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PRESCRIBED ENERGY SADDLE-POINT SOLUTIONS OF

NONLINEAR INDEFINITE PROBLEMS

YAVDAT IL’YASOV, EDCARLOS D. SILVA, MAXWELL L. SILVA

Abstract. A minimax variational method for finding mountain pass-type so-
lutions with prescribed energy levels is introduced. The method is based on

application of the Linking Theorem to the energy-level nonlinear Rayleigh quo-

tients which critical points correspond to the solutions of the equation with
prescribed energy. An application of the method to nonlinear indefinite elliptic

problems with nonlinearities that does not satisfy the Ambrosetti-Rabinowitz

growth conditions is also presented.

1. Introduction

Let Ω be a bounded smooth domain in RN , N ≥ 1 and consider

−∆u− λu = µ|u|q−1u+ g(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where λ ∈ R, µ > 0, 1 < q < 2, g : Ω × R → R is a Carathéodory function with
primitive G(x, u).

The problem has a variational structure and under some assumptions (see below

(A1)) the associated energy functional Eλ,µ ∈ C1(W̊ 1
2 (Ω),R) is

Eλ,µ(u) =
1

2

(∫
|∇u|2dx− λ

∫
|u|2dx

)
− µ

q

∫
|u|qdx−

∫
G(x, u)dx.

By definition, the critical point u ∈ W̊ 1
2 (Ω) of Eλ,µ(u) is a weak solution to (1.1).

The problem with λ > λ1, where λ1 is the principal eigenvalue of the operator
(−∆) in W̊ 1

2 (Ω) is called indefinite due to the fact that the linear part of (1.1) is
indefinite (see [5, 25]). Equation (1.1) is related to finding the amplitude function
u of the standing waves ψ = eiλtu to the nonlinear Schrödinger (NLS) equation

iψt = ∆ψ + µ|ψ|q−2ψ + g(x, ψ), (t, x) ∈ R+ × Ω, (1.2)

where ψ is a complex-valued function of (t, x), and it is supposed that g(x, ρeiθ) =
g(x, ρ)eiθ a.e. Ω, for all ρ, θ ∈ R. The Cauchy problem for (1.2) with the initial

value ψ0 ∈ W̊ 1
2 (Ω) is locally well posed and for some T (ψ0) > 0 has a unique
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local solution ψ ∈ C([0, T (ψ0)), W̊ 1
2 (Ω)) ∩ C1([0, T (ψ0)), W̊−1

2 (Ω)) (see, e.g, [10]).
Moreover, it holds energy and mass conservation laws:

Hµ(ψ(t)) :=

∫ (1

2
|∇ψ|2 − µ

q
|ψ|q −G(x, ψ)

)
dx = const,

Q(ψ(t)) :=
1

2

∫
|ψ|2dx = const.

As a result, the energy functional (action) Eλ,µ(ψ(t)) := Hµ(ψ)− λQ(ψ) = const,
λ ∈ R is also conserved.

This article focuses on the existence of the so-called prescribed energy solution
of (1.1), i.e., which for a given energy E ∈ R satisfies

Eλ,µ(uE) = E, DEλ,µ(uE) = 0,

where “D(·)” denotes the Fréchet derivative.
In the literature, solutions to the Schrödinger equations having a prescribed fre-

quency λ and unknowns energy E and mass α = Q(u) are commonly studied (see,
e.g, [10, 26]). An alternative formulation which has also been actively investigated
over the last decades consists of finding the solution u to (1.2) having prescribed
mass α, while λ and E are unknown (see, e.g., [4, 11, 22, 27]). Mathematically, all
three approaches, namely, prescribed frequency, prescribed energy, and prescribed
mass, are equally valid. Moreover, all of these approaches evidently are relevant
from the physical point of view. In particular, the approach with prescribed en-
ergy arises in the study of inverse problems and the spectral and scattering control
problems (see, e.g., [2, 12, 20, 23, 24, 29]).

The prescribed energy solutions of nonlinear problems was studied recently in
[7, 18, 19] by using the nonlinear Rayleigh quotients [17]. The nonlinear Rayleigh
quotients have the remarkable property that the critical points of these functionals
correspond to the solutions of the equations while having a simpler structure than
the corresponding energy functionals (see, e.g., [17]). They were particularly use-
ful (see, e.g., [17, 19]) for finding nonnegative solutions to zero-mass problems [6]
and detecting S-shaped bifurcations of nonlinear partial differential equations [7].
The nonlinear Rayleigh quotients method and solutions with prescribed energies
were used to introduce a generalization of the Poincaré and Courant-Fischer-Weil
minimization principles to nonlinear problems [18], as well as to study the orbital
stability for ground states of the NLS equations [7].

There are at least two motivations to study prescribed energy solutions of (1.1),
apart from the fact that it appears in some physical models. First, we develop
the nonlinear Rayleigh quotient method for new classes of problems, in particular
for equations with inhomogeneous and general forms of nonlinearities. Second, we
develop the Mountain Pass methods in order to capture qualitative properties of
the solutions that it generates.

The Mountain Pass Theorem introduced by Ambrosetti and Rabinowitz [1] and
its generalization as the Benci-Rabinowitz Linking Theorem [5] is a powerful tool to
establish the existence of solutions for nonlinear problems of the variational form.
The solutions obtained by this method usually correspond to saddle critical points
of the energy functional and are often referred to as mountain pass-type solutions
or saddle-point solutions. In essence, this method is topological, which makes it
possible to use it for solving problems of very general forms. On the other hand,
this generality often makes it difficult to find out detailed information about the
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obtained solutions. The aim of this work is to show that the nonlinear Rayleigh
quotient method can be applied to generate saddle-point solutions with prescribed
energy within the framework of the Linking Theorem.

Let us state our main result. We seek for prescribed energy solutions using the
energy level nonlinear Rayleigh quotient [7, 17, 19]:

REλ (u) :=
1
2

(∫
|∇u|2 dx− λ

∫
|u|2 dx

)
−
∫
G(x, u) dx− E

1
q

∫
|u|qdx

,

for u ∈ W̊ 1
2 (Ω) \ {0} and E ∈ R.

Notice that for u ∈ W̊ 1
2 (Ω) \ {0}, λ ∈ R, and E ∈ R, we have

µ = REλ (u) ⇔ Eλ,µ(u) = E,

µ = REλ (u), DRE(u) = 0 ⇔ Eλ,µ(u) = E, DEλ,µ(u) = 0.
(1.3)

We assume that

(A1) there exist γ1, γ2 ∈ (2, 2∗), C > 0 such that 0 ≤ g(x, u) ≤ C(|u|γ1−1 +
|u|γ2−1) a.e. Ω, u ∈ R,

(A2) there exist α > 2, R0 > 0 such that αG(x, u) ≤ g(x, u)u a.e. Ω, |u| ≥ R0,
where 2∗ = 2N/(N − 2) if N > 2, 2∗ = +∞ if N ≤ 2.

The operator (−∆) with Dirichlet boundary conditions defines a self-adjoint op-
erator in L2(Ω) (see, e.g., [14]) and its spectrum consists of an infinite sequence
ordered 0 < λ1 < λ2 ≤ . . . of eigenvalues repeated according to their finite multi-
plicity. Now, with the convention that λ0 = −∞, our main result is as follows.

Theorem 1.1. Assume that 1 < q < 2 < γ < 2∗, λ ∈ (λk, λk+1), k = 0, . . ., and
(A1)-(A2) hold. Then there exists Ekλ > 0 such that for any given E ∈ (0, Ekλ) corre-
sponds µkλ(E) ∈ (0,+∞) such that (1.1) with µ = µkλ(E) possesses a non-zero weak

solution uµkλ(E) ∈ C1,α(Ω), α ∈ (0, 1) with energy value E, i.e., DEµkλ(E)(uµkλ(E)) =

0, Eµkλ(E)(uµkλ(E)) = E. Furthermore,

(i) µkλ(·) is a non-increasing function in (0, Ekλ);
(ii) if λ < λ1, then there exists limE→0 µ

0
λ(E) = µ̄λ(0) ∈ (0,+∞) such that

(1.1) possesses a non-zero weak solution uµ̄λ(0) ∈ C1,α(Ω), α ∈ (0, 1) with
zero energy value E = 0 and µ = µ̄λ(0).

To find solutions of (1.1), we apply the Benci-Rabinowitz Linking Theorem [5] to

the energy level nonlinear Rayleigh quotient REλ (u). Note that REλ ∈ C1(W̊ 1
2 (Ω) \

{0},R), while for the application of the linking theorem, in general, it is required

that the functional belongs to C1(W̊ 1
2 (Ω),R). Below we overcome this difficulty by

using an appropriate truncation function for REλ which can be properly introduced
in the case E > 0. In the zero-energy case E = 0, the solution is obtained by
passing to the limit E → 0.

Remark 1.2. Condition (A2) is the well-known Ambrosetti-Rabinovich (AR) con-
dition [1, 15] and implies the superquadratic behavior of G(·, s), G(x, s) ≥ C|s|α for
some C > 0 and |s| large. However, the complete nonlinearity µ|u|q−1u+ g(x, u) of
equation (1.1) does not satisfy the (AR) condition.

Remark 1.3. The zero-energy case E = 0 is particularly interesting, since the
value µ̄λ(0) in this case resembles linear eigenvalue. Indeed, for linear problems
such as Lu = λu, where L is a self-adjoint linear operator on a Hilbert space H,
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any isolated eigenvalue λn, n = 1, 2, . . ., corresponds to an eigenfunction φn of the
zero-energy level, i. e., E = 1

2 〈φn, Lφn〉 − λn
1
2 〈φn, φn〉 = 0.

We shall use the following notation:

• W := W̊ 1
2 (Ω) denotes the standard Sobolev space with the norm ‖u‖W =

(
∫

Ω
|∇u|2 dx)1/2;

• |u|Lr := (
∫

Ω
|u|r dx)1/r, 1 ≤ r < +∞ denotes the norm on the Lebesgue

space Lr := Lr(Ω), (·, ·) denotes the scalar product in L2;

• Sp is the best Sobolev constant for the embedding W 1,2
0 (Ω) ⊂ Lp(Ω), 1 ≤

p ≤ 2∗;
• ‖ · ‖∗ denotes the norm in the dual space W ∗;
• d(A,B) := min{‖u − v‖W : u ∈ A, v ∈ B} denotes the distance between

sets A,B ⊂W .

This work is organized as follows. In Section 2, we introduce the nonlinear
Rayleigh quotient together with its appropriate truncation function. In Section
3, we derive some properties of the nonlinear Rayleigh quotient REλ and prove
that the Cerami condition for REλ is satisfied. In Section 4, we prove our main
result. Conclusions are drawn in Section 5. In the Appendix, we state the Benci-
Rabinowitz Linking Theorem and corresponding definitions.

2. Preliminaries

Let (ek) ⊂ W be the orthogonal basis in L2 of the eigenfunctions of (−∆) with
zero Dirichlet conditions satisfying ‖ek‖2W = λk and |ek|2L2 = 1, for each k ∈ N. Let
λ ∈ (λk, λk+1) be fixed for some k ∈ N. We write

W = W+ ⊕W−, where W− = span{e1, e2, . . . , ek}, W+ = span{ek+1, ek+2, . . .}.

Then one can introduce the following equivalent norm ‖ · ‖1 for ‖ · ‖W in W

‖u‖21 =

∞∑
i=k+1

(λi − λ)u2
i +

k∑
i=1

(λ− λi)u2
1 := ‖u+‖21 + ‖u−‖21,

where ui = (u, ei), i = 1, . . .. Then u = (u+ + u−) ∈ W, u± ∈ W±, and c0‖u‖21 ≤
‖u‖2W ≤ c1‖u‖21, ∀u ∈ W , where 0 < c0, c1 < +∞ do not depend on u ∈ W . In
addition,

Hλ(u) := ‖u‖2W − λ|u|2L2 = Hλ(u+) +Hλ(u−) = ‖u+‖21 − ‖u−‖21, u ∈W.

Notice that Hλ(u) = −‖u‖21 < 0 if u ∈ W− \ {0}, and Hλ(u) = ‖u‖21 > 0 if
u ∈W+ \ {0}, for λ ∈ (λk, , λk+1).

With this notation, we have

Eλ,µ(u) =
1

2
Hλ(u)− µ

q
|u|qLq −

∫
G(x, u)dx,

REλ (u) =
1
2Hλ(u)−

∫
G(x, u)dx− E

1
q |u|

q
Lq

, u ∈W \ {0}.

Obviously, RE ∈ C1(W \ {0},R) and

DEλ,µ(u) = 0, Eλ,µ(u) = E ⇔ DREλ (u) = 0, µ = REλ (u), u ∈W \ 0. (2.1)
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To avoid the singularity at origin of RE , we define φρ ∈ C∞(R), for ρ > 0 such
that

φρ(s) =

{
0 if |s| < ρ/2,

= 1 if |s| > ρ,

and introduce

REρ (u) =

{
φρ(‖u‖1)RE(u), u ∈W \ 0,

0, u = 0.

Thus, REρ (u) ∈ C1(W ) for any ρ > 0.
We define Br := {u ∈W : ‖u‖1 ≤ r}, r > 0. We need the following result.

Lemma 2.1. Assume that E > 0 and λ ∈ (λk, , λk+1). Then there exists ρ(E) > 0
such that RE(u) < 0 for any u ∈ Bρ with 0 < ρ < ρ(E).

Proof. Since G(x, u) ≥ 0 a.e. Ω, u ∈ R,

REλ (u) < q
1

|u|qLq

(1

2
Hλ(u)− E

)
<

q

|u|qLq

(1

2
‖u‖21 − E

)
, u ∈W \ {0}.

Hence, setting ρ(E) :=
√

2E we obtain the proof. �

Corollary 2.2. Assume that ρ < ρ(E). If û is a critical point of REρ (u) such that

REρ (û) > 0, then u is a critical point of RE(u) as well.

Proof. By Lemma 2.1, REρ (û) > 0 implies that ‖û‖W ≥ ρ. Therefore REρ (û) =

RE(û) = µ and DRE(û) = 0. �

We say that (un) ⊂ W is a Cerami sequence at the level c ∈ R of RE , in short
(Ce) sequence, whenever RE(un)→ c and (1+‖un‖W )‖DRE(un)‖ → 0 as n→∞.
The functional RE satisfies the Cerami condition at the level c ∈ R, in short (Ce)
condition, whenever any (Ce) sequence possesses a convergent subsequence. The
definitions of the (Ce) sequence and the (Ce) condition for REρ are similar.

Corollary 2.3. If ρ < ρ(E), then REρ (u) satisfies the (Ce) condition at level c > 0

if and only if RE(u) does.

Proof. Assume RE(u) satisfies the (Ce) condition at c > 0. Let (un) be a (Ce)
sequence forREρ at c, i.e., REρ (un)→ c and (1+‖un‖1)‖DREρ (un)‖∗ → 0 as n→∞.

By Lemma 2.1, REρ (u) ≤ 0 as u ∈ Bρ, whereas REρ (u) = RE(u) for u ∈ W \ Bρ.
Thus, REρ (u) > 0 implies RE(u) = REρ (u) and DRE(u) = DREρ (u). Therefore

(un) is also (Ce) sequence for RE and consequently, (un) possesses a convergent
subsequence in W . The proof of opposite statement is similar. �

3. Properties of REρ
Consider the sphere S±r := {u ∈ W± : ‖u‖1 = r}, r > 0. Recall that by the

assumption g(x, u) ≤ C(|u|γ1−1 + |u|γ2−1) a.e. Ω, u ∈ R, for some γ1, γ2 ∈ (2, 2∗),
C > 0. Hence, for any given ε > 0, there exist C(ε) > 0 such that

G(x, s) ≤ ε

2
|s|2 + C(ε)|s|γ , ∀s ∈ R, a.e. Ω,

where γ := max{γ1, γ2}. This by the Sobolev inequalities implies∫
G(x, u)dx ≤ ε

2
C1‖u‖21 + C2(ε)‖u‖γ1 , u ∈W, (3.1)
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where C1, C2(ε) ∈ (0,+∞) do not depend on u ∈ W and C1 does not depend on
ε > 0.

Proposition 3.1. For any λ ∈ (λk, λk+1), there exist Ekλ > 0 and rkλ > 0 such that
infw∈S+

rk
λ

REρ (w) > 0, for any E ∈ [0, Ekλ), for all ρ ∈ (0, rkλ).

Proof. Note that Hλ(w) = ‖w‖21, ∀w ∈ W+. Take ε ∈ (0, 1/C1). Then by (3.1) we
have

RE(w) ≥ q
1
2 (1− C1ε) ‖w‖21 − C2(ε)‖w‖γ1 − E

|w|qLq
= q

f (‖w‖1)− E
|w|qLq

, ∀w ∈W+,

where f(r) := 1
2 (1−C1ε)r

2−C2(ε)rγ . Observe that f(r) attains its global maximum

Ekλ := f(rkλ) at

rkλ := [(1− C1ε)/(γC2(ε))]
1/(γ−2)

.

Thus, for any E ∈ [0, Ekλ),

inf
w∈S+

rk
λ

RE(w) ≥ inf
w∈S+

rk
λ

q
f(rkλ)− E
|w|qLq

≥ qE
k
λ − E

Sqq (rkλ)q
=: δE > 0,

which implies the proof, since REρ (w) = RE(w), w ∈ S+
rkλ

if ρ ∈ (0, rkλ). �

Proposition 3.2. For any u ∈ W \ 0 and r > 0, it holds RE(tu + v) → −∞ as
t→ +∞ uniformly for v ∈ Br.

Proof. Observe that (A2) implies

u|u|α d

du
(|u|−αG(x, u)) ≥ 0, for |u| ≥ R0.

Integrating this yields G(x, u) ≥ c(x)|u|α > 0 a.e. Ω, for |u| ≥ R0, with some
Lesbegue-measurable function c(x) ≥ 0. Since (A2), c(x) ∈ L∞(Ω) and G(x, s) ≥
c(x)|s|α − C0, for all s ∈ R, a.e. Ω with some constant C0 ∈ R. Note that (A2)
implies α < γ < 2∗. Observe that c1/α(x)

(
u(x) + v(x)/t

)
→ c1/α(x)u(x) in Lα(Ω)

uniformly in v ∈ Br as t→ +∞. Indeed, using the Sobolev inequality we have∣∣∣ ∫ c(x)
∣∣u+

v

t

∣∣α dx− ∫ c(x)|u|α dx
∣∣∣ ≤ 1

t

∫
c(x)|v|α dx ≤ 1

t
Crα, v ∈ Br

for some constant C which does not depend on v ∈ Br. Thus, uniformly in v ∈ Br,

lim
t→∞

1

tα

∫
G(x, tu+ v) dx ≥ lim

t→∞

(∫
c(x)|u+

v

t
|αdx− C0|Ω|

tα

)
=

∫
c(x)|u|αdx.

This implies that

lim
t→∞

1

tα

(1

2
‖tu+ v‖2W −

∫
G(x, tu+ v) dx

)
≤ −

∫
c(x)|u|αdx < 0,

uniformly in v ∈ Br. Since |u + v/t|qLq ≤ C
(
‖u‖qq + Sqqr

q/tq
)

and α > 2 > q, we
conclude that uniformly for v ∈ Br it holds

lim
t→∞

RE(tu+ v) ≤ lim
t→∞

tα−q

|u+ v
t |
q
Lq

[‖tu+ v‖2W
2tα

−
∫
G(x, tu+ v)

tα
dx
]

= −∞.

�

Proposition 3.3. Assume that E ∈ (0, Ekλ), 0 < ρ < rkλ. The functional REρ
satisfies the (Ce) condition at any level µ > 0.
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Proof. By Corollary 2.3, it is sufficient to prove that the functional RE satisfies the
(Ce) condition at any µ > 0. Assume that (um) is a (Ce) sequence for RE , i.e.,
µm := RE(um)→ µ > 0 and ‖DRE(um)‖∗(1 + ‖um‖1)→ 0 as m→ +∞. Then

αµm + o(1)‖um‖1(1 + ‖um‖1)−1

= αRE(um)−DRE(um)(um)

=
q

|um|qLq

(α− 2

2
Hλ(um) +

∫
(g(x, um)um − αG(x, um)) dx+ µm|um|qLq − qE

)
≥ q

|um|qLq

(α− 2

2
Hλ(um) + Ln(Ω)essinfx∈Ω,s∈R (g(x, s)s− αG(x, s))− qE

)
By (A2), ess infx∈Ω,s∈R

(
g(x, s)s−αG(x, s)

)
=: c0 > −∞. Hence Hλ(um) ≤ c1 (1+

|um|qLq ), where 0 < c1 < +∞ does not depend on m = 1, 2, . . ., and therefore

‖um‖2W ≤ λ|um|2L2 + c1 (1 + |um|qLq ), m = 1, 2, . . . . (3.2)

Thus, if |um|L2 is bounded, then ‖um‖W is also bounded. If |umj |L2 → ∞,
for some subsequence (mj) such that mj → +∞ as j → +∞, then by (3.2)

limj→∞
Hλ(umj )

|umj |
2
L2
≤ 0, and consequently, we obtain a contradiction:

0 < µ = lim
j→∞

RE(umj )

= lim
j→∞

q
|umj |2L2

|umj |
q
Lq

[1

2

Hλ(umj )

|umj |2L2

−
∫
G(x, umj )

|umj |2L2

dx− E

|umj |2L2

]
≤ 0.

Thus, (um) is bounded and we may assume that um ⇀ u weakly in W and um → u
strongly in Lr(Ω), r ∈ [1, 2∗), as m→∞. In particular, this gives∫

G(x, um)dx→
∫
G(x, u)dx, ‖um‖qq → ‖u‖qq as m→ +∞. (3.3)

By the convergence ‖DRE(um)‖∗ → 0 we obtain DRE(um)(u− um)→ 0 as m→
+∞. Hence by (3.3), we obtain that 〈−∆um, u−um〉 → 0. Thus by the S+ property
of the Laplace operator (see [13]) we derive that um → u strongly in W 1,2(Ω). �

Remark 3.4. Since ‖um‖1 > ρ, for all m and REρ (um) → µ ∈ (0,+∞), it follows
that |um|Lq dos not approach 0.

4. Proof of Theorem 1.1

Let λ ∈ (λk, λk+1), E ∈ (0, Ekλ) and 0 < ρ < rkλ. For T > rkλ, take ū+ ∈ S+
1 , and

define

B0 = B0(T ) :=
{
u = tū+ + sv : v ∈ S−1 , (0 < t < T, s = T ) or

(t ∈ {0, T}, 0 ≤ s ≤ T )
}
,

B = B(T ) := {u = tū+ + sv : v ∈ S−1 , 0 < t < T, 0 ≤ s ≤ T},
Bc0 = Bc0(T ) := {u = tū+ + sv : v ∈ S−1 , (0 < t < T, s = T )},

Bd0 = Bd0 (T ) := {u = tū+ + sv : v ∈ S−1 , t ∈ {0, T}, 0 ≤ s ≤ T}.
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Observe that if u = tū+ +Tv, u+ ∈ S+
1 , v ∈ S−1 , then Hλ(u) = t2‖ū+‖21−T 2‖v‖21 =

(t2 − T 2) < 0 for T > t. This implies

bc(T ) := sup
u∈Bc0

REρ (u) = sup
u∈Bc0

φρ(‖u‖1)
1
2Hλ(u)−

∫
G(x, u) dx− E

1
q |u|

q
Lq

≤ 0,

for ρ > 0. Note that Hλ(v) < 0, for v ∈ S−1 . This by Proposition 3.2 implies that

bd(T ) := sup
u∈Bd0

REρ (u) ≤ 0,

for sufficiently large T . Thus, by Proposition 3.1, for ρ ∈ (0, rkλ) and sufficiently
large T > rkλ, it holds

b := sup
u∈B0

REρ (u) ≤ 0 < inf
u∈S+

rk
λ

REρ (u) =: a.

Let λ ∈ (λk, λk+1), E ∈ (0, Ekλ) and 0 < ρ < min{rkλ, ρ(E)}. Consider

µkλ(E) := inf
h∈Γ

max
u∈B
REρ (h(u)), (4.1)

where Γ = {h ∈ C(B;W ) : h|B0
= idB0

}. By Propositions 3.3 and Corollary 2.3 the
functionalREρ satisfies the (Ce) condition at the level c = µkλ(E) > 0. Note that, for

T > rkλ, B0∩S+
rkλ

= ∅, d(B0, S
+
rkλ

) > 0, and S+
rkλ

is closed in W . Furthermore, it can be

shown in a standard way (see [25, P. 156]) that {B0, B} links S+
rkλ

in W . Hence, by

the Benci-Rabinowitz Linking Theorem [5] for functionals satisfying (Ce) condition
(see [25, Theorem 5.39] and Appendix below), there exists a nonzero critical point
uµkλ(E) ∈ W \ {0} of the functional REρ such that REρ (uµkλ(E)) = µkλ(E) ≥ a > 0.

Consequently, Corollary 2.2 and (1.3) yields that uµkλ(E) is a weak solution of (1.1)

with µ = µkλ(E) and energy value E.
Standard bootstrap arguments and Sobolev’s embedding theorem (see, e.g., [28])

entail that uµkλ(E) ∈ L∞(Ω). Therefore, by the Lp-regularity results in [16], uµkλ(E) ∈
W 2,p(Ω) for any 1 < p < ∞ and thus, by Sobolev’s embedding theorem, uµkλ(E) ∈
C1,α(Ω) for any α ∈ (0, 1). This completes the proof of the first part of the theorem.

(i) Take E1 > E0 > 0. It is not hard to see that the sets {B0, B} and the path
sets Γ in (4.1) can be taken the same for E1, E0 if |E1 − E0| is sufficiently small.
Note that

RE1
ρ (u) = RE0

ρ (u)− φρ(‖u‖1)
E1 − E0∫
G(x, u) dx

, ∀u ∈W \ 0,

and thus

max
u∈B
RE1
ρ (h(u)) = max

u∈B

(
RE0
ρ (h(u))− φρ(‖h(u)‖1)

E1 − E0∫
G(x, h(u)) dx

)
≤ max

u∈B
RE0
ρ (h(u)), ∀h ∈ Γ,

and therefore, for sufficiently small |E1 − E0|, we have

µkλ(E1) = inf
h∈Γ

max
u∈B
RE1
ρ (h(u)) ≤ inf

h∈Γ
max
u∈B
RE0
ρ (h(u)) = µkλ(E0).

(ii) Let E = 0. Consider R0(u) ≡ RE(u)|E=0. Using (3.1) and 1 < q < 2 it is
not hard to show that R0(u)→ 0 as ‖u‖1 → 0. Consequently, by the continuation
we can set that R0(0) = 0.
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Assume that λ < λ1. Then W− = ∅ and W+ ≡W . By Proposition 3.2, one can
find u1 ∈ W such that RE(u1) < 0. Let E ∈ [0, E0

λ) and 0 < ρ < min{rλ0 , ρ(E)}.
Observe that (4.1) can be rewritten as follows

µ0
λ(E) := inf

γ∈Γ
max
t∈[0,1]

REρ (γ(t)), (4.2)

where Γ = {γ ∈ C([0, 1];W ) : γ(0) = 0, γ(1) = u1}, 0 < ρ < ρ(E). Here we set
R0
ρ(u) := R0(u), ρ > 0.

Note that by the above, for any E ∈ (0, E0
λ) and 0 < ρ < min{rλ0 , ρ(E)},

µ0
λ(E) > 0 and there exists a critical point uµ0

λ(E) ∈ W \ 0 of RE(u) such that

DEµ0
λ(E)(uµ0

λ(E)) = 0 and Eµ0
λ(E)(uµ0

λ(E)) = E. As in the proof of (i), from (4.2) it

follows that µ0
λ(E) is a non-increasing function on E ∈ [0, E0

λ). Moreover, µ0
λ(E) ≤

µ0
λ(0) < +∞, for any E ∈ (0, E0

λ). Hence there exists limE→0 µ
0
λ(E) = µ̄λ(0) ≤

µ0
λ(0). Furthermore, µ̄λ(0) > 0 since µ0

λ(E) > 0, E ∈ (0, Ekλ) and µ0
λ(E) is a

non-increasing function.
Since DRE(uµ0

λ(E)) = 0 and µ0
λ(E) ≡ RE(uµ0

λ(E)) → µ̄λ(0) > 0, any countable

subset of (uµ0
λ(E))E∈(0,E0

λ) is a (Ce) sequence. Hence Proposition 3.3 implies that

there exists a sequences uµλ(Em), m = 1, 2, . . ., such that limm→+∞Em = 0 and
uµλ(Em) convergences in W to some point uµ̄λ(0) ∈ W as m → +∞. Note that
uµ̄λ(0) 6= 0 (see Remark 3.4 ), and therefore uµ̄λ(0) is a weak solution of (1.1) with
µ = µ̄λ(0). Moreover,

0 = lim
m→+∞

Em = lim
m→+∞

Eλ,µ(uµλ(Em)) = Eλ,µ(uµ̄λ(0)).

Thus uµ̄λ(0) is a solution with zero energy. As above it can be shown that uµ̄λ(0) ∈
C1,α(Ω), α ∈ (0, 1).

5. Conclusions and discussion

In this paper, we develop the mountain pass methods applicable to a new class
of problems. In particular, an approach to finding mountain pass-type solutions
with prescribed energy for indefinite elliptic problems with nonlinearities which
does not satisfy the Ambrosetti-Rabinowitz growth conditions is introduced. Fur-
thermore, the method of nonlinear Rayleigh quotients is used for the first time to
solve indefinite elliptic equations with general forms of non-linearities.

A valuable property of the nonlinear Rayleigh quotients method is that it sim-
plifies the complexity problem in a sense by reducing degree of degeneracy of the
system (see [3, 8]). However, applicability of general theories like the Mountain
Pass Theorem, Index Theory, and Ljusternik-Schnirelman’s Theory, etc. to non-
linear generalized Rayleigh quotients is limited in light of prohibitive regularity
and non-degeneracy conditions for variational functionals. Indeed, the energy-level
nonlinear Rayleigh quotient REλ (u) corresponding to problem (1.1) is not regular at
zero. Hence, direct applying the Mountain Pass Theorem in this case is impossible.
We have overcome this difficulty in the present work by introducing an appropriate
truncation function. We believe, however, there are other ways for overcoming this
obstacle. For instance, one might try to answer the question: Is it possible to de-
velop general methods, like Mountain Pass Theorem, etc, applicable to the Rayleigh
quotient type function? The answer to this question would help apparently resolve
a number of open problems.
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6. Appendix

We use a generalized version of the Benci-Rabinowitz Linking Theorem [5] for
functionals satisfying (Ce)c condition. this was developed by D. Motreanu, V.
Motreanu, N. Papageorgiou [25]. Let (W, ‖ · ‖W ) be a Banach space, B0 ⊂ B, C be
nonempty sets in W , and idB0 is an identity map in B0. The pair {B0, B} is said
to be links C in W if the following conditions hold: (a) B0 ∩ C = ∅; (b) for any
h ∈ C(B;W ) with h|B0

= idB0
it holds h(B) ∩ C 6= ∅. The following result follows

from [25, Theorem 5.39].

Theorem 6.1. Let {B0, B} links C in W , C closed, d(B0, C) > 0. Let Γ = {h ∈
C(B;W ) : h|B0

= idB0
} and φ ∈ C1(W,R) be such that b := supu∈B0

φ(u) ≤
infu∈S+

ρ
φ(u) =: a. Let

c := inf
h∈Γ

max
u∈B

φ(h(u)), (6.1)

and assume that φ satisfying the (Ce)-condition at c. Then c ≥ a and c is a critical
value of φ, i.e., there exists u ∈W \ 0 such that Dφ(u) = 0 and φ(u) = c.
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