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MULTIPLICITY RESULTS OF NONLOCAL SINGULAR PDES
WITH CRITICAL SOBOLEV-HARDY EXPONENT

ADEL DAOUES, AMANI HAMMAMI, KAMEL SAOUDI

ABSTRACT. In this article we study a nonlocal equation involving singular and
critical Hardy-Sobolev non-linearities,
[ulP"2u B

= Au _
|z|*P |z*

u >0, in £,
=0, inRV\Q,

where Q C RY is a bounded domain with Lipschitz boundary and (—Ap)? is
the fractional p-Laplacian operator. We combine some variational techniques

(~Ap)*u—p

, in £,

with a perturbation method to show the existence of multiple solutions.

1. INTRODUCTION

In this work, we consider the singular critical nonlocal problem with critical
Hardy-Sobolev non-linearities,

s NN 17 TR
(—Ap) u — MW = \u T, m Q,
w>0, inQ, (1.1)

u=0, inRY\Q,

where Q C RY is a bounded domain with Lipschitz boundary, 0 < s < 1, A is
a positive parameter, 0 < pu < po is the sharp constant of the fractional Hardy

Sobolev in RV, 0 <t < sp < N,0 < a <1< p < pit) where pf = N]\l’;p and

pi(t) = %;? are the fractional critical Sobolev and Hardy Sobolev exponents

respectively. The fractional p-laplacian non-linear nonlocal operator defined for
s € (0,1) is defined by

, u(x) — uy) P2 (u(x) — u(y)) N
AP u(z) = 21 dy, forall z € RV,
(=8p)ule) 0 RN\B. | |z — y|NHsp Y o

Problems of the type (l.1) play an important role in many field of sciences
such as: optimization, electromagnetism, astronomy, water waves, fluid dynamics,
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probability theory, phase transitions. etc. For further details on applications, we
refer the readers to [2], B 22 23] and references therein.

Before stating our results, let us briefly recall some of the literature concerning
problems with Sobolev and Hardy nonlinearities. In the previous years, the study
of fractional elliptic equations involving singular nonlinearity attracted lot of at-
tention; see for example [10] [T}, 12} 13} [15] [16] 19] and the references therein. The
following problem has been study in several works,

(—Ap)°u = Aa(z)u™ + M f(z,u), inQ,
u>0, inQ, (1.2)
u=0, inRV\Q,

where N > ps, M > 0, a : Q@ — R is a nonnegative bounded function. When
M =0 and p = 2 (the purely singular problem), Fang [5] prove the existence and
uniqueness of a solution in C2*(Q2) for 0 < @ < 1 in (1.2). In [I7], the author
prove a multiplicity result for by converting the nonlocal problem to a local
problem. In [7, [14] using a Nehari method combine with fibering map, the authors
established the existence and multiplicity of weak solutions to . In that sense
the current problem is new, not only because of a nonlocal operator and a
singularity, but also because of the Hardy-Sobolev nonlinearities. In a nutshell,
we will prove the existence of multiple solutions to for sufficiently small A, p.
Now, we state the main result of this paper.

Theorem 1.1. There exist \* such that for every A € (0, A*) problem (1.1) has at
least two positives solutions uy with Ey ,(ux) <0, and vy with Ey ,(vy) > 0.

The outline of this work is as follows. In Section [2] we present notation and basic
results. In Section [3] we prove the existence of a solution which is a local minimizer
in X of the functional energy E) , associated with . Section [4] is devoted to
study the approximated problem. While, multiplicity of solutions will be presented
in Section [l

2. FUNCTIONAL FRAMEWORK AND MAIN RESULTS

This section is devoted to recalling a few definitions, notation, and function
spaces which will be used later. Let @ C RY and @ = R?V\ (RV\ Q) x (RV\ Q)),
then the space (X, || - ||x) is defined by

X ={u: RN — R is measurable, u|o € LP(Q) and [u(z) = u(w)] €LP(Q)}

N+p€
|z —y| >

equipped with the Gagliardo norm

lute) )l NP
i =l + ([ R aoay)

Here ||lu||, refers to the LP-norm of u. We further define the space
Xo={ue X :u=0ae inRV\Q}
equipped with the norm

|u(z Ol / ul? /P
ul| = dedy — p - d:L') .
i = ([, e o 12l
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The best Sobolev constant is defined as
o o TETE dody — 1 [y (i da)
u€Xo\{0} (fQ |U,‘ps(t) dx)p/p;(t) :

|[*

S:

We now state the following definitions associated with problem ({1.1J).

Definition 2.1. We say that v € X is a weak solution to (1.1)), if (i) u > 0,
u= V¢ € LY(Q), and (ii)

|, ) )00 00, [ I
x|®

|z — y|N+Pps P ¢dz

p;(t)=2,,
- [, et [ o=

for each ¢ € Xy. Here, ut = max{u,0} and v~ = max{—u,0}.

Associated with (|1.1) we have the functional energy Ej ,: Xo — R defined as

_ L [ Jule) —u()lP / |uf? A / +yl-a
E)\’H(U) = 5( Wdifdy 1% 0 |I|5pdx) I— o Q(U ) dzx

ps
(2.2)

Obviously, every critical point of Ej , is a weak solution of the problem (1.1)).
We now list the embedding results pertaining to the function space X, [20} 21].

Lemma 2.2. The following embedding results holds for the space Xj.

(1) IfQ has a Lipschitz boundary and N > ps, then the embedding Xo < L9(2)
forq € [1,p%] is continuous and is compact for q € [1, p¥), where p* = Nj\i’;s,

(2) IfQ has a Lipschitz boundary and N = ps, then the embedding Xo < L9(2)
for q € [1,00) is both continuous and compact.

(3) If Q has a Lipschitz boundary and N < ps, then the embedding Xg —

C%P(Q) where B = # is both continuous and compact.

Let us define

1/p(t)

We now recall the fractional Hardy-Sobolev inequality.

Lemma 2.3.
(1) Fractional Hardy inequality [6]: For all u € WP (RYN), we have

|u|p s/
140 dx < [(—A)*Py|P dx. (2.3)
RN |2]P RN

(2) Fractional Hardy Sobolev inequality [9]: Assume 0 < a < sp < N. Then,
there exist positive constants ¢ and C, such that for all u € Wy'P(RY),

pa(t) /P (t)
(/ [ul - dx)p 3 < c/ [(=A)*/PylP da. (2.4)
ry |zl RN
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Moreover, if mu < muyg, then

|u[Ps®) N\ p/PL(H) ) Ju|?
< —A)V/PyulP da — )
(/RN ||t dw) - C( RN (=A)7 Pl do = p RN |$‘3p>dm’ (2:5)
for all uw € WP (RY).

The following embedding results have been proved in [4].

Lemma 2.4. (1) The embedding Wy (Q) — L(Q, %) is continuous for q €

[1,p%(t)] and compact for q € [1, pi(t)).
(2) For p > 1, W5P(Q) and D*P(RN) are separable reflexive Banach space
w.r.t the norm [|s p.

3. EXISTENCE OF A WEAK SOLUTION TO (|L.1)

Besides proving the existence of a weak solution, we show that this solution is a
local minimizer of the associated functional E) ,. Our first result is the following.

Lemma 3.1. There exists Ao > 0, Ry > 0, and po > 0 such that E) ,(u) > po > 0
for all |lul| = Ro. Also, we have C = infyepp, Exu(u) <O0.

Proof. Note that using Hoélder’s inequality combined with the fractional Sobolev-
Hardy inequality, we have

1 A o .
— Zhar l—a _ s(t)
Byuw) = [l = Tog Il = sl
1 A C x
= [l (Sl = 2= Co = — PO )
P 1-«o pi(t)
where Cy, Cy are two constants. Put
f(:L’) — lxp+1+a o Cl xp;‘(t)+a71 o A CO~
p pi(t) -«

Since 1 —a < 1 < p < p%(t), we find the existence of a constant

:< pi(t)(p+a—1) )1/<p:<t>—p

>0
ApCi(ps(t) +a—1

such that f(R) = m>a(>)<f(w) > 0. Choosing \g = %, we deduce the existence
of a constant §y > 0 satisfying E , > do > 0 for all A € (0,9). The proof of
Lemma [3.1]is now completed. O

Lemma 3.2. Problem (L.1)) admits a positive solution uy € Xo with Ex, <0 for
all A € (0, \o), where Ay is defined in Lemma ,

Proof. Let Ao, Ro and py be as in Lemma[3.1] Since 1 —a <1 < p < p}(t), noting
that for all p € Xy, >0, o Z0 and r > 1, one has

, o O
E)\ r = —||u||? — / +1*0¢dx7
wlre) = el = T2 | #0) 0 Ja T

Py (t)

—dr<0. (3.1)

So, for |Ju|| sufficiently small, we conclude that

C= inf Ej,(u)<0. (3.2)

u€BR,



EJDE-2023/10 NONLOCAL SINGULAR PDES 5

Hence, by the definition of the infimum (3.2)), we guarantee the existence of a
minimizing sequence {u,} for C. Therefore, using the reflexivity of Xy, there
exists a subsequence, still denoted by u,,, there exists uy, such that

u, — uy weakly in Xj,
d
u, — uy strongly in LF(Q, ﬁ) for 1 <k < pi(t), (3.3)
x
Uy, — Uy pointwise a.e. in ).

Thus, from the Brezis-Lieb Lemma [4], one has
pa(t) _, pa() Pi(t)
i) = [Ualp ) + lun = uali ) + o(1), (3.4)
[unl” = [luxll” + [lun — usl]” + o(1).

|un ‘UA

On the other hand, using Hélder inequality and letting n — oo, we obtain

/u}t_adx < / ui\*adx—i—/ |t — uy |17 da
Q Q Q

< / uifadx + C || up — ux ||117_0‘

:/uifadx—l—o(l).

Similarly
/ uy~*dx < / ul~da —|—/ | U — uy |17 da
Q Q Q
< / up "z + C || up —ux |7
Q
= / ut~*dz 4 o(1).
Q
Thus,

/ ul™de = / u\~*dx + o(1). (3.6)
Q Q
Hence, using (3.4), (3.5)), and (3.6)), we conclude that

1 *
B ulttn) = Exu(un) + llun = wx|[” = v to).  (37)

ps(t)

—— |y, — un
p*(?f)| "

S

Moreover, from (3.4)-(3.5) and for n sufficiently large u, u,, —uy € B, and %Hun —

g% 8 > o(1). Therefore, we deduce that

uall” = seylun — ua

1 1 *(t
5””77, —ux|P — I%W" — u) gzgtg > 0 on 0B,
1 p 1 py(t) . (8:8)
,Hun*’U)\H 7@‘111”7”)\ pr() ZOIH BT,
for r > 0 sufficiently small. Hence, we conclude that
1 1 o(t

Then, using (3.3)) and (3.9)), we obtain
C = Expu(un) +o(1)
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1 A 1 +\p (t)
= —lual” - 7/(1@)17“ dx — / (un)t da + o(1)
P I—ajq pi(t) Jo |z

1 1 (un — uy)T)Ps®
> Byl + 2 = sl =~ [ da
p)+y @ ol

> E)\yu(U)\) + O(l).

Therefore, C > E ,(uy) as n — oo. Since Bpg, is convex and closed, we conculde
that uy € Bpg,. Thus, from Eq. , we deduce that Ej ,(ux) = C < 0 and we
have uy # 0 which is a minimizer of E} , over Xj.

Now, we prove that u) is a weak solution to and uy > 0. Let p € Xg ¢ >0
and r > 0 small enough such that (uy + r¢) € Bg,. Since, uy is a local minimizer
of F ,, we have

0 < Exp(ux +1rp) — Ex u(uy)
= %(Hu,\ +rollf — Huxllp) 1T a i - /Q [((u,\ +re) ) — (u)' | da

o1 ((ux+re) )@ (uf)r:® . (3.10)
p:(t)/n[ ER ]t Jd

1
< (lhea +rllP = Jus]7).

Now, we divide (3.10) by ¢ > 0 and we take the limit as 7 — 0%, we obtain

lim inf - / ((ur+ 7)) = (w)'™
r—0t -« Jo r
< /Q lux(z) — u,\(y)pjiui(;ﬁN—JriA(y))(éﬁ(:c) —é(y)) drdy 1)
H o ‘J,'|Sp du /S; |(,C|t dz.
Therefore,
1ja/9 ((uA+r¢>+)1T—a_<ui>1—a (s + £r0)T) 6 e inQ,  (3.12)

with £ € (0,1) and ((ux + &ré) ™) "¢ — (uf) ¢ ae. in Q, as r — 0*. Using,
Fatou’s Lemma,

)\/(uj\“)’ad)da: <7 A liminf
Q

—a r—0*

Consequently, using (3.11)) and (3.13)), ones has

r

/ (r +79) )7 = D™ ) (313
Q

[ 1) = a2 t) ) =) o,

e =y 3.14

- M/ ™ Zud dx — )\/(U+)_a¢dﬂc _/ (uj)p:(ti)ilgb dx >0 .
o lz[*® a Q ||t -

for ¢ > 0 a.e. in RY. Since E,, < 0and using Lemma we derive that uy € Bp,.
Therefore, there exists § € (0,1) satisfying (1+r)uy € Bg, (|r| <J). Then, define
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the functional J) , by

D) = Ex (14 r)un).
Hence, the functional J) , attains its minimum at r = 0, since uy is a local mini-
mizer of Jy , in Bg,. Furthermore,

1 (w0
Ty (M) \r=0 = [[uall? — )\/ (ui)' ~*dx —/ W dz = 0. (3.15)
Q Q

Now, we define ¥ € Xo by ¥ := (u +€¢)*, where (uf + €)™ = max{u] +e¢p,0}.
Let Q. = {uj + €¢ < 0} and Q° = {u} +ep > 0}. Replacing ¢ with ¥ in (3.14)
and combining with (3.15] n, we obtain

o< [l -nwr LR OLOEL I

— y|NHep

=24, -1ty
—/uud:r—)\/(u}f)*allldx—/ %dw
o lzlr Q Q ||

-/ (1er () — ur )P (ua(2) = () (5 + ed)(@)
{(z,y)eQexQe}

p—2
- e e =l oy — [ B0 0 e

- /Q (M) + e0) + ()P 1O +E‘b)) dz

kK
_ IUA(I) — w7 (ua(z) — () (¥(2) - ¥(y))
/ /Q€><Q6 ‘CL’ - y|N+5p I dy

(= )M e+ 3 g + o)
(uf )P O~ (uf +6¢)} dz

j]*

+

< Mdmdy i |ual? _/ [)\(uj\r)FV + M} dx
Q

~Jo \l‘—y|N+”’ o |zl |z[*
lur(z) — UA(y)|p72(UA($) —ux(y))(@(z) — 9(y))
+ € /Q o — y| N dx dy
[u [P~ ?ux N (5 L )
— QWQZ)dx)—e/Q{)\(u}f) ¢+)‘|T} dx

-/ (1ua () — u(@)P > (r (@) — ur () (s} + e6)()
{(z,y)EQexQe}

— (uf +ed)(y))) Iz — 9"+ da dy

[ux|P~2uy
|| P

(uf + ep)dx

()P O (u + e

+p
Q

+ [ et v+
< of [ 1) = o) —untg)ote) 60
E

|
— y|NFsp
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|ualP~?ux oy, @O
-1 Qiqﬁd:ﬁ) —e/Q [)\(u;f) o+ )‘7} dx

|[* |[*

o (@) — )2 (r(2) () (Blx) ~ 6))
{(zy)eQexQc}

|z — y [N

Since the measure of the domain of integration {2 tends to zero as ¢ — 0, we
deduce as € — 0T, that

_ p—2 — _
[ i)~ a2 0r(@) — O =0 g, g
{(z,9)€QxQ. } |z — y[NFsp
Dividing by € and letting ¢ — 0, we obtain
_ p—2 _ _ p—2
[ ) = ) ) =60 gy, [ 1080
o @ — y|[ NP o |z

(uj{)?’;(t)‘lqb

_ /Q [/\(uj\r)*w, 4 7|$|t } dx > 0.

Since ¢ is an arbitrary test function, we obtain the equality if we change ¢ by —¢.
Hence, u) is a weak solution to the problem . Finally, putting ¢ = u, in
, we obtain that u) is nonnegative. Moreover, since Iy = C' < 0, then uy # 0.
Therefore, using the maximum principle, we conclude that w) is a positive solution
to . The proof is complete. O

4. EXISTENCE OF A SOLUTION OF THE PERTURBED PROBLEM

Note that E) , is not differentiable because of the singular term in it. Hence,
the classical approach of min-max methods fails. Therefore, to show the existence
of a second solution to (P), we introduce the following auxillary perturbed problem

R YD S e s
jzlsp T (ut + 5o EdK
u=0, inRY\Q.
The functional energy E,, x . : Xo — R associated with , is defined by
En o u(u)

1 A / 1. 1., 1 (uhyPs®
= —|ul|ff — —— ut + =)' — (=) ) da — / dz.
p” | 1—vy Q(( n) ) ) pit) Jo  |zff

From the definition of the functional energy E,, » ., it is easy to see that E, » ,is
Fréchet differentiable, for all ¢ € X, ones has

(B (1), )
- [ 1) = i) — s 6l) = ) gy

(—A,)°u in

) )

(4.1)

o [ — y|FFor (4.2)
p—2 +)ps(t)—2
o |z[®® o (ut + )t Q ||

It is easy to see that any critical points of the functional energy E,, » ., are exactly

the solutions of (4.1).

Lemma 4.1. Let Ry € (0,1], A\ and po be the constants given by Lemma .
Then for any A € (0, Ao], En . satisfies the following properties:
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(1) Epxpu(u) > po, for all u € Xy with |Jul| < Ry.
(2) There exists vy € Xg, with ||vr]| > Ry and Ey, x . (vx) < po.

Proof. From the subadditivity of r' =, ones has
+ 1 11—« 1 11—« -«
(w4 ) = ()10 < ()
Therefore,
Epau(u) 2 Expu(u).
So, from Lemma we deduce the first part of the Lemma
Now, let u € X such that u™ # 0 and r > 0, then

rP Ari—e 1.1, 1.1,
Boanlr) = Sl = 3 [ (w4 010 = ()7 o
rp:(t)/ (ut)P:®
pi(t) Jo o |zl
since 1 —v < 1 < p < pk(t). Therefore, we obtain the existence of vy € Xj,

satisfying ||va|| > Ro and Ej, x . (va) < po. The proof of the second part of Lemma
is complete. O

Now, we prove the compactness property for the functional energy F, » ,

dr — —o0 asr — 400,

Lemma 4.2. Suppose that 0 < o < 1. So, the functional energy Ep . satisfies

the (PS) condition at any level ¢ € R with ¢ < rfélz\)f tt) St Cy for any X\ > 0,

where
_ a=l pi)—lte 4 oq1ia
o= N irs) | (et pm) s

Proof. Consider {uy} C Xy be a (PS) minimizing sequence for the functional energy
Ey a, at level ¢ € R, with ¢ satisfying

Epxp(ug) = cand En aplur) =0 ask — oo. (4.3)

Therefore, using the Holder inequality and the Sobolev embedding, there exists
€ > 0 and C' > 0 such that

p%(t)wm( ), )

gy (1
N
)

c+ ellugll +o(1) > Epx p(ur) —
1
(

s " iaw;w)/
Jull? = AC (- + )0 T
(t) 11—« ps()

So, {uy} is bounded, since 1 —y <1 < p < pk(t). Moreover, {u, } is bounded in
Xy, therefore using (4.3)), ones has

: / _ . o
i (B (un), ue) = 1 Cuge, =),

Now, we recall the following elementary inequality.
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(a—b)a” —b") < —(a” —b")2 (4.4)
Then, using (4.4), we obtain
o [ eto) sl ) o) o
R2N

|z —y|N+ep (4.5)
|(u(e) —u(y)[P 2 (u(x) —u”(y))? '
= _//nm |z — y|NFsp oy

So, using (4.5)), we can conclude that |lu, || — 0 as k tends to infinity. Hence, for &
large enough, ones has

Enp(un) = By pu(uf) +0(1) and B\ (ur) = B, 5, (ul) +o.

Therefore, {uy} is a sequence of positive functions.
Now, since {uy} is bounded, up to a subsequence, using [I 2], there exists
{ur} C Xo, vy in Xy and a non-negative numbers [, ;1 such that

up — vy weakly in Xy,

up — vy weakly in LP< () (Q),

up — vy strongly in LF(Q for k € [1,p5(2)), (4.6)

aW)
up — vy a.e. in €,

lug(z)] < h(z) ae. in Q for all n with h(z) € L'(Q),

and
lJurll = p,
l[ur — vx
It is easy to see that if u = 0, then up — 0 in Xy. Therefore, we suppose that
u > 0. Using the above assertion, we obtain

(4.7)

p:(t) — l

Uk — UX

| (u; + %)a } < na(h + |U>\|)'

Now, applying the dominated convergence theorem, we obtain

. Uk — UX
lim [
k—oo Jq (uk + E)a

dx = 0. (4.8)

Hence, we conclude that
. Uk (N
lim / ———dx = / ———dx. (4.9)
koo Jo (uf + 5)* o (vy +5)°

Then, we demonstrate that uy — vy strongly in X,. Since, E!,
obtain

+\ps(t)—1
Juel = [ o g [T g o),
Q up, Q

|[*

)/\#(uk) — 0, we

Therefore, using Brezis-Lieb Lemma [4], we obtain

lukll? = llux — val” + [Juf|” + o(1),

“(t (¢ (¢ (4.10)
pet = k= oallZ2 ) + lull2: () + o(1),

[l
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So, using ([4.3), (4.8), and (4.10), we deduce that
0(1) = < n,)\,/_L( k)vuk - U)\>
- / |ug () — g () [P~ (un () — ur(y)) ((ux —oa)(2) = (ur —v2)(y))
Q

|z —y|[Nrep

p—2 _ ps(t)—1 _
—p [u u(uk — ) dsz/ (ukv}\dx/ el (g = v2) dx
Q Q

[P up + ) |z[*
— (Junll” = oall”) - PO 4 o(1)
(t
= Jluk — val|P — p;8 +o(1).
Therefore,
T#)—1
lim |Jug —vy||P = lim (g = 02) )P O (g = 02) de =1
k— o0 k A k—00 |z|t ’
N ((ug = 02) )P O~ (g — wy)
L=, T o

Then, using Sobolev’s inequality, we deduce that

— oy |PE®) _r_
lur, — vall? > S(/ wdm) o8
Q

Hence, we conclude that

SiP < P, (4.11)
We guarantee that [ = 0. We obtain that u;y — vy in Xy and the proof is complete.
Otherwise, we suppose that

St <1, (4.12)
Therefore, using and , the Holder inequality and the Young inequality,
if k£ tends to infinity, we obtain

= o) = s (Bl ). ) + o)

_ (Sp—t) p llfa_ lfoc
—m“ukﬂ —/\/Q [(uZ+n) (=) }dm

A u l_O‘u x4+ o0
+p;(t)/ﬂ(k+> K dx +o(1)

n

(sp—t) ox=t  (sp—1) 1 1 / 1—
> P g n g P = A —— o 1
> p(N—t)S +p(N_t)||m|| A<1_ +p* 5 lup |1~ dz + o(1)

(sp—t) (xze  (sp—1t) P — L l—a gt o
zp(N—t)Ssp er(N—t)” A A( ; t))/ dz + ofl)

S (sp—t) gn=t (s —1)

» 1 Pa (;) tl+a
v v ol = G?E+mmﬁm o
X 55 o + o(1)
(sp—t) qxzt  (sp—t), |\, p 5
2 S gl M —ha=a)

1 1 HOESET RN D s
- RO P - - @
X (1—a+p;‘(t))|9| s ((N—t)(l—a)) oAl 4 o(1)
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sp—t) Nt sp—t 11—« sp—t e
s p=1t) 4 (2 =) e — [((N( ) ) ;

S P A gy — 51— a)

Dol =] - 2 N rets) (et )
pE(H)—1ta

_p
x |Q\WS—“T”] e

(sp—t) -t
= - 7 S%p—ta — C)”
p(N —1)
which is a contradiction. Therefore, [ = 0 and u; — vy. The proof of Lemma
is complete. ([l

To state a control from above for the functional F,, » ,, we recall some necessary
tools (for more details, see [4]). Let 1 <p < N, 0 <t < p, and o < pu < po. Then,
the limiting problem

lulp—2u  (ut)P=O=2y+
e T @ R

u=0, inRY\Q,

(—=4p)u

)

(4.13)

has a positive radial solution

N—sp

||
U, — D
2
where € > 0, z € RY. Note that U, () is a minimizer for S satisfying
P (1)

_ p p U N-—t
Ure(@) = Use(y)] dxdy—u/ Us.| d:p:/ L gp— SRS (4.14)
Q Q

|z —y|NFsp | [ |z[*

Upe(x) =€

Q

where the function U, , () = U, ,(|z|) is the unique radial solution of (4.13)).
Now, we define

_ Ut,e(9)
Mes = ;
" Upe(8) — Ure(69)
where €,0 > 0, and 6 > 1. For fixed €, > 0, we set

0 if 0 <k < U, (65),
ges(k) = & mP s(k — Uy (69)) if Uy (06) < k < Uypo(9),
k+Upe(0)(mP5' = 1) if k> U(9),
and define
) 0 if 0 < k < U, (06),
Ges(k) = / gé)é(r) dr = { mes(k — Upe(00)) if Up(00) < k < Uye(9),
0 k if k> Uy o(6).

Note that the functions g. s and G, ; are nondecreasing and absolutely continuous.
We define the radially symmetric non-increasing function

Ut e,5 (’I") = Ge,(;(Ut,e(r))y

) Uel(r) ifr <6,
es(r) = {0 if > 66,

which satisfies
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for all » > 1. We follow here the arguments of [4, Lemma 2.10]. For each sufficiently
small €, > 0, we have the following estimates for u . s.

Lemma 4.3. There exists a constant C = C(N,s) > 0 such that for any 0 < pe <
§ < 0~ 1dist(0,09), it holds

lutesll” < 57 + O(5) N0, (4.15)
’U,p:(t) N—t €
/ |t;|=f (z)dx > St — C’(g)b(“)”s (B)=N+t) (4.16)
Q

where b(u) is the solution of f(r) = (p— 1)r? — (N — p)rP~L + pu, » > 0. On the
other hand, for any 8 > 0, there exists Cz such that

—Nosp € . .
N log($)]if =221,
N—s N—s *
/ U es(x)P > Cple v PN-"570  jfp<all) (4.17)
RN N_N=sp *Zzt)
N8 if B>t

Now, we have the following result for the functional energy £, x ..
Lemma 4.4. There exits A1 > 0 and i € Xy satisfying
(sp—1t) (n=t
~ = 7 Gsp—t — CA
p(N —t)
for all X € (0, \1), where C) is defined in Lemma ,
Proof. Firstly, using (3.1)), we have
Epapu(ruges) — —oo V(e 0) € (0,€) x (0,0),
T—>00

sup B, (1) <
t>0

and
En,)\,y(rut,e,é) 3 0 V(G,(S) S (0760) X (0,50)

Now, setting

rP s (uf_s)Pe®
Acs(r) = —|lues]|P — / o dx,
) p e pi(t) Jo o faff
1 INte 1
Busr) === | (s + ) = (e e

It is very easy to see that

71520 Acs5(r) =—o00, A.5(0)=0, Tl_l)r(r)1+ Acs(r) > 0.

Therefore, A¢ s attains its maximum at some T, 5 > 0. Indeed,

+ Vi)
! s(r) = rllugesll? — PO / (uge )"
Q

o dr =0,

hence .
[[u,e,s]|” PEn=2
Te,ﬁ = < (uj’ 6)pg(t) .
Jo 25— dx

|[*
So, A 5(r) > 0for 0 <t < T and Af 5(r) <0 for t > T, 5. Therefore, there exists
te,s > 0, satisfying

Epau(Testses) = max By, x (rug e s)-
r>0
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Then, using (4.15)) and (4.16)), we obtain

p
1 [t 511 i
A6,5(Te,5) = p( (ut ;p;(t) ||ut,6,5||p
t,€,
Jo = dz

| P

|t

Py (t) .
_ 1 < g e,s >W/ de
pi(t) Iy (uf, )PE M de 0 EE

(sp—1) ( [[ut,e,s]|” ) Ok I e

= * Ut,e,§
_ + pE(t) s€y

p(N —t) fg (ut@l,a) de

|t
(sp—1) Gzt €\(N—sp)
< oSO .

Then, we use the following elementary inequality to estimate B, s,

l—a (A—a)(p—1)

a7 —(a+b)*< —-1—-a)b P a »

EJDE-2023/10

(4.18)

(4.19)

for any @ > 0, b > 0 large enough, p > 1. Therefore, from (4.19)), with ¢ = @

and setting € < 74 for all q > 0 small enough, we deduce the existence of ¢1,co > 0

independent of €, such that

1 1 1
Brea) < 1 | (1)~ (restes + ) ") do
{zeQ:|z|<e} n

— n

(N—sp)(1—a)

1 p(l—a)

<-—a(l—a) 70 / (—M) " da
{re|z|<er’} N (mt—r ) P

(4.20)

< —02(1 - 01)6 HO) / (Te,éU 7u(m> HO) A
{zGSMm\Seq’} €
!
(N—sp)d-a)  [€ pO-0)
<—c3(1—a)e 7O / (UP’H(M) PEON=1N gy
€
0 y
N— 1 N
< —ay(1 - a)e% / Yyt EN=1 g,
0
(N=sp)(1—a)+N N
(1—a)e 7O bu) > .
(N=sp)(1—)+N ’
o L OGN ) = 3
(N—sp)(1—a)—2q(N—sp)(1—a)+p} (t)aN
(1—a)e O 1) < %'

Hence, using (4.18) and (4.20), we deduce the existence of a positive constant A;

such that, for every A € (0, \1), we obtain

B (tit e,5)
= Ae,5(ut,e,6) + /\Be,é(ut,e,5)

(sp — t) g N_t € (N*Sp)(lfa)*hz(l\*’*sp)(lfu)ﬂ’;(t)qN

228 Y Gt - (=YW (1 — o PE(D

= p(N — t) P (5) 2( )6 s
(N=25)(1=9)—2¢(N—25) 1= +2}aN

X € 2a
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(sp—1t) o=t
P Y gner — .
p(N —t) A

This completes the proof. O

Lemma 4.5. Suppose 0 < o < 1. Then, there exists \* = min(Ag, A1), such that
has a positive solution v, € Xo satisfying
sp—1
p(N —t)
where pg is given in Lemma[3.1] and Cy in Lemmal[].3

Proof. Consider A* = min(Ag, A\1). Therefore, the results in Lemmas holds
for all A € (0,A*). Now, using Lemma we deduce that the functional E,, » ,
satisfies the geometry of the mountain pass Lemma. Hence, we introduce the
mountain pass level

Not
pPo < En,)\’ﬂ('l)n) < Ssp—t — C)”

Cnnn = Inf max Enxp(9(r),

where
I'={g € C([0,1], Xo) : g(0) = 0, E x(9(1)) < 0}.
Moreover,
0<po<epn < Sl>lp Eyau(tY) < cp-
t>0

Therefore, according to Lemmas E, . satisfies the (PS) condition at the
level ¢y, . Thn there exists a non-regular point v, for I, » , at the level ¢y x .
Moreover, Ey, x . (Un) = ¢nau > po > 0. We deduce that v, is a non-trivial critical
point of the functional energy £, » ., and also a solution to the problem . Now,
if we replace ¢ by v,, in and using (4.5), it follows that ||v,|| = 0. Therefore,
v, is positive. At the end, we apply the strong maximum principle (see [I8]), we
deduce that v, is a non-negative solution to the problem . The proof of Lemma
is now complete. O

5. MULTIPLE SOLUTIONS TO (|L.1))

In this section we show the existence of a second solution to , as a limit of
solutions of the perturbed problem . To do this, we consider {v, },, be a family
of positive function given by Lemma Then, using Lemma combineed with
Hoélder’s inequality, we have

sp—t _n—t
- Ssp—t — C)\
p(N — 1)
1
> Enau = (Enxu(tn), vn)

10
= (G sl = 25 [ (e =) ae

A
+ p /(vn—|— =) v, dx
Q

s
1

(t)—1+a

Yloalle — 2oy
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since @ € (0,1), so {v,} is bounded in Xy. Therefore, applying the reflexivity of
X, we obtain the existence a subsequence, still denoted by {v,} and a function
vy, satisfying

v, — vy weakly in Xy,
vn — vy weakly in LP:(D)(Q),

x (5.1)

d
v, — vy strongly in L*(Q, W) for k € [1,p%(t)),
x

Vp — Uy a.e. in €,
and
’Un — M?
[[vn| (5.2)
||Un — ’U,\Hp:(t) — 1.

Then, we want to show that v,, — vy strongly in X(. This means that ||v, —v)| —
0 as n — oo.

Firstly, using and if 4 = 0, we obtain ||v,|| — 0 as n — co. Now, we assume
that p > 0. Therefore, since

Up, <
e v,
(Un + l)a -

Therefore, from Hélder inequality and ({5.1)), we obtain
v
— " dr < / vim da
/Q (Un + l)a “Ja

n
§/ |vn—v>\|1*adx—|—/v/1\7°‘dx
Q Q

0< a.e. in €.

11—«
n

(5.3)

1+a

= |u, —v,\|11,_a|Q| C —|—/ vy " dx
Q
< / vy~ % dz + o(1).
Q
In the same way, we have
11—« Un
vy “dx < / ————dz +o(1). (5.4)
/S; A Q ('Un + %)a

Hence, using (5.3)-(5.4), we obtain

v
lim [ ————dx = / vy 7 d.
n—oo Q (’Un —+ l)’Y Q A

n

Therefore, if we replace both w and ¢ by v, in (4.2)), and using (5.1)-(5.2)) as n — oo,
we obtain

— Uy

* (¢
”U — oy ||P P _ |U” Ps() _ UI;S() _ -«
n = AP+ (ol n dx de—X\ [ vy “dz — 0. (5.5)
9) || Q Q

Then, since {v,}, is bounded in X, and from the strong maximum principle (see
[18]), we obtain the existence Q C © and ¢ > 0 such that

v, >¢>0, ae. inQ, (5.6)



EJDE-2023/10 NONLOCAL SINGULAR PDES 17

for any integer n. Let us define ¢ € C5°(€) such that supp(¢) = Q € Q. Then,

using (5.6)), ones has

L |<¥
(Un+l)7 -’

n

0<

a.e. in Q.

Hence, from (5.1)) and by using the dominated convergence Theorem, we obtain
. @ -
lim 7dx:/v7 dx.
n—oo [ ('Un + %)'}’ Q A P

Thus, replacing v by v, in (4.2)), letting n — oo, and using (5.1) with the above
equality, we have

) (@) = @20 (#) — nW)EE@ = 6)

o — g7

o ®
—/\/UA ¢ da — /7“*"5@:0.

jzf*

(5.7)

Moreover, since 92 is continuous, the space C§°(€2) is dense in X. Therefore, (5.7)
holds for any ¢ € Xy. Thus, if we replace ¢ by vy in (5.7)) and combining this with

(4.2)), we obtain
) 7jfos(t)
HUAHP_A/QUA a_/ L do =0, (5.8)

Consequently, from (5.7)), we have

So, we obtain

— oy PR
hm ||vn N = hm / |Un|mt de =1>0. (5.10)

Now, since

— oy |PE®) — +)ps(t)
/wn wpro /((vn O
Q

||t EdK
It follows that | > St Therefore, using , we obtain
Enau(vr)

. ib(t)
= P — —2— ® dz d
””*” / p:<t>/ E

sp—t 1
P ||wup—x(f_ ) / ~a gy (5.11)
« Q

~ (V1) 1 pi(t)
sp—t » 1 1
_ _ [9) p(t)
_p(N—t)”U/\H )\(1—@ pj(t))‘ |
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Therefore, using (5.5))-(5.9), we have

sp—t
Exu(vn) = En s pu(ox) — (N D) [[on — oxl[” + o(1)
sp—1 Nt (5.12)
s sp—t —[) —
p(N —t) (S ) Ca
< -Ci

which contradicts . Therefore, E ,(vy) = lim, o0 By x u(vs). Hence, it is
very easy to see that vy is a solution of . Moreover, using Lemma we
obtain Fj ,(vx) > a > 0, that is, vy is nontrivial solution. Also, we proceed as in
the proof of Lemma to conclude that vy is a non-negative solution of problem
. At the end, uy # vy since Ej ,(ux) < 0 < Ej ,(vy). Therefore, the proof is
complete.
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