ap)°u=Af(u) in Q,
u>0 inQ, (1.1)

u=0 on Q°

where Q@ ¢ RN, N > 1, is a bounded domain with smooth boundary 0, Q¢ =
RM\Q, s € (0,1), A > 0 and p € (1,0) are real numbers and f : (0,00) — R is a
continuous function which may blow up to oo at the origin.

We assume that the nonlinearity f satisfies

(A1) f:(0,00) — R is continuous and lim, e % =0,
(A2) there are positive numbers 3 < 1, a and A such that f(u) > % if u > A
and limsup,,_,o u?|f(u)| < oco.
The above hypotheses include nonlinearities such as
(i) flu)=-2r — L with0< B <a<l;

(ii) f(u):uq—u%With0<q<p—1andﬁ>0;

(iii) f(u) =Inw.

There is a substantial literature on singular problems dealing with the fractional
p-Laplacian operator; we refer the reader to Arora, Giacomoni and Warnault [I],
Canino, Montoro, Sciunzi and Squassina [2], Diaz, Morel and Oswald [7], Gia-
comoni, Mukherjee and Sreenadh [J], Lazer and McKenna [I3], Mukherjee and
Sreenadh [14], Ho, Perera, Sim and Squassina [10], and the references therein. See
also Cui and Sun [4] for other aspects of fractional p-Laplacian problems.
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In their fundamental work, Crandall, Rabinowitz and Tartar [3], employed topo-
logical methods, Schauder theory, and maximum principles to prove the existence of
an unbounded connected subset in R x Cy(£2) of positive solutions u € C?(Q)NC(Q)
of the problem

—Lu = g(xz,u) in Q,
u=0 on J9,
where L is a second-order uniformly elliptical operator, g is a continuous function
satisfying some hypotheses, and Cy(2) = {u € C(2) : u =0 on 90Q}.
Our goal is to extend the results obtained by Crandall, Rabinowitz and Tartar[3]

to the non-local fractional operator (—Ap)®. In contrast to that paper, we had to
overcome the less regularity of this operator to obtain regularity up to the border
of €.

To state our main result, we introduce some notation. For a measurable function
u: RN — R, we introduce the Gagliardo semi-norm

a]l(l C()IlSldel l]le Space

WP (RN = {u € LP(RY) : [u],,, < oo},
equipped with the norm
[ulls.pon = llullLe@yy + [ulsp,
where || - || 1o &~y denotes the LP(RY) norm. We also consider the space
WSP(Q) :={u e WP(RY) : [u]s,, < 00, u = 0 a.e. in Q°},

which is a Banach space with respect to the norm ||u|| = [u]s p.
A weak solution u € Ws’p(Q) to the problem (1.1)) satisfies

P @) o) [
//RN |;U—y‘N+SP dxdy_)‘/gf( ) dz, (1.2)

for every v € WP (Q2), where [a — bP~! denotes |a — b|P~2(a — b).
Let p’ and * stand for the conjugate exponent of p and the dual Banach space
respectively, we denote

W_S7PI(Q) = (V[/'(‘)S«,QD(()))*7
and its pairing with Wy (Q) by (-,-). We observe that the expression

((—A,)’u,v) = //RN u@lP” (v(z) — v(y)) dedy, wu,ve W7P(Q),

ey

defines a continuous, bounded and strictly monotone operator (—A,)%: W5*(Q2) —
WP (Q) given by u — (—A,)*u as a consequence of Holder’s inequality. Observe
further that (—A,)® is strictly monotone and coercive, that is

(=Ap)°u— (—Ap)°v,u—v) >0, u,ve WP (Q), utv

and

(=4p)"u,u)
[l

— o0 as ||ul]| = oc.
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For all a € (0,1] and all u: Q — R, we set

|u(z) — u(y)]
[ea@ = s rE
z,yeQ, rx#£y |£L’ y|

and consider the Banach space
C*Q)={ueC(): [Ulce@m) < oo},

endowed with the norm [|ul|ca @) = l|ullz= () + [U]ce@)-
The solution set of problem (|1.1J) is

S :={(\u) € (0,00) x C(Q) : u is a solution of (1.1}
‘We now can state our main result.

Theorem 1.1. Under assumptions (Al) and (A2), there is a number Ao > 0 and
a connected subset ¥ of [\, 00) x C(Q) satisfying

(i) ¥ cCS;

(i) TN ({A} x C(Q)) #0, Ao < A < o0.

2. AUXILIARY RESULTS

We start by introducing notation and recalling some results. Let M = (M, d)
be a metric space and {3, } a sequence of connected components of M. The upper
limit of {X,} is defined by

lim ¥, = {u € M : there is (uy,,) € US, with u,, € 3y, and u,, — u}.
Remark 2.1 ([I7]). lim %, is a closed subset of M.

In the proof of Theorem [I.I] we use topological arguments to construct a suitable
connected component of the solution set S of . More precisely, we apply in a
nontrivial way [16, Theorem 2.1], whose proof is based on the famous Whyburn’s
lemma [I'7, Theorem 9.3].

Theorem 2.2 (Sun and Song [16]). Let M be a metric space and {an}, {Bn} € R
be sequences satisfying

Ly << <P << B <.
with a, — —o0 and B, — co. Assume that {35} is a sequence of connected subsets
of R x M satisfying
(i) 25N ({an} x M) #0 for each n;
(ii) XX N ({Bn} x M) # O for each n;
(ili) for each a,B € (—o0,00) with o < B, UE% N ([a, B] X M) is a relatively
compact subset of R x M.

Then there is a number \g > 0 and a connected component ¥* of im X¥ such that
T N{A}x M) #0D  for each X € (Ao, 00).

Lemma 2.3 ([I5]). Let p > 1. There exists a constant Cp, > 0 such that

Cplz —yl?, ifp=2

P

Comriin= #p<2,

(2P~ = [yPP~?y, 2 —y) > {
P (+|zl+

where x,y € RN and (-,-) is the usual inner product of RY.
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We also recall the following Hardy-type inequality (see [10]).

Lemma 2.4. For any p € (1,00) and s € (0,1),
|u(z)[? .
—————dz < p PQ)).
/Q st (a, oyr 4% = Cllull’s - u e Wo™(@)

The next lemma, which will be proved later, is an important technical result
because it proves C'*-regularity up to the boundary for the weak solutions of a
non-linear problem driven by the fractional p-Laplacian operator. We denote the
Euclidean distance from x to 0f2 by

d(z) = dist(x, 09Q).

Proposition 2.5. Let f € L2 () be a nonnegative function. Assume that there
are B,s € (0,1) and C > 0 such that

@) < =S

d*P(z)’
Then there exists a unique weak solution u € W3*(Q) to the problem
(—Ay)°u=f inQ

u=0 onQ°.

x €. (2.1)

(2.2)

Furthermore
(i) u e L>®(9).
(ii) There exist constants a € (0,1) and A > 0 (A depending only on C, 3,Q)
such that u € C*(Q) and [|lul|co gy < A

Proof. A weak solution u to (2.2]) satisfies (1.2)) for A = 1. So, the Browder-Minty
Theorem guarantees that (—A,)* : WiP(Q) — W57 (Q) is a homeomorphism.
We denote

Fp(u) = A fudz, ue WiP(Q).

We now prove that Fy € wse' (©). In fact, let V be an open neighborhood of

09 such that 0 < d(z) < 1 for all € V. Thus,
1 1
1< —7<—— Vel
@) @

Now, if v € WP(2), for a positive constant C; it holds

v
Byl < [ 1Alllde = [ Iflllde+ [ 1f1plde < el + [ |2
Q Ve \%4 Q

Applying Hélder’s inequality and Lemma [2.4] we obtain a constant C' > 0 such that
[Ep(v)] < Clvll,
showing that Fy € W= (Q). Tt follows that there exists a unique u € W3 ()

such that (—A,)%u = FY, that is, u is a weak solution to problem ([2.2]).
To prove that u € L>°(Q), we define, for each k € N,

A ={r € Q:u(z) > k}.

Denoting (v — k)t := max{u — k,0}, we have (u — k)™ € W5P(2). Since the
inequality

[v(@) = v P (v(@) = v(y) (v (@) = vF(y) = [vF (2) — T ()I? (2.3)

dz.
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is valid for any measurable v, almost everywhere for z, y € RV, taking vt = (u—k)*

as a test function in (1.2)) (with A = 1), (2.3)) yields
+ _ ot P _ p—1(y+ _ T
[[ WOl g, o [ MO 0t
RV T — RN

e o —y/v
:/f(x)v+dx.
Q

Then, as a consequence of [I2] Lemma 5.1, Chapter 2 ], we conclude that there
exists k1 > 0, independent of u, such that

u<k; ae in€. (2.4)
Now, observe that the function —u satisfies
(=8p)°(-u) =—f inQ
u = Oon 2°.
Repeating the argument above we obtain ke > 0, independent of u, such that
—u<ky ae. infd (2.5)
From this and (2.4) we conclude the existence of M > 0 (independent of u) such
that
|u(z)| < M a.ein Q,
proving that |lu|ze ) < M.
We shall now prove the existence of a € (0, 1) such that u € C*(Q2). For any zq €

Q, take Ry := d(%’(’). Then Bgr,(xg) C Bag,(zo) C Q. Let u € WP(Bag,(x0)) N
L>°(Bzp,(x0)) be the weak solution of (2.2)). We have

C < C

d*f(x) = Ry’

(—Ap)°u= f(z) < in Br,(zo)-

By applying [11l corollary 5.5], we infer the existence of a constant M > 0 and
a € (0,1) such that

so-B)\7ir , (psr @l N pa
el (g o) < M[(RO )7 (RO /(BRo(mo))c x —y|N+sp dx) }RO

(2.6)
The constant C' is independent of the choice of the point xy (and Ry). Because
u € L>®(Q), by a covering argument for any ' CC 2 we conclude that

lullca @y < Car,

completing the proof of the interior regularity.
To handle regularity up to the border, we establish a result that will also be used
later.

Claim 1: There exist positive constants C; and Cs such that, for any 0 < € < s,
we have

Cid°* <u<Cyd® ¢ in Q.
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Proof. Set f, := min{n, f}. Since f, € L>(), it is clear that Fy, € W= (Q).
So, for each n € N there exists u, € W (2) N L>°(Q) satisfying
(—Ap)°uy, = fn, inQ
u, =0 on Q°.
Note also that f,, — co as n — oo a.e., and f, < f in Q.

Let As , be the first eigenvalue and ¢, , be a positive eigenfunction of the operator
(—Ap)°. There exists a constant ¢ > 0 such that

1
—d*(z) < s p(z) <cd’(z) for any x €
c

Indeed, the upper estimate follows from [8, Theorem 3.2] and [I1, Theorem 4.4], and
the lower estimate from [II, Theorem 1.1] and [5, Theorem 1.5]. Hence, choosing
a constant a > 0 small enough, for any x € 2 it follows that

(—Ap)*(apsp) < fn(@) = (=Ap)%un < f = (=Ap)°u

By applying [11l Proposition 2.10], we conclude the existence of Cy > 0 such that

Cy d°(z) < up(x) <wul(x) for any z € Q. (2.7
We now handle the upper estimate. Since s € (0, s), we obtain

(—Ap)*u= f(z) < Ksp(x) = (—Ap) uss,
where ugg is the solution obtained in [I, Theorem 4.2]. Therefore, v < usg in Q.
Another application of [I, Theorem 4.2 (ii)] yields

u<Cyd®™¢ in Q for any € > 0,

completing the proof of our Claim. O

Now, since u = 0 in ¢, it is sufficient to prove the regularity in €2, for n > 0
small enough, where
Q, ={zeQ:d) <n}
Let x,y € Q, and suppose, without loss of generality, d(z) > d(y).
We consider two cases. If |z —y| < d(;), set 2Ry = d(z) and y € Bg, (). Hence
we apply in Bg,(x) and obtain the regularity. However, if [t—y| > @ > @,
since Claim 2 guarantees that u < Cyd’(x) for some d, Cy > 0, we conclude that

(o) ] Il ol o oo w)y

e —yl® T -yl Jr-ylf T T \d(y)  d(y)
The proof is complete. (Il
Remark 2.6. Let us denote
o C
Mﬁ,OO = {g € LIOC(Q) . ‘g({L‘)| S dsﬁ(I)7 T e Q}

Then the solution operator associated with is
S: Mg.oo = WSP(Q)NCYQ), S(g) =u.
Notice that
15l e <M
for all g € Mg ~, with M depending only on C, 3, .
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For each s € R we consider f,,(s), where x; is the characteristic function of the
interval I C R.

Corollary 2.7. Let f,fe L2 () with f >0, f # 0 satisfying (2.1). Then, for
each € > 0, the problem

(_Ap)sue = fX{ ds>e} T fX{ ds<e} in €
u. =0 on 0N

admits a unique solution u, € C*(Q) for some a € (0,1). In addition, for any

solution u of (2.2)) there exists €9 > 0 such that
Ue > % in Q  for each € € (0, ¢€p).

Proof. Existence and uniqueness of u. follows directly from Proposition If w is
a the solution of (2.2)), there exist M > 0 and « € (0,1) such that

[ullga@y  Muellga@ < M.

Claim 1 yields w > C1d® in . Multiplying the equation
(=Ap)"u = (=Ap)*uc = f = (fX[a*(@)>e T [X[a*(2)<q)

by u — u. and integrating we have
R a
% ((u(2) = u(y) = (ue@) — uely)) ) dyda

<2M |f — f]da.
ds(xz)<e

As a consequence of Lemma we obtain ||u — u|| — 0 as € — 0.

If v < a, the compact embedding C%(Q) — C¥(9Q) yields
C
- We v(Q) <= ds-
lu = uello @ =7

Therefore, for € small enough, it follows from (2.7) that

C
u62u—§ds > u—%:% in Q.

The proof is complete. O

The next result is crucial for this work.

Lemma 2.8. Let § € (0,1). Then the problem

1
(_ALD)S(b = ¢7 m Qv
6>0 inQ, (2:8)
¢=0 ondQ,

admits a unique weak solution ¢ € W3*(Q). Moreover ¢ > cps ,, in § for some
constant ¢ > 0. Here ¢, , is a positive eigenfunction for the operator (—Ap)®
associated with its first eigenvalue g p.
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Proof. We consider the sequence of approximation problems

X 1 .
(_Ap)éﬁbn = W in Q,
6y >0 in Q. (2.9)
¢n =0 on 09,

As a consequence of [2, Proposition 2.3, Lemma 2.2, Lemma 3.1 and Lemma 3.4.],
for any n > 1, there exists a weak solution ¢, € W3’ ()N L>(12) to problem (2.9),
with {¢,} bounded in W"(Q) and ¢, < dpi1.

Then, up to a subsequence, we have ¢, — ¢ in W3*(Q), ¢, — ¢ in L"(Q2) for
1<r<piand ¢, = ¢ae. in Q. By applying [2, Theorem 3.2.] we have that ¢ is
a weak solution to problem

Consider ¢ > 0 such that cp . We have

‘Pw < ToTaT P

1 1
(=0p)*(cpsp) = Pl < < = (=4)*¢1.
: : P (ol +1)7 T (61 +1)8 :
Therefore, it follows from the comparison principle that
CPsp <SP <SPy < < o (2.10)
Combining the left-hand side of (2.9) with (2.10), we obtain ¢ > cps,, in Q for
some constant ¢ > 0. O

3. LOWER AND UPPER SOLUTIONS

In this section we prove the existence of both a lower and an upper solutions
to problem (1.1). For the convenience of the reader, we start by stating some
definitions.

Definition 3.1. A function u € W;*(Q2) with w > 0 in Q such that

W~ (@) — ¢(y))
//]RN \x — y|N+sp dyde < A/Qf(u)sﬁd%

for all p € W5P(Q), ¢ > 0 is a lower solution of
A function w € WO ’p(Q) with @ > 0 in © such that

WP~ (e(z) — o(y)) —
//]RN |a:— rep dydx > A Qf(u)god;r,
for all p € W5P(Q), ¢ > 0 is called an upper solution of (1.1)).

Theorem 3.2. Assume (A1) and (A2). Then there exist Ao > 0 and a non-negative
function ¥ € C*(Q), with ¥ > 0 in Q, ¥ =0 in Q°, a € (0,1) such that for each
A € [N, ), u = A"t is a lower solution of (1.1)), wherer =1/(p+ 8 —1).

Proof. According to (A2), there exists b > 0 such that

ft) > *t% if ¢ > 0. (3.1)

Applying Lemma [2.8) there exist both a function ¢ € Wi”(€) such that
s 1 .
(*Ap) ¢ = ﬁ m Qa
¢>0 inQ, (3.2)
¢ =0 on 09,
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and a constant ¢ > 0 such that ¢ > cp, ,, in Q. Thus by (2.9)) we obtain
¢ >cd® in Q. (3.3)

- 8

Now, take § = a7+ and ~v = 2866771, where a is the constant given in
(A2). According to Corollary [2.7] there exists a constant ey > 0 such that, for each
€ € (0,€p), the problem

(_Ap)sz/’ = 5¢_'6X[d5>5} - 7¢_ﬁx[d5<5] in Q7
>0 inQ, (3.4)
=0 in Q°

admits a solution ¢ € C*(Q) satisfying

v > (51/(571) )o. (3.5)

IfA>0andr=1/(p+ B —1), we define u = A"¢.

Now, take A\g = [ﬁ] 1/r, where € € (0,¢) and A is given by (A2).
Crep=T

Claim 2: u is a lower solution of (|1.1)) for any A > Ay.
Indeed, take £ € Ws’p(Q), &€ > 0. As a consequence of (3.4]), we have

WP~ (E(x) — £(y)
//RN Im—y|N+3” dydz

rp=1g gﬂ dz — A“P*%/ % dz.
{do>e) {do<e} @

We consider two cases.
Case 1: d® > e. For each A > )\, by using (3.3]) and ( @7 we obtain

u= szx“‘; ¢ > X’a—(hds > /\TLCle > A.

So, u(z) > A for each A > \g with d°(z) > e. According to and (3.3), we have
6 S
(-A )5"1¢*@ (=)
Thus, the weak comparison principle implies that

57T >1h in Q. (3.6)
It follows from (A2) and (3.6)) that

£
/\/ds>6 flwédx > )\a/ds>6 de

S —dx
(3.7)

2/\1041;5 T

1 a é‘
= dz
5% /ds>5 ¢B

= \-Dg £ dz.
ds>e ¢B
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Case 2: d° < e. Applying (3.1) and (3.5) we obtain

/\/ fw)édz > f)\b/ 56 dzx
{d<e} {d<e} W
—AH%/ S e
d<e U)ﬁ
o8 ¢ (3.8)
>y 2 / do
dr—1 Jd<e (;Sﬂ
— )\T(pfl),y/ £dx
d<e ¢B
It follows from and ( . ) that
WP~ (@) =€)
/\/f fda:>// |x7 LET dydz.
The proof is complete. O

Next, we show the existence of an upper solution.

Theorem 3.3. Assume (Al) and (A2) and let A > \g with Ao be as in Theorem
3.2, Then for each A € [Ao, A], (1.1) admits an upper solution ©w = uy = M ¢ where
M > 0 is a constant and ¢ is given by (3.2).

Proof. Choose € > 0 such that

—_

Ae|gl5 7 < 5 (3.9)
According to (A1) and (A2), there exist A; > 0 and C' > 0 such that
|f(u)| <P~ for u > A, (3.10)
[f(uw)] < LTC[; for u < A;. (3.11)
Choose ) .
M > max {A"67=T, (2AC) 7751 }. (3.12)

Now, and - 3.12)) yield
_ MP+Hh—1  pyptB-1
Ae (MHQS”oo)erﬁ '+AC < o = M7 (3.13)
Let w = M¢. By taking A < A, it follows from (3.10)-(3.11)) that

_ _ S C
M (@) < N f(@)] < AP xmsa,y + %X{ﬁgAl}}
1 o1 C C
SAET T X ms Ay HETT X qmeary ZFX(Esa) + ﬂfﬁxmm}] (3.14)
= New’ ™' + %].
u
We conclude that

€ o p+B-1
Af(M¢) < A[ (M||¢|[A4)¢]5 £
(3.15)

- [M¢)? [Me)P
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Replacing (3.13) and (3.14]) into (3.15)), we obtain
MPp+B-1 MP—1
(Mgl 7

A (M) <
Thus
Mt
A (@) < ?
Now, taking a non-negative n € W;*(Q), it follows from (3.2) that

)\/Qf(ﬂ)ndeMpfl/Q(bﬂ dz

et WP~ (n(x) —n(y))
=M /]RN va —y|Ntep a
_ [M¢(z) — M(y)["~ (n(z) — n(y))
- /L. 2 — gV o
WP~ (n(z) —n(y))
- [
showing that @ = M ¢ is an upper solution of . for A € [Ao, Al O

Lemma 3.4. Ifu € W;*(Q) be a weak solution of problem (L.1)). Thenu € L>(1Q).
Proof. If u € W3'P(Q) solves (L.1)), then

// ()P~ (v(x) — v(y)) dedy = [ fwode (3.16)
RN |=T_ [ @

for any v € W;*(2)
For each k € N, set A :={z € Q:u(z) > k}. Since u € W5P(Q) and v > 0 in
Q, we have that (v — k)t € WP (Q). Taking v = (u — k)™ in (3.16), we obtain

(=Ap)" (u—Fk)") = /Qf(U)(u — k)" da. (3.17)

Applying the algebraic inequality |a—b[P~2(a—b)(a™ —bT) > |a™ —bT|P to estimate
the left-hand side of (3.17] m, we obtain

B )P
_ ps Y < ‘
(/Ak(u k) dsc C//RN |x7 |N+Sp dz dy

—Ap)%, (u—k)*)

=C fu)(u—k)*da.

Ak

Now we estimate the right hand side of (3.17)). It follows from (Al) and (A2)
the existence of a number M > 0 such that

|()\<M( +t*7h), vt >0.
Therefore, if £ > 1, we have

/ F)(u—k)yFde <2M [ v (u— k) dz. (3.18)
Ay Ay
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Since uP~(u — k) < 2P~ (u — k)P + 2P~ kP~ (u — k), it follows that

/ uP~(u — k) da < 2P71 / (u— k)P da 4 2P P! / (u—k)dz.
Ay Ay Ak
Applying Holder’s inequality, we obtain

p_
P

/ (=K de < [Ag] 7T (/ (u— k)P dx) | (3.19)
Ak Ak
So, as a consequence of (3.18)-(3.19)), we have
/ (u—k)Pda < \Ak|%2]\/[0[2p*1 / (u— k)P da 4 2P~ 1kP—1 / (u—k) dx].
Ak Ak Ak
Denoting L = 2MC yields
[1— 2P~ 11| A, 7% ]/ (u—k)Pde < 2°P71KPTLL|AL| T / (u — k) da.
A Ay
If k — oo, then |Ag| — 0. Therefore, there exists ky > 0 such that
pI—P 1
1— 2P LA P > 5 Hk=ko>1.

Thus, for such k, we conclude that

1 =P

7/ (u— k)P dae < 2P71KPTLIL| Ay 7T / (u— k) da. (3.20)

2 Ap Ap

Hélder’s inequality and (3.20) yield

/(u—k)deg|Ak|p*1/ (u—k)pdxg|Ak|p*12p*1kp*1L|Ak|%/ (u—k) da.
Ak Ak Ak

Therefore,

/ (u—k)de < vk|Ag|*Te, VE > ko, (3.21)
Ag

—1 _ 92 _ PP
where P fQLandefm>O.Set

o) = /Ak(uk)dx—/koomtdt,

where the equality between integrals is a consequence of Cavaliere’s Principle. By
(3.21)) it follows that

g(k) < vk[=g' (k)] (3.22)
Taking k > ko and integrating (3.22) from kg to k, since g(k) > 0 it follows that
1 £ _€ _€ €
— [k < {lg(ko)] ™ — [g(R)] ™} < [g(ko)] 7+
N T

Thus .
k <y [g(ko)] 75 — kG
We denote A = ﬁ[g(ko)]f? - kOIT Note that k£ < A, if |Ag| > 0. Since A
does not depend on k, we conclude that |Ag| = 0 for all k£ > A, that is, u € L*>()
and

1 _e T
llull oo () < v [g(ko)] T+ — ko™ . U
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4. FINDING A SOLUTION FOR (1.1
Take A > \g and set Ip := [Ag, A]. For each A € I, according to Theorem

u=uy ="
is a lower solution of . Let M = My > AT(Sﬁ. By Theorem we have that
u=1uy=Myo
is an upper solution of . It follows from that
u= Ny <Ao< M =7 (4.1)

We consider the convex, closed subset of Iy x C(Q) given by
[Te= {(/\,u)EIAxC'(ﬁ):)\EIA, ggugﬂanduzOonQC}.
For each u € C(Q), set
falu) = xs, f(w) + x5, f(u) + x5, (@), @€,

where g, denotes the characteristic function of S;, which are defined by
S1={r € Q:u(z) <u(r)},

So={z € Q:ulz) <ulx) <u(z)},

Sy ={z € Q:u(x) <u(x)}

e (€0)

Lemma 4.1. For each u € C(Q), fa(u) €
B € (0,1) such that

and there exist C > 0 and

1oc

@) < gy TeR (12)

Proof. Let K C Q be a compact subset. Then both u and w achieve a positive
maximum and a positive minimum on K. Since f is continuous in (0,00), we
conclude that fA( ) € LIOC(Q)

Since Q = U3_; S, to prove it suffices to show that

c :
|f (u())] Sm, resS;,i=123.
According to hypothesis (A2), there are C,d > 0 such that

C

[fs)l < 5, 0<s<d.
Let

Qs ={xeQ:d’@x) <d}.
Recalling that u € C*(Q) if a € (0,1), we denote

D = max d*(z), vs:=min d*(z), »°:=max d*(z)
Q ac ac

and observe that 0 < vs < 1% < D < oo and also that f([vs,1?]) is compact.

Applying Theorems and Lemma and inequalities (2.5)) and (4.1]), we
infer that

O0< ANV < ANyY=u<u=M¢ inQ
and
x € Qs.

il . C
uf T (Mp(a))P T ()’
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To complete the proof, we consider three cases:
(i) z € S7. In this case, fa(u(z)) = f(u(z)). If z € S1 N Qys, we infer that

C C
<

uf(z) = df(a)
However, if x € S1 N, take positive numbers d; (¢ = 1,2) such that

[fa(u(z))] <

dl Sg(:c)gdg, CEGQS
Hence

r € St.

Fatue)] < gy

(ii) « € S3. In this case
0 <A%< u < Mo,
and, as a consequence,

fule)] < o, @€ 9

Hence, there is a positive constant C such that

Flu@) <C, e

Thus N
C ifx € STE,
u(x))| < .
We also have
1 _
i Q¢
DF = @A) T
and therefore there exist a constant C' > 0 such that
C : oc
=5 if x € Qf,
IﬂM@NS{DC .
dT(:E) ifx e Qg.
Thus,
(@) € ———, zes
= a8 (z)’ z
(iii) = € Ss. In this case fa(u(x)) = f(u(z)). The proof is similar to the case
(i) O

Remark 4.2. According to Proposition Lemma [4.1] and Remark for each

v € C(Q) and A € I, we have
Ch
d*?(x)
where Cy > 0 is a constant independent of v and § € (0,1). So, for each v,
(=Ap)*u=Afa(v) inQ

u=0 onQ°

Afa(v) € Lig.(2) and |Afa(v)| < in Q, (4.3)

admits a unique solution u = S(Afa(v)) € W35P(Q) N C*(Q).
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Set

Fa(u)(z) = fa(u(@)), ue C(Q).
and consider the operator T : Iy x C(Q2) — WP (2) N C%(Q), defined by
)

T(\u) = SOAFa(w)) if Ao <A< A, ue CQ).

Observe that, if (A\,u) € I x C(Q) is such that u = T'(\, u), then u is a solution to
the problem

(—Ap)*u=Afa(w) inQ
u=0 on °
Lemma 4.3. If (\,u) € Iy x C(Q) and u = T(\,u), then (\,u) € Gx.
Proof. Suppose that (\,u) € In x C(Q) satisfies T(\,u) = u. Then
W)

[/

We claim that u > u. Assume, by contradiction, that v := (u —u)* # 0. Then

|J\E+(sp) o) drdy = >‘/QfA(U)U dz, Vo€ Wy(Q).

e
R

—)\/ fatwovde = A / flwvde
p= 1(1)(17

e

el
Hence
e W:z:;l : [ugg_;;@fzm)_v(y»dxdygu
It follows that
J gt o

contradicting ¢ # 0. Thus, (v —u)™ = 0, that is, u — u < 0, and so u < T'(\, u).
Similarly, we obtain u < @ in 2, which gives @ > T'(\, u). the proof is complete.
[l

Remark 4.4. Observe that the definitions of f), and G, imply that, for each
(A, u) € Gp, we have fa(u) = f(u) for z € Q.

Remark 4.5. According to Remark there exists Ry > 0 such that Gy C
B(0,Ry) C C(©) and

T(IA X B(O,RA)) g B(O,RA)
Note that, by (4.3) and Lemma if (\,u) € Iy x O(Q) satisfies u = T'(\,u) then

(A, u) is a solution of (Py). So, Remark shows that it suffices to find a fixed
point of T in order to solve (1.1)).
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Lemma 4.6. The mapping T: Ix x B(0,Rpx) — B(0, Rp) is continuous and com-
pact.

Proof. Let {(An,un)} C Ix x B(0, Ry) be a sequence such that A, — X and u,, = u
in C(Q), as n — oco. Set
vy =T (An,up) and v=T(\u)
so that
vp = S(AnFa(uy)) and v = S(AFj(u)).
It follows that

//RN [[vn(x) @ [o(z) — o(y)Pt

|x_y|N+sp - |(E—y‘N+Sp ](Un('r) —U(y))dl”dy

:Anxgﬁumnffmw>wnfmdx
gcémmm—anm

Since

|nwm—nwn§¢g@eme

and fa(un(x)) — fa(u(z)) ae. z € Q, as n — oo, it follows that
/ [Fa(un) — fa(u)|dz — 0, asn — oco.
Q

Therefore v,, — v as n — oo in Wy ?(Q).
On the other hand, since u,, — u in C(£2), as n — oo, the proof of Lemma
shows that

o] CA .
Anfalun) € Lis (Q) and | A fa(un)] < T (z in Q.

Proposition [2.5] guarantees the existence of a constant M > 0 such that

~

lonllgegay < M,

so that v, — v in C(Q). This shows that T: Iy x B(0,Rs) — B(0, Ry) is contin-
uous. The compactness of T is a consequence. 0

5. BOUNDED CONNECTED SETS OF SOLUTIONS OF (|1.1J)

We recall the Leray-Schauder Continuation Theorem (see [6]) for the convenience
of the reader.

Theorem 5.1. Let D be an open bounded subset of the Banach space X. Let
a,b € R with a < b and assume that T : [a,b] x D — X is compact and continuous.
Consider ®: [a,b] x D — X defined by ®(t,u) = u — T(t,u). Assume that

(i) ®(t,u) #0 for all t € [a,b] and all u € ID;

(ii) deg (®(t,.),D,0) # 0 for some t € [a,b]
and set

Sap = {(t,u) € [a,b] x D : ®(t,u) = 0}.

Then, there exists a connected compact subset X p of Sqp such that

YapN({a} xD)#0 and Xqp N ({b} x D) # 0.
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Consider ® : Iy x B(0,R) — B(0, R)) defined by
DA u) =u—T(\u).

Lemma 5.2. ® satisfies:
(i) (N, u) #0 V(A u) € Ip x 0B(0, Ry),
(ii) deg(®(A,.), B(0,RA),0) # 0 for each A € Iy,

Proof. The verification of (i) is straightforward, since T'(Iy x B(0, Rx)) C B(0, Ry).
To prove (ii), set R = Rp, take A € Iy and consider the homotopy

Uy(t,u) =u—tT(\u), (tu)el0,1] x B(0,R).

It follows that 0 ¢ Wy (I x dB(0, R)). In fact, if 0 € Hy(Ipx x 0B(0, R)), then there
exist tp € [0,1] and ug € dB(0, R) such that ug = toT (A, ug). Since ug € 9B(0, R),
we have tg # 0. And tg # 1 because ug # T(\, ug). Therefore

[[uoll
to

= [T (A o)l < [luoll;

which is a contradiction.
The homotopy invariance of the Leray-Schauder degree guarantees that

deg(U(¢,.), B(0,R),0) = deg(¥(0,.), B(0, R),0) =1, te]0,1].
Thus,
deg(®(),.),B(0,R),0) =1, X€l,,

completing the proof. O
Theorem 5.3. There exist a number Ay > 0 and a connected set Xp C [Ao, A] X
C(R2) satisfying

(i) Xp C S;

(i) Tan ({Ao} x C(Q)) # 0;

(it}) Tan ({A} x () #0
for each A > Xg.

Proof. Maintaining the notation of Lemma [5.2] we apply Theorem to the op-
erator T. We have already proved that T is continuous, compact and T(I A X

B(0,Ra)) C B(0,Ry). Set
Sa={(\u) € I x B(0,R) : ®(\,u) =0} C Ga.
By Theorem there is a connected component ¥, C Sp such that
SAN ({0} x BO,R) #0 and  Tan ({A} x B0, ) # 0.
We point out that Sj is the solution set of the auxiliary problem
(—A,)u=Afa(u) in©,
u=0 on Q°
and, since X5 C Sy C Gy, it follows from the definition of fy that
(—Ap)°u=Af(u) in Q,
u=0 on Q°

for (A, u) € Xz, showing that ¥y C S. This completes the proof. O
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6. PROOF OF THEOREM [I.1]

Proof. Consider A as introduced in Section 4 and take a sequence {A,} such that
Xo < Ap < Ay < ... with A, = co. Set 8, = A, and take a sequence {a,} C R
such that o, > —ocoand -+ - < a,, < -+ < a1 < Ag.

Keeping up the notation of Section 4, consider the sequence of intervals I, =
[Ao, An]. Set M = C(2) and

Gr, ={(\u) €I, x Bg, :u<u<7u, u=0ondQ},
where R, = Rp, . Look at the sequence of compact operators
Tn: [/\0,/\”] X ERn — ERn
defined by
Tn(\,u) = S(AFy, (u))) if Ao <A< A,, u€Bg,.

Next, we consider the extension T}, : R x Bg, — Bg, of Ty, defined by

Tn(Xo,u) if A < Ao,
Tohu) = Tuhu)  if Ao < A < Ay,
To(Ap,u) i A>A,.

Observe that T}, is continuous and compact.
Applying Theorem ﬂ to T,: [an,Bn] X Br, — Bg, we obtain a compact
connected component X7 of

S, = {(\u) € [an, Bn] X Bg, : (A, u) =0},

where @, (A, u) = u — T, (A, u).
Note that ¥, is also a connected subset of R x M. According to Theorem
there exists a connected component ¥* of lim 3% such that
Y*N({A} x M)#D for each X € R.
Set ¥ = ([Ax,00) x M)NX*. Then ¥ C R x M is connected and
EN({A}xM)#0, X <A <oo.
We claim that ¥ C §. Indeed, note that

Toi1 ’[/\o,An]XERn = Tn’[)\o,An]XERn =Ty (6.1)

If (\,u) € ¥ and A > Ao, there is a sequence (A, up,) € UX;, with (A, un,) € 3j,.
such that A\,, = A and u,,, = v asn; = co. Then v € Bg, for some integer N > 1.
We can assume that (A, un,;) € [Ao, An] X Bry . Equality (6.1 guarantees that

Un; = Tm (/\nm unz) =1Tn ()‘m ) unl)

and passing to the limit we obtain u = T (A, ) which shows that (A, u) € ¥y and
S0
(A u) € 8:={(\u) € (0,00) x C(Q) : u is a solution of (Py)}.

This completes the proof. ([
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