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ESTIMATION OF PLATE PARAMETERS FROM VERTICAL

DISPLACEMENT DATA USING A FAMILY OF PLATE MODELS

LUTHER WHITE, TETYANA MALYSHEVA, LEIF KARLSTROM

Abstract. We develop a method for estimation of parameters of an elastic

plate resting on a Winkler-type elastic foundation solely from data on the
vertical displacements of the plate. The method allows one to estimate com-

ponents of the external body force density field, plate thickness, elastic foun-
dation stiffness parameters, horizontal displacements of the plate, and stresses.

The key idea of the method is that multiple plate models are used simulta-

neously, namely the proposed reduced three-dimensional (R3D) plate model,
the Mindlin plate model, and the thin plate model. The three plate models

form a hierarchy of elastic plate models based on assumptions imposed on

stresses, with the R3D plate model being the most generalized model and the
thin plate model being the most constrained one. The hierarchical relationship

among the plate models allows one to incorporate prior information into the

estimation technique. The applicability of the proposed estimation method is
illustrated by a numerical example.

1. Introduction

We consider a three-dimensional elastic plate of non-uniform thickness resting
on an elastic foundation and subjected to an external force. Our objective is to
estimate the components of the external body force field, plate thickness, and the
stiffness parameters of the foundation solely based on the measurements of the
vertical displacement of the plate. The original motivation for our work arises from
geophysics applications dealing with modeling and analysis of sill and laccolith
deformation, where models of an elastic plate lying on an elastic foundation are
used to capture the deflection of rock strata above a magma-filled intrusion in
the subsurface [5, 12, 23]. In these applications, the goal is generally to infer the
geometry of the intrusion, the force distribution generating deformation, and the
material parameters of the surrounding rock, often solely from data on the earth
surface. Magmatic intrusions exhibit a wide variety of shapes and depths, and often
occur repeatedly over prolonged volcanic episodes. Plate models are an attractive
framework to capture both isolated intrusions and sequences [24].

In fact, the problems of estimation of external forces and parameters for plate
models have been of great practical interest in all fields of science and engineering
where elastic plate models are employed. The identification of impact forces acting
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on elastic plate structures - an important problem in impact engineering and struc-
tural health monitoring - was studied in [11, 16, 20, 37, 38]. In [20], the iterative
inversion method of deconvolution with Green’s functions of the medium was pre-
sented to determine oblique force acting on a surface of an infinite plate. In [16],
the impact load on a thick plate was determined inversely using theoretical Green’s
function and simulated wave form under the assumption that the direction of the
force is the only vertical. In [37], two methods - theoretical using Green’s functions
and experimental - were developed to determine the impact-force history for thin
plates based on the strain response. In [38] the transverse impact force history was
determined for a rectangular Reissner-Mindlin plate based on the strain response
using the eigenmode expansion method. In [11], the loading source of an infinite
beam on an elastic foundation was inversely identified from given information of
vertical deflection of the infinite beam using Tikhonov’s regularization. The work
[11] was motivated by offshore hydrodynamic applications dealing with very large
floating structures and ice plates in waves.

Available literature on estimation of thickness of elastic plates is mostly limited
to geoscience problems of estimation of the effective elastic thickness Te of Earth’s
lithosphere modeled by thin elastic plates [3, 32]. Evaluation of Te is of great im-
portance in geophysics as it has profound influence on the deformation and coupling
of adjacent blocks within the theory of plate tectonics [3]. Common methods for es-
timation of Te involve comparison of gravity anomalies and topography associated
with vertical deflection of thin elastic plates [32].

To describe the plate-base interaction, we utilize a Winkler-type foundation
model represented by a spring layer attached to the bottom of the plate and to
the top of the rigid base. The Winkler foundation models are widely used in differ-
ent fields of engineering to analyze beams, plates, and slabs resting on a soil medium
[1, 28, 39]. The Winkler elastic foundations are also commonly employed in geo-
physics in modeling of laccolith and sill formations to describe weak sedimentary
layers along which laccolith or sill is emplaced [5, 12]. The behavior of the Winkler
foundation is characterized by the spring constant called the subgrade modulus
or the foundation stiffness parameter. Many researchers have made great efforts
to evaluate the subgrade modulus [2, 5, 25, 31, 36, and the references therein].
The developed formulas are based on the elastic properties and geometry of the
foundation.

To our best knowledge, the present paper is the first one that attempts to esti-
mate the external force field acting on an elastic plate, plate thickness, and elastic
foundation stiffness parameters solely based on the measurements of the vertical
displacement of the plate. The main difficulty here comes from the fact that a
single plate model does not suffice to solve any of the given estimation problems.
To overcome this obstacle, we propose the estimation method in which multiple
plate models are used in conjunction. Specifically, we employ the family of three
plate models resting on a Winkler-type elastic foundation: the thin plate model,
the Mindlin plate model, and the proposed reduced three dimensional (R3D) plate
model.

The classical theory of elastic thin plates (see, for example, [13, 15]) assumes
that comparatively small forces on plate surface are needed to bend it and there-
fore, transverse shear and normal stresses are negligible. The Mindlin plate theory
[13, 21], also known as the first-order shear deformation theory, takes into account
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transverse shear effects, but retains zero transverse normal stress assumption and
requires a shear correction factor. Although the Mindlin plate model provides suf-
ficiently accurate results for moderately thick plates, it is not convenient to use
due to the difficulty of determining an accurate shear correction factor [33]. The
proposed R3D plate model does not impose zero stress assumptions existing in the
thin and Mindlin plate models and does not involve a shear correction factor. At
the same time, the R3D plate model preserves displacement assumptions embedded
into the Mindlin plate model, thereby maintaining the simplicity of the first-order
shear deformation theory. A distinguishing feature of the plate models under con-
sideration is that, instead of stresses, the body force densities are used to capture
external forces acting on the plate. It is assumed that the body force density field
has a functional form compatible with that of the plate displacement field.

The estimation method proposed in this paper involves the following steps. Ini-
tially, the three plate models are used to establish relations among normal displace-
ments and normal and tangential force densities. For comparison of the three plate
models, given normal vertical displacement data, we first estimate normal force
densities from each of the three plate models under the explicit constraining as-
sumption that tangential forces are zero. Next, the three weighted plate models are
used jointly to estimate both normal and tangential force densities, where forces are
not constrained. It is assumed, however, that the actual tangential components of
the body force are independent of the actual model being applied. Under a further
assumption that the differences between predicted normal body force densities from
the different models should be small, estimations of implied plate thickness and the
foundation stiffness parameters are carried out. In addition, as a byproduct of our
estimation technique, estimates of the stresses and horizontal displacements of the
plate are also derived.

Thus, the main contribution of this paper is the new and unique estimation
method based on the simultaneous use of multiple elastic plate models, which allows
one to estimate the components of an external force field acting on an elastic plate,
plate thickness, elastic foundation stiffness parameters, as well as the stresses and
horizontal displacements of the plate, solely from the measurements of the vertical
displacement of the plate.

This article is organized as follows. In Section 2, we present the distributed
parameter models for an elastic plate under consideration. The models are for-
mulated in a variational form based on the principle of minimum total potential
energy. The variational formulation allows one to consider more general situations,
for example, with discontinuities, and provides a foundation for finite element ap-
proximations. In Section 3, the spatially discretized plate models are obtained by
finite element approximations and represented by systems of algebraic equations.
Ultimately, these are the models that are used in computations. In Section 4, we
describe the techniques for estimation of model parameters from data on vertical
displacement of the plate. In Section 5, we present a numerical example from the
geoscience application to illustrate the applicability of the proposed method.

2. Plate model family

In this section we provide variational formulations of three distributed parameter
elastic plate models: the R3D plate, the Mindlin plate, and the thin plate, resting on
the Winkler-type foundation. The variational formulations are the basis for finite
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element solutions and for our estimation of forces applied to an elastic medium
from normal displacement data. The derivation of the R3D plate model is given
in detail. Derivations of the Mindlin and thin plate models are well-known but are
summarized to emphasize the differences.

We begin by fixing the following notation to be used throughout this paper. In
what follows, boldface letters denote vectors, both variables and functions. In par-
ticular, i, j,k ∈ R3 are reserved for the basic unit vectors in Cartesian coordinates
with the z-axis pointing upwards. Subscripts x, y, and z represent partial deriva-
tives, and superscript T means transpose. Let Ωh = Ω × (−h2 ,

h
2 ) be a bounded

open cylindrical domain in R3 representing a homogeneous in a vertical direction
and isotropic elastic plate of variable thickness h. We assume that region Ω ⊂ R2

has a sufficiently smooth boundary ∂Ω and is large enough so that the plate un-
dergoes negligible displacement on the boundary Γ = ∂Ω× (−h2 ,

h
2 ). We define the

following spaces:

H = L2(Ω), V0 = H1
0 (Ω), Hh = L2(Ωh,R3), Vh = H1(Ωh,R3)

with standard norms, and

Vh0 =
{
Φ ∈ Vh : Φ|Γ = 0

}
with the norm ‖·‖Vh0

inherited from Vh. The symbol ‖·‖ stands for the Euclidean
norm.

Let the displacement at a point (x, y, z) ∈ Ωh be expressed as a vector-valued
function u given by

u(x, y, z) = u(x, y, z)i + v(x, y, z)j + w(x, y, z)k . (2.1)

The displacement gradients are assumed to be small [9] so that higher-order powers
of the displacements and their derivatives are neglected. Let ε = [εij ]

3
i,j=1 and

τ = [τij ]
3
i,j=1 denote the strain and stress tensors, respectively. With the above as-

sumptions, the strain-displacement relations for an isotropic material are expressed
as

ε =
1

2
(∇u +∇uT ) (2.2)

and the stress-strain relations for an isotropic medium are given by

τ =
E

1 + ν

[
ε+

ν

1− 2ν
(trε)I

]
, (2.3)

where E is Young’s modulus, ν is Poisson’s ratio, trε is the trace of the tensor
ε, and I is the identity tensor [6, 9]. We assume that E and ν may be spatially
dependent.

The elastic strain energy of the plate is defined to be

VE(u) =
1

2

∫
Ωh

τ (u) : ε(u) dV .

We assume that the plate is subjected to an external body force whose density
is represented by

F(x, y, z) = Fu(x, y, x)i + Fv(x, y, z)j + Fw(x, y, z)k .

Then the work done on the plate by the above force is

W(u) =

∫
Ωh

F · u dV . (2.4)
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A Winkler-type elastic foundation connecting the plate with a rigid foundation
is characterized by positive functions κu(x, y), κv(x, y), and κw(x, y). These func-
tions may be thought as spring coefficients indicating the stiffness of support from
the elastic foundation. The potential energy functional associated with the elastic
foundation is given by

VF (u) =
1

2

∫
Ω

u(x, y,−h/2)TKFu(x, y,−h/2) dA , (2.5)

where

KF (x, y) =

κu(x, y) 0 0
0 κv(x, y) 0
0 0 κw(x, y)

 . (2.6)

The total potential energy of the plate is then defined as

Π(u) = VE(u) + VF (u)−W(u) . (2.7)

To proceed further, we wish to express the total potential energy Π(u) in terms
of functionals on Vh. The following assumption will be used throughout this article.

Assumption 2.1. E, ν, κu, κv, κw,∈ L∞(Ω), and F ∈ Hh.

Define the symmetric, continuous [27], bilinear form on Vh by

αE(u,Φ) =

∫
Ωh

τ (u) : ε(Φ) dV .

Then the elastic strain energy can be expressed as

VE(u) =
1

2
αE(u,u) . (2.8)

Let γint
0 : Vh → H1/2(∂Ωh,R3) be a trace operator [27] defined by

γint
0 (u) = u

∣∣
∂Ωh

, u ∈ Vh .

Let ∂Ωb = Ω × {−h2 } denote a part of the boundary ∂Ωh corresponding to the

bottom of the plate, and
∣∣
∂Ωb

be a restriction operator from H1/2(∂Ωh,R3) to

H1/2(Ωb,R3). Then αF : Vh ×Vh → R given by

αF (u,Φ) =

∫
Ω

[(
γint

0 (u)
)∣∣
∂Ωb

]T
KF

(
γint

0 (Φ)
)∣∣
∂Ωb

dA (2.9)

defines a symmetric, continuous, bilinear form on Vh. From (2.5) and (2.9), we
have

VF (u) =
1

2
αF (u,u) . (2.10)

Finally, for every F ∈ Hh, we define a continuous linear functional f on Vh0 by
the pairing Φ 7→ 〈f,Φ〉, where

〈f,Φ〉 =

∫
Ωh

F ·Φ dV . (2.11)

Applying (2.4), (2.8), (2.10), and (2.11) to (2.7) yields

Π(u) =
1

2
αE(u,u) +

1

2
αF (u,u)− 〈f,u〉 . (2.12)

Under assumption that the plate experiences negligible displacement on the
boundary Γ, admissible displacements are u ∈ Vh0. According to the principle
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of minimum total potential energy, the displacement u that the region Ωh under-
goes satisfies

DΠ(u)Φ = 0, ∀ Φ ∈ Vh0 , (2.13)

where

DΠ(u)Φ =
d

dδ
Π(u + δΦ)

∣∣∣
δ=0

is the first variation of Π at u. Applying (2.13) to (2.12), we arrive to the fol-
lowing variational (weak) equation for an elastic plate resting on a Winkler-type
foundation.

αE(u,Φ) + αF (u,Φ) = 〈f,Φ〉, ∀ Φ ∈ Vh0 . (2.14)

Recall Korn’s inequality [4, 13] that states that there exists a positive constant
κ such that for any u ∈ Vh0

αE(u,u) ≥ κ‖u‖2Vh
. (2.15)

With (2.15) and αF (u,u) ≥ 0, the bilinear form (αE + αF ) on Vh is symmetric,
continuous and Vh0-coercive. The Lax-Milgram theorem [30] applied to (2.14)
immediately yields the well-posedness of the variational problem (2.14) associated
with an elastic plate on a Winkler-type foundation.

To obtain variational formulations of the R3D, Mindlin, and thin plate models,
we specialize displacements (2.1) to various subspaces of displacement functions.
Henceforth, for convenience, we set

a =
E

(1 + ν)(1− 2ν)
, â =

E

1− ν2
, b =

E

2(1 + ν)
(2.16)

and

I1 = h, I2 =
h2

4
, I3 =

h3

12
.

For the R3D plate model, we consider the components of the displacement vector
u given by

u(x, y, z) = zu1(x, y)

v(x, y, z) = zv1(x, y)

w(x, y, z) = w0(x, y)

(2.17)

with u1, v1, w0 ∈ V0. Here w0 is the displacement of the mid-surface of the plate in
the z-direction, u1 and v1 are rotations of the normal to the mid-surface of the plate
about the x-axis and the y-axis, respectively. Substituting (2.17) into (2.2) and
(2.3) yields, respectively, the following strain-displacement and stress-displacement
relations

ε11 = zu1x, ε12 =
z

2
(u1y + v1x),

ε22 = zv1y, ε13 =
1

2
(u1 + w0x),

ε33 = 0, ε23 =
1

2
(v1 + w0y),

(2.18)

and
τ11 = za[(1− ν)u1x + νv1y], τ12 = zb(u1y + v1x),

τ22 = za[νu1x + (1− ν)v1y], τ13 = b(u1 + w0x),

τ33 = zνa[u1x + v1y], τ23 = b(v1 + w0y) .

(2.19)
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For compatibility with the assumed displacements, we consider the external force
densities in the form

Fu(x, y, z) = zfu(x, y)

Fv(x, y, z) = zfv(x, y)

Fw(x, y, z) = fw(x, y)

(2.20)

such that fu, fv, fw ∈ H. Here fu(x, y) and fv(x, y) are tangential force densities
per unit depth.

From (2.17) we observe that the displacement vector u is fully determined by the
functions u1, v1, and w0. With this in mind, we proceed to derive the variational
problem for the R3D plate model in terms of u1, v1, and w0. Applying (2.18)-(2.20)
to (2.12) and integrating with respect to z, the total potential energy of the plate
is expressed as

Π(u1, v1, w0) =
1

2

∫
Ω

{
aI3[(1− ν)u1x + νv1y]u1x

+ bI3(u1y + v1x)2 + bI1(u1 + w0x)2 + bI1(v1 + w0y)2

+ aI3[νu1x + (1− ν)v1y]v1y + κuI2u
2
1 + κvI2v

2
1

+ κwI1w
2
0 − 2[I3(fuu1 + fvv1) + I1fww0]

}
dA .

Utilizing the principle of the minimum total potential energy (2.13) with

Φ = zφ1(x, y)i + zψ1(x, y)j + ω0(x, y)k , (2.21)

where φ1, ψ1, ω0 ∈ V0, and decoupling the result into individual variational equa-
tions with respect to φ1, ψ1, and ω0, we arrive to the following variational formu-
lation of the R3D plate model.∫

Ω

{
aI3[(1− ν)u1x + νv1y]φ1x + bI3(u1y + v1x)φ1y

+ bI1(u1 + w0x)φ1 + κuI2u1φ1 − I3fuφ1

}
dA = 0 ,

(2.22)

∫
Ω

{
aI3[νu1x + (1− ν)v1y]ψ1y + bI3(u1y + v1x)ψ1x

+ bI1(v1 + w0y)ψ1 + κvI2v1ψ1 − I3fvψ1

}
dA = 0 ,

(2.23)

∫
Ω

{
bI1(u1 + w0x)ω0x + bI1(v1 + w0y)ω0y

+ κwI1w0ω0

}
dA−

∫
Σ

I1fwω0 dA = 0 .

(2.24)

Next, we summarize the variational formulations of the Mindlin and thin plate
models. For the Mindlin plate model, in addition to the displacement relations
(2.17), it is assumed that in (2.3),

τ33 = 0 (2.25)

implying

ε33 =
−ν

1− ν
(ε11 + ε22) .

Moreover, a shear correction factor ks > 0 is introduced into the stress-strain
relations (2.19) to account for the fact that shear strains are not constant over a
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cross-section of the plate [13]:

τ13 = ksb(u1 + w0x), τ23 = ksb(v1 + w0y) .

Thus, the total potential energy of the plate is expressed as

Π(u1, v1, w0) =
1

2

∫
Ω

{
âI3[u2

1x + 2νv1yu1x + v2
1y]

+ bI3(u1y + v1x)2 + ksbI1(u1 + w0x)2 + ksbI1(v1 + w0y)2

+ κuI2u
2
1 + κvI2v

2
1 + κwI1w

2
0

− 2[I3(fuu1 + fvv1) + I1fww0]
}

dA .

Applying the principle of the minimum total potential energy (2.13) with Φ
in the form (2.21) and decoupling the result into individual variations give the
variational formulation of the Mindlin plate model as follows.∫

Ω

{
âI3[u1x + νv1y]φ1x + bI3(u1y + v1x)φ1y

+ ksbI1(u1 + w0x)φ1 + κuI2u1φ1 − I3fuφ1

}
dA = 0 ,∫

Ω

{
âI3[νu1x + v1y]ψ1y + bI3(u1y + v1x)ψ1x

+ ksbI1(v1 + w0y)ψ1 + κvI2v1ψ1 − I3fvψ1

}
dA = 0 ,∫

Ω

{
ksbI1(u1 + w0x)ω0x + ksbI1(v1 + w0y)ω0y

+ κwI1w0ω0 − I1fwω0

}
dA = 0 .

For the thin plate model, it is further assumed that

τ13 = τ23 = 0 . (2.26)

This results in the conditions

u(x, y, z) = −zw0x(x, y)

v(x, y, z) = −zw0y(x, y)

w(x, y, z) = w0(x, y) .

The total potential energy of the plate is now

Π(u1, v1, w0) =
1

2

∫
Ω

{
âI3[(w0xx + w0yy)2 + 2(1− ν)(w2

0xy − w0xxw0yy)]

+ κuI3w
2
0x + κvI3w

2
0y + κwI1w

2
0

− 2[−I3(fuw0x + fvw0y) + I1fww0]
}

dA .

Again, according to (2.13) applied with (2.21), the variational formulation of the
thin plate model is given by∫

Ω

{
âI3(w0xx + w0yy)(ω0xx + ω0yy) + κuI3w0xω0x + κvI3w0yω0y

+ κwI1w0ω0 − [−I3(fuω0x + fvω0y) + I1fwω0]
}

dA = 0 ,
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where we have used the following result obtained from Green’s identities:∫
Ω

{
2w0xyω0xy − w0xxω0yy − ω0xxw0yy

}
dA = 0 ,

for any ω0 ∈ H2
0 (Ω).

3. Spatial approximation

In this section, spatially discretized plate models are determined from approxima-
tions of the variational formulations for the R3D, Mindlin, and thin plate distributed
parameter models. The cubic B-spline finite element method with enforcement of
zero Dirichlet boundary conditions corresponding to the assumption that the plate
undergoes negligible displacement on the boundary Γ is used. These systems are
central in formulating estimation problems in which data consists only of vertical
displacements at points within Ω. Let

Sm(Ω) = {B1, . . . , Bm} (3.1)

be a set of linearly independent functions in H2(Ω) from which we construct ap-
proximations to the solutions of the model equations. Define the column m-vector-
valued function B : Ω 7→ Rm by

B(x, y) = [B1(x, y), . . . , Bm(x, y)]T ,

and express approximations of solutions u1, v1, and w0 and the force densities fu,
fv, and fw as

u1(x, y) = B(x, y)T ū1

v1(x, y) = B(x, y)T v̄1

w0(x, y) = B(x, y)T w̄0

(3.2)

and
fu(x, y) = B(x, y)T f̄u

fv(x, y) = B(x, y)T f̄v

fw(x, y) = B(x, y)T f̄w ,

(3.3)

where ū1, v̄1, w̄0, f̄u, f̄v, and f̄w are m× 1 constant column vectors.
Substituting (3.2) and (3.3) into the variational formulation (2.22)-(2.24) of the

R3D plate model leads to{∫
Ω

[
aI3(1− ν)BxB

T
x + bI3ByB

T
y + (bI1 + κuI2)BBT

]
dA
}

ū1

+
{∫

Ω

[
aI3νBxB

T
y + bI3ByB

T
x

]
dA
}

v̄1

+
{∫

Ω

bI1BBT
x dA

}
w̄0 =

{∫
Ω

I3BBT dA
}

f̄u ,

(3.4)

{∫
Ω

[
aI3νByB

T
x + bI3BxB

T
y

]
dA
}

ū1

+
{∫

Ω

[
aI3(1− ν)ByB

T
y + bI3BxB

T
x + (bI1 + κvI2)BBT

]
dA
}

v̄1

+
{∫

Ω

bI1BBT
y dA

}
w̄0 =

{∫
Ω

I3BBT dA
}

f̄v ,

(3.5)
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Ω

bI1BxB
T dA

}
ū1 +

{∫
Ω

[
bI1ByB

T
]

dA
}

v̄1

+
{∫

Ω

[
bI1(BxB

T
x + ByB

T
y ) + κwI1BBT

]
dA
}

w̄0

=
{∫

Ω

I1BBT dA
}

f̄w .

(3.6)

For the Mindlin plate model, we have similarly{∫
Ω

[
âI3BxB

T
x + bI3ByB

T
y + (ksbI1 + κuI2)BBT

]
dA
}

ū1

+
{∫

Ω

[
âI3νBxB

T
y + bI3ByB

T
x

]
dA
}

v̄1

+
{∫

Ω

ksbI1BBT
x dA

}
w̄0 =

{∫
Ω

I3BBT dA
}

f̄u ,

(3.7)

{∫
Ω

[
âI3νByB

T
x + bI3BxB

T
y

]
dA
}

ū1

+
{∫

Ω

[
âI3ByB

T
y + bI3BxB

T
x + (ksbI1 + κvI2)BBT

]
dA
}

v̄1

+
{∫

Ω

ksbI1BBT
y dA

}
w̄0

=
{∫

Ω

I3BBT dA
}

f̄v ,

(3.8)

{∫
Ω

ksbI1BxB
T dA

}
ū1 +

{∫
Ω

ksbI1ByB
T dA

}
v̄1

+
{∫

Ω

ksbI1(BxB
T
x + ByB

T
y ) + κwI1BBT dA

}
w̄0

=
{∫

Ω

I1BBT dA
}
.f̄w .

(3.9)

Finally, for the thin plate model, we obtain{∫
Ω

[
âI3(Bxx + Byy)(Bxx + Byy)T

+ I3(κuBxB
T
x + κvByB

T
y ) + κwI1BBT

]
dA
}

w̄0

=
{∫

Ω

−I3BxB
T dA

}
f̄u +

{∫
Ω

−I3ByB
T dA

}
f̄v +

{∫
Ω

I1BBT dA
}

f̄w .

(3.10)

To allow for the spatial variability of the coefficients and plate thickness, let

{Ωk}Nk=1 be a partition of Ω, Ω =
⋃
k

Ωk, and define the functions

Ξk(x, y) =

{
1, when (x, y) ∈ Ωk,

0, when (x, y) /∈ Ωk .

We express the coefficients (2.6) and (2.16) and plate thickness h as linear com-
binations of Ξk of the form

θ(x, y) =

N∑
k=1

θkΞk(x, y)
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where θ represents a, â, b, κu, κv, κw, or h, whichever is appropriate. Note that,
for example,

h(x, y)a(x, y) =

N∑
k=1

hkakΞk(x, y) .

It is convenient to define the following matrices.

G
(k)
0 =

∫
Ω

ΞkBBT dA

with

G0 =

N∑
k=1

G
(k)
0 and G00(θ) =

N∑
k=1

θkG
(k)
0 ,

and

G
(k)
x0 =

∫
Ω

ΞkBxB
T dA, G

(k)
y0 =

∫
Ω

ΞkByB
T dA

G(k)
xx =

∫
Ω

ΞkBxB
T
x dA, G(k)

yy =

∫
Ω

ΞkByB
T
y dA

G(k)
xy =

∫
Ω

ΞkBxB
T
y dA G

(k)
L =

∫
Ω

Ξk(Bxx + Byy)(BT
xx + BT

yy) dA

with

Gx0(θ) =

N∑
k=1

θkG
(k)
x0 , Gy0(θ) =

N∑
k=1

θkG
(k)
y0

Gxx(θ) =

N∑
k=1

θkG
(k)
xx , Gyy(θ) =

N∑
k=1

θkG
(k)
yy

Gxy(θ) =

N∑
k=1

θkG
(k)
xy , GL(θ) =

N∑
k=1

θkG
(k)
L ,

where we express dependence on the coefficients when necessary. Finally, with
reference to (3.4)-(3.6), (3.7)-(3.9), and (3.10), we define the following matrices for
the R3D plate, Mindlin plate, and the thin plate models, respectively. For ease of
exposition, subscripts R, M , and T will refer to the respective plate models. For
the R3D plate model, we introduce the matrices

GR11 = Gxx((1− ν)I3a) +Gyy(I3b) +G00(I1b) +G00(I2κu)

GR12 = Gxy(νI3a) +Gyx(I3b)

GR13 = G0x(I1b)

GR22 = Gyy((1− ν)I3a) +Gxx(I3b) +G00(I1b) +G00(I2κv)

GR23 = G0y(I1b)

GR33 = Gxx(I1b) +Gyy(I1b) .

(3.11)
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For the Mindlin plate model, we define the matrices

GM11 = Gxx(I3â) +Gyy(I3b) + ksG00(I1b) +G00(I2κu)

GM12 = Gxy(νI3â) +Gyx(I3b)

GM13 = ksG0x(I1b)

GM22 = Gyy(I3â) +Gxx(I3b) + ksG00(I1b) +G00(I2κv)

GM23 = ksG0y(I1b)

GM33 = ksGxx(I1b) + ksGyy(I1b) .

(3.12)

For the thin plate, we assign the matrix

HT = GL(I3â) +Gxx(I3κu) +Gyy(I3κv) +G00(I1κw) . (3.13)

Of course, terms may be written as multipliers of the matrices in the case of constant
thickness, Young’s modulus, and Poisson’s ratio. Applying (3.11) to (3.4)-(3.6)
renders the following system for the R3D plate model.

GR11ūR1 +GR12v̄R1 +GR13w̄R0 = G0(I3)f̄Ru

GTR12ūR1 +GR22v̄R1 +GR23w̄R0 = G0(I3)f̄Rv

GTR13ūR1 +GTR23v̄R1 +GR33w̄R0 = G0(I1)f̄Rw .

Similarly, applying (3.12) to (3.7)-(3.9), for the Mindlin plate model we obtain the
system

GM11ūM1 +GM12v̄M1 +GM13w̄M0 = G0(I3)f̄Mu ,

GTM12ūM1 +GM22v̄M1 +GM23w̄M0 = G0(I3)f̄Mv ,

GTM13ūM1 +GTM23v̄M1 +GM33w̄M0 = G0(I1)f̄Mw .

Observe that the R3D and Mindlin systems have the form

G∗11ū∗1 +G∗12v̄∗1 +G∗13w̄∗0 = G0(I3)f̄∗u ,

GT∗12ū∗1 +G∗22v̄∗1 +G∗23w̄∗0 = G0(I3)f̄∗v ,

GT∗13ū∗1 +GT∗23v̄∗1 +G∗33w̄∗0 = G0(I1)f̄∗w ,

(3.14)

where ∗ = R or M , whichever is appropriate.
Next, we wish to derive the expressions for w̄∗0 in terms of f̄∗u, f̄∗v, and f̄∗w. To

this end, we introduce the matrices

H∗11 = G∗22 −GT∗12G
−1
∗11G∗12

H∗12 = G∗23 −GT∗12G
−1
∗11G∗13

H∗22 = G∗33 −GT∗13G
−1
∗11G∗13

H∗ = H∗22 −HT
∗12H

−1
∗11H∗12

and vectors

f̃∗v = G0(I3)f̄∗v −GT∗12G
−1
∗11G0(I3)f̄∗u , (3.15)

f̃∗w = G0(I1)f̄∗w −GT∗13G
−1
∗11G0(I3)f̄∗u . (3.16)

Then the solution of (3.14) may then be expressed as

H∗w̄∗0 = f̃∗w −HT
∗12H

−1
∗11f̃∗v , (3.17)

H∗11v̄∗1 = f̃∗v −H∗12w̄∗0 , (3.18)
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G∗11ū∗1 = G0(I3)f̄∗u −G∗12v̄∗1 −G∗13w̄∗0 . (3.19)

Applying (3.15) and (3.16) to (3.17), we obtain the following expression for w̄∗0 for
the R3D and the Mindlin plate models,

H∗w̄∗0 =
(
HT
∗12H

−1
∗11G

T
∗12 −GT∗13

)
G−1
∗11G0(I3)f̄∗u

−HT
∗12H

−1
∗11G0(I3)f̄∗v +G0(I1)f̄∗w .

(3.20)

From (3.10) and (3.13), for the thin plate model we have

HT w̄T0 = Gx0(I3)f̄Tu +Gy0(I3)f̄Tv +G0(I1)f̄Tw . (3.21)

4. Estimation of parameters

In this section, we consider the estimation of body force densities, plate thickness,
and elastic foundation stiffness parameters based on vertical displacement data.
Specifically, we assume that data of the vertical displacements zi at points (xi, yi) ∈
Ω for i = 1, . . . , No are given. The first problem is to estimate the force density
components f̄u, f̄v, and f̄w under the assumption that the values of plate thickness
h and elastic foundation stiffness parameters κu, κv, and κw are specified.

A related problem is the interpolation problem [26, 35] that seeks a function
z(x, y) defined for (x, y) ∈ Ω such that z(xi, yi) = zi. Towards this end, we express
the function z as

z(x, y) = B(x, y)T z̄ ,

where the components of B(x, y) are a set of linearly independent functions in Sm

(3.1). We seek to determine the m-vector z̄ to minimize the error functional

EI(z̄) =

No∑
i=1

(B(xi, yi)
T z̄− zi)2 .

Define the interpolation matrix

J =

No∑
i=1

B(xi, yi)B(xi, yi)
T

and the vector

ζ̄ =

No∑
i=1

ziB(xi, yi) .

Under the assumption that the data is sufficient that J is invertible, the interpo-
lating function obtained for the data (xi, yi, zi) is given by

z(x, y) = B(x, y)TJ−1ζ̄ (4.1)

The objective is to use the interpolating function (4.1) in conjunction with the
plate models to obtain information on the body force densities. The underlying as-
sumption is that the vertical displacement and the forces densities are independent
of the model. Accordingly, we set

w0(x, y) = z(x, y)

Hence, with
w0(x, y) = B(x, y)T w̄0

it follows from linear independence of the components of B(x, y) that

w̄0 = J−1ζ̄ .
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With reference to (3.20) and (3.21), we define the matrices

N∗u =
(
HT
∗12H

−1
∗11G

T
∗12 −GT∗13

)
G−1
∗11G0(I3)

N∗v = −HT
∗12H

−1
∗11G0(I3)

NTu = Gx0(I3)

NTv = Gy0(I3) .

Then the relations (3.20) and (3.21) yield the following set of constraining equations
among the quantities w̄0, f̄u, f̄v, and f̄w.

NTuf̄u +NTv f̄v +G0(I1)f̄w = HT w̄0 , (4.2)

NMuf̄u +NMv f̄v +G0(I1)f̄w = HM w̄0 , (4.3)

NRuf̄u +NRv f̄v +G0(I1)f̄w = HRw̄0 . (4.4)

Remark 4.1. Under the assumption that the tangential forces are relatively small,
setting

f̄u = f̄v = 0 (4.5)

from (4.2)-(4.4) for the thin plate, the Mindlin plate, and the R3D plate models,
respectively, we have

f̄∗w = [G0(I1)]−1H∗w̄0 , (4.6)

where ∗ stands for T , M , and R, respectively.

Equation (4.6) will be used in Section 5 to compare numerical estimates of normal
force densities produced by each of the three plate models under assumption that
the tangential external body force is zero.

Continuing on subtracting (4.2) from (4.3) and (4.4) and defining the matrices

LMu = NMu −NTu, LMv = NMv −NTv
LRu = NRu −NTu, LRv = NRv −NTv ,

we have

LMuf̄u + LMv f̄v = (HM −HT )w̄0 (4.7)

LRuf̄u + LRv f̄v = (HR −HT )w̄0 (4.8)

as conditions from the models to constrain the in-plane body force densities f̄u and
f̄v.

In practice, system (4.7) and (4.8) often involves ill-conditioned matrices. To
overcome this obstacle, we seek a solution (f̄u, f̄v) of (4.7) and (4.8) by minimizing
the quadratic error functional

E(f̄u, f̄v) = σM‖LMuf̄u + LMv f̄v − (HM −HT )w̄0‖2

+ σR‖LRuf̄u + LRv f̄v − (HR −HT )w̄0‖2

+ σu‖f̄u‖2 + σv‖f̄v‖2 ,
(4.9)

where σM , σR, σu, and σv are positive weights to be chosen to reflect estimates of
the precision of the corresponding term. For example, in computations in Section
5, we weight the variances for the R3D and the Mindlin the same by choosing σR
and σM both equal 1 while σu and σv both equal to 10−16 to reflect the previous
estimates when f̄u and f̄v were assumed to be zero.
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Remark 4.2. The R3D plate, Mindlin plate, and thin plate models form a hier-
archy of plate models based on assumptions imposed on stresses. The R3D plate
model represents the most generalized (top) plate model with the only assump-
tion on stresses given by the stress-strain relation (2.3). The R3D plate model
is followed by the Mindlin plate model that carries zero transverse normal stress
assumption (2.25). The Mindlin plate model is in turn followed by the thin plate
model that imposes additional assumption that transverse shear stresses are negli-
gible (2.26). With this in mind, the estimates (4.6) obtained under constraint (4.5)
can be considered as prior information from each individual plate model. Then the
minimization of E(f̄u, f̄v) corresponds to finding the maximum likelihood estima-
tor of a probability density function that includes priors from the individual plate
models.

Next, we introduce the matrices

Luu = σML
T
MuLMu + σRL

T
RuLRu + σuI

Lvv = σML
T
MvLMv + σRL

T
RvLRv + σvI

Luv = σML
T
MuLMv + σRL

T
RuLRv ,

where I is the identity matrix, and the vectors

WT
u = σM

[
(HM −HT )w̄0

]T
LMu + σR

[
(HR −HT )w̄0

]T
LRu

WT
v = σM

[
(HM −HT )w̄0

]T
LMv + σR

[
(HR −HT )w̄0

]T
LRv

With the above notation, the error functional (4.9) takes the form

E(f̄u, f̄v) = f̄Tu Luuf̄u + 2f̄Tu Luv f̄v + f̄Tv Lvv f̄v − 2
[
WT

u f̄u + WT
v f̄v
]

+ E(0, 0) .

The minimizer (f̄u, f̄v) of E satisfies the normal equations

Luuf̄u + Luv f̄v = Wu

LTuv f̄u + Lvv f̄v = Wv

which yield

f̄v =
[
Lvv − LTuvL−1

uuLuv
]−1(

Wv − LTuvL−1
uuWu

)
f̄u = L−1

uu

(
Wu − Luv f̄v

)
.

Equations (4.2)-(4.4) now render

f̄∗w = [G0(I1)]−1
(
H∗w̄0 −N∗uf̄u −N∗v f̄v

)
, (4.10)

where ∗ corresponds to T , M , and R, respectively. Estimates for ū∗1 and v̄∗1 are
obtained by means of equations (3.15)-(3.19). Using (3.2), we obtain the tangential
components of displacement, and from the stress-displacement relations (2.19) of
the R3D plate model we obtain strain estimates. Finally, we make the following
observation.

Remark 4.3. The continuous dependence of force densities, displacements, and
stresses on parameters h, κu, κv, and κw follows from the algebraic expressions
satisfied by the matrices and vectors in the above.

Remark 4.4. Expressions for estimates of of body force densities, displacements,
and stresses are obtained from normal displacement data given plate thickness h
and foundation stiffness parameters κu, κv, and κw under the assumption that
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the body force density components are independent of the model. The three model
equations are used in essence to solve simultaneously for f̄u and f̄v. Different models
then yield different estimates for the normal body force density component f̄w, even
though the estimates may be quite close for certain values of h, κu, κv, κw (see, for
instance, the numerical example in Section 5).

Next, we consider the estimation of the plate thickness h and foundation stiffness
parameters κu, κv, and κw under the assumption that the estimations of f̄w from
different plate models should be close. To that end, we set q = (h, κu, κv, κw)
and proceed, for simplicity, as though they are constants. The case in which the
parameters are variable is similar.

Let Q ⊂ R4 be a set of admissible parameters q. We consider the cost functional
measuring the total difference between the estimates of f̄w from pairs of different
plate models in the form

Jc(q) = ξRT ‖f̄Rw(q)− f̄Tw(q)‖+ ξMT ‖f̄Mw(q)− f̄Tw(q)‖
+ ξRM‖f̄Rw(q)− f̄Mw(q)‖

(4.11)

and seek the value q∗ ∈ Q minimizing the above functional. The estimates f̄∗w(q),
with ∗ = R, T , and M , are obtained from (4.10), and the positive weights ξRT ,
ξMT , and ξRM are chosen to emphasize a particular model. Typically, we choose
ξRT = ξMT = ξRM .

The physical meaning of parameters q suggests that Q is compact in R4. There-
fore, from continuity of the mapping given in terms of the functional (4.11), there
exists the minimizer of Jc(q). In the next section we present the results for this
minimization.

5. Numerical example

We present a numerical example motivated by the geoscience application of de-
formation associated with shallow, sill-like magma intrusions (laccolith formation).
A classic and well-studied example of laccolith formation is the Henry Mountains,
UT, the last-named mountain range in the continental USA. The Henry Mountains
were formed by a complex of shallow intrusions 28-25 million years ago [22] at 1.5-
2 km depths. Deformation of overlying sandstone layers by the intrusions is well
documented due to erosion into the tops of the intrusions (see, for example [10]).
The vertical displacement data are obtained from the structure contour map of
Hunt et al. [8] for Mt. Holmes and Mt. Ellsworth in Henry Mountains, noting the
top-most ∼100 m is interpolated. Mt. Holmes and Mt. Ellsworth topographic map
and Henry Mountains structure contour map with interpolated top are presented
in Figure 1 (A) and (B), respectively.

The plate thickness h, size of the domain Ω, and elastic parameters E and ν are
given as geophysically reasonable numbers. The foundation stiffness parameters
κu, κv, and κw and the shear correction factor ks are specified through numerical
experience. For the sake of simplicity we assume κu = κv = κw and suppress sub-
scripts u, v, and w. The values of parameters used in the example are summarized
in Table 1.

To develop a spatial approximation, we consider Ω = (0, Lx) × (0, Ly). For
the approximation basis functions we use products of cubic B-splines defined on
uniform partition on (0, Lx) and (0, Ly), with nx and ny subintervals, respectively
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(A) (B)

Figure 1. (A) Topographic map of Mt. Holmes (top) and Mt.
Ellsworth (bottom), Henry Mountains, UT. (B) Structure contour
map with interpolated top-most ∼100 m (B).

Table 1. Values of parameters used in the example

Plate horizontal dimensions Lx = 14, 600 m, Ly = 15, 000 m

Number of subintervals of partitions nx = ny = 12

Plate thickness h = 1400 m

Young’s modulus E = 1.0× 109 Pa

Poisson’s ratio ν = 0.25

Foundation stiffness parameter κ = 105 N/m3

Shear correction factor ks = 1

Weights of the models
σM = σR = 1, σu = σv = 10−16

ξRT = ξMT = ξRT = 1

[26]. Accordingly, let b
(x)
i (x), for i = 1, . . . ,mx = nx + 3 and b

(y)
i (y), for i =

1, . . . ,my = ny + 3 denote cubic B-splines defined with respect to the meshes. In
addition, define the mx- and my-column-vector-valued functions by

b(x)(x) = [b
(x)
1 (x), . . . , b(x)

mx
(x)]T

b(y)(y) = [b
(y)
1 (y), . . . , b(y)

my
(y)]T

Finally, define the m = mxmy-column vector as the tensor product of b(x) and b(y)

B(x, y) = b(x)(x)⊗ b(y)(y)
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Results in the graphs are presented on the domain (0, 104)× (0, 1.5× 104) m2 to
account for edge affects. The estimates of the scalar components of displacements
and force densities are obtained from (3.2) and (3.3). As before, the subscripts R,
M , and T stand for the R3D, Mindlin, and thin plate model, respectively. Uplift
data are given at (x, y) locations over the domain, and the Henry Mountains surface
data are shown in Figure 2(A).

(A) (B)

Figure 2. (A) Henry Mountains surface data. (B) Force density
fRw estimated from the R3D plate model with fu = fv = 0.

The graph of the normal body force density fRw using the R3D plate model
with fu = fv = 0 is portrayed in Figure 2(B). The estimates of f̄Rw are calculated
from (4.10). For comparison with the thin plate and Mindlin plate models, relative
differences in estimates of fw from different models are given below in which the
absolute difference is normalized by the H-norm of fRw.

‖fRw − fTw‖H
‖fRw‖H

= 1.44×10−4

‖fMw − fTw‖H
‖fRw‖H

= 1.43×10−4

‖fRw − fMw‖H
‖fRw‖H

= 7.88×10−6 .

The estimated tangential body force densities per unit depth, fu and fv, obtained
from the family of the three plate models are presented in Figures 3 (A) and (B),
respectively. The corresponding values of f̄u and f̄v are minimizers of the error
functional (4.9). One can observe that both fu and fv are relatively small compared
to the result for fRw as to be expected. Given the estimated fu and fv, the normal
force density fw may be estimated from the equations (4.10) for each plate model.
Figure 3(C) represents the normal force density fRw obtained from (4.10) using the
R3D plate model. As one can observe from the graphs in Figures 2(B) and 3(C),
the estimates of fRw with and without assumption that fu = fv = 0 are quite close,
since fu and fv are relatively small for the values of model parameters used in this
example. The graph of the relative difference between the fRw estimated from the
family of three plate models without assumption fu = fv = 0 and fRw obtained
from the R3D plate model under the assumption fu = fv = 0 is given in Figure
3(D).
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(A) (B)

(C) (D)

Figure 3. Force densities estimated from the family of plate mod-
els: (A) Force density per unit depth, fu. (B) Force density per
unit depth, fv. (C) Force density fRw. (D) Relative difference
between fRw in Figures 2 (B) and 3 (C).

For comparison with the thin and Mindlin plate models, below we present relative
differences in estimates of fw calculated from (4.10) for different models without
assumption that fu = fv = 0.

‖fRw − fTw‖H
‖fRw‖H

= 2.7×10−3

‖fMw − fTw‖H
‖fRw‖H

= 3.0×10−3

‖fRw − fMw‖H
‖fRw‖H

= 3.53×10−4 .

Figures 4 (A) and (B) show the estimated tangential displacement components
u and v obtained from (3.15)-(3.19) for the R3D plate model. Here the tangential
force densities per unit depth, fu and fv, are estimated from the family of three
plate models and fw is calculated from (4.10) for the R3D plate model. The values
of u and v estimated from the R3D plate model are used to calculate the transverse
shear and normal stresses τ13, τ23, and τ33 from the strain-displacement and stress-
strain relations (2.2) and (2.3), respectively. The calculation results are pictured in
Figures 4 (C)–(E).
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(A) (B)

(C) (D)

(E)

Figure 4. Displacements and stresses estimated from the R3D
plate model with fu and fv estimated from the family of plate
models and subsequent estimation of fw from the R3D plate model:
(A) Displacement u. (B) Displacement v. (C) Stress τ13. (D)
Stress τ23. (E) Stress τ33.

Figure 5(A) represents the level curves of the cost functional Jc (4.11) measuring
total difference between the estimates of the normal force density fw from the pairs
of different plate models as a function of parameters q = (h, κ). The direct evalua-
tion of Jc gives the unique global minimum, with respect to the chosen evaluation
mesh, at h = 2000 m and κ = 3 × 106 N/m3. Figure 5(B) shows the absolute
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(A)

(B) (C)

Figure 5. Optimal values of the plate thickness h and the foun-
dation stiffness parameter κ: (A) The level curves of the cost func-
tional Jc(h, κ). (B) Cost functional Jc as a function of h with
optimal κ = 3 × 106 N/m3. (C) Cost functional Jc as a function
of κ with optimal h = 2000 m.

value of the cost functional Jc as a function of h, while the foundation stiffness
parameter κ is fixed at the optimal value 3×106 N/m3. Figure 5(C) represents the
absolute value of the cost functional Jc as a function of κ, with the optimal plate
thickness h = 2000 m fixed. For easy representation, in Figures 5 (B) and (C), the
value of the cost functional Jc is rescaled by dividing its absolute value by Young’s
modulus E. According to Jackson and Pollard [10], the intrusions exposed in the
Henry Mountains were emplaced at ∼2-4 km depth. In [22], the estimated depth of
the intrusion is ∼1.5-2 km. Work [5] that employs a Winkler elastic foundation to
represent a weak sedimentary layer, such as clay, tuff, or unconsolidated sediments
along which laccolith and sill intrusions take place, provides a general geological
range for the foundation stiffness parameter κ = 104 − 109 N/m3. Thus, the ob-
tained estimates of the plate thickness h = 2000 m and the foundation stiffness
parameter κ = 3 × 106 excellently fit their geophysically reasonable ranges which
demonstrates the applicability of the proposed estimation method.
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6. Conclusions

In this paper we presented a novel and unique method for estimation of pa-
rameters of an elastic plate resting on a Winkler-type foundation solely from the
measurements of the vertical displacement of the plate. The method is based on the
multiple plate models used in conjunction and allows one to estimate components
of the external body force density field, plate thickness, elastic foundation stiffness
parameters, as well as horizontal displacements of the plate and stresses. Since
neither a single plate model nor a pair of plate models suffices to estimate any of
the above mentioned parameters, we employed a family of three plate models - the
proposed R3D plate model, the Mindlin plate model, and the thin plate model.
The R3D plate model follows the displacement assumptions embedded into the
Mindlin plate model, but does not impose zero stress assumptions existing in the
thin and Mindlin plate models and does not involve a shear correction factor from
the Mindlin plate model. Thus, the three plate models under consideration form a
hierarchy of elastic plate models based on assumptions imposed on stresses, with
the R3D plate model being the most generalized model and the thin plate model
being the most constrained one. This hierarchical relationship among the plate
models serves as a source of prior information in the estimation method. The main
advantage and important practical benefit of the proposed method is that only data
on vertical displacement are needed to estimate the external body force density field
acting on an elastic plate, plate thickness, and foundation stiffness parameters. In
addition, as a byproduct of this estimation technique, we also obtain estimates of
the stresses and horizontal displacements of the plates. The method has the wide
range of applications since estimation of external forces and parameters of plate
models are of great practical interest in all fields of science and engineering where
elastic plates are employed. The applicability of the proposed estimation method
is illustrated by a numerical example motivated by geoscience applications dealing
with modeling and analysis of laccolith formation.
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