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Abstract. Our objective in this paper is to develop and utilize a minimax

principle for proving the existence of symmetric solutions for the stationary
Navier-Stokes equations. Notwithstanding its application to symmetric solu-

tions in this paper, our minimax principle is broad enough to capture other

types of solutions provided the equation and the external force are compati-
ble under a family of operations including but not limited to being invariant

by compact groups. The subset of functions compatible under this family of

operations is not required to be a linear subspace, and being a closed convex
set suffices for our purpose.

1. Introduction

We are concerned with the following stationary Navier-Stokes equation with
homogeneous boundary condition

(u · ∇)u+ f(x) = ∆u−∇pu ∀x ∈ Ω,

∇ · u = 0 ∀x ∈ Ω,

u = 0 ∀x ∈ ∂Ω,

(1.1)

where Ω is a bounded domain in Rm (m = 2, 3, 4), u is the vector-valued velocity
function, pu is the scalar-valued pressure function associated with the velocity u,
and f ∈ L2(Ω) is the external force function. We herein develop a minimax machin-
ery to prove the existence of solutions to the above problem with specific properties
based on the provided initial data Ω and the external force f . We then apply this
machinery to several cases including the stationary Navier-Stokes equations under
certain symmetric conditions.

To be precise, for Ω ⊂ Rm (m = 2, 3, 4), set V = {u ∈ H1
0 (Ω) : ∇ · u = 0}, and

define B : V × V → Rm as follows:

B(u, v) = (u · ∇)v =

m∑
j,k=1

uk
∂vj
∂xk

ej ,

where ej is the unit vector along the jth axis. We set B(u, u) = Λu. The following
theorem is the main abstract result of this paper.
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Theorem 1.1. Let K be a closed convex subset of V , and assume one of the
following two conditions hold:

(i) For each u ∈ K, there exists v ∈ K such that

Λu+ f(x) = ∆v −∇pv ∀x ∈ Ω,

in a weak sense, that is∫
Ω

Λu · η dx+

∫
Ω

f(x) · η dx = −
∫

Ω

∇v · ∇η dx ∀η ∈ V.

(ii) For each u ∈ K, there exists v ∈ K such that

B(u, v) + f(x) = ∆v −∇pv ∀x ∈ Ω,

in a weak sense;

then there exists ū ∈ K such that

Λū+ f(x) = ∆ū−∇pū ∀x ∈ Ω,

∇ · ū = 0 ∀x ∈ Ω,

ū = 0 ∀x ∈ ∂Ω.

It is worthwhile emphasizing here that the primary consequence of this theorem
centers on the choice of K, i.e., by choosing an appropriate K, one is able to
establish the existence of a solution enjoying all the properties induced by the set
K. For instance, in the case of the 3D stationary Navier-Stokes equations (1.1),
choose K to be a subset of V containing all u = (u1, u2, u3) ∈ V with the following
properties:

u1(x1, x2, x3) = −u1(−x1, x2, x3),

u2(x1, x2, x3) = u2(−x1, x2, x3),

u3(x1, x2, x3) = u3(−x1, x2, x3).

Correspondingly, let us define the maps π1, π2, π3 : Ω→ Ω as follows

π1(x1, x2, x3) = (−x1, x2, x3),

π2(x1, x2, x3) = (x1,−x2, x3),

π3(x1, x2, x3) = (x1, x2,−x3).

We shall show that if the domain Ω ⊂ R3 and the external force f are invariant
under the maps π1, π2, π3 : Ω→ Ω, then the Navier-Stokes equations have a solution
belonging to the set K. To illustrate our methodology, we have provided more
examples throughout the paper.

Historically, symmetry conditions of the form above have been imposed on the
solution of the Navier-Stokes equations to address the existence problem of these
equations in bounded domains, albeit with non-homogeneous boundary conditions,
given by

(u · ∇)u+ f(x) = ∆u−∇pu ∀x ∈ Ω,

∇ · u = 0 ∀x ∈ Ω,

u = a(x) ∀x ∈ ∂Ω.

(1.2)

The bounded domain Ω is defined as

Ω = Ω0 \
(
∪Ni=1 Ωi

)
,
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where Ωi ⊂ Ω0 for i = 1, . . . , N , and the C2 smooth boundary ∂Ω is composed of
N + 1 disjoint components ∂Ωi, i.e.,

∂Ω = ∪Ni=0∂Ωi.

Note that the divergence free property of the flow (equation (1.1)) enforces the
condition ∫

∂Ω

a(x) · n(x) ds =

N∑
i=0

∫
∂Ωi

a(x) · n(x) ds = 0,

where n(x) is the unit outer normal to ∂Ω. Proving the existence of a solution for
the above-mentioned stationary Navier-Stokes equations is commonly referred to
as the Leray Problem. Although the 2D case is now solved [10], the general 3D
case still remains an open problem. In the very first attempt to solve the problem,
Leray in his seminal 1933 paper [13], proved the existence of a solution under the
condition ∫

∂Ωi

a(x) · n(x) ds = 0.

Solving the Leray Problem generally where the above condition is removed attracted
lots of attention in the research community. For several decades, all the proposed
solutions to the 2D case relied on some type of conditions; and this is still the case
for the 3D problem [7]. In most attempts, this condition is imposed on a(x) at the
boundary, i.e.,

N∑
i=0

∣∣ ∫
∂Ωi

a(x) · n(x) ds
∣∣ < c.

For some of the examples pertaining the major contributions to this line of research
please refer to [11, 4, 6, 19, 12, 9, 8, 2, 17]. Some researchers, however, have tackled
the problem where the required conditions are imposed on the entire domain Ω as
symmetry conditions. Most notably, Amick [1] first studied the domain Ω ⊂ R2

invariant under the mapping π1, defined as:

π1(x1, x2) = (−x1, x2).

Using “reduction to absurdity”, Amick proved in 1984 that the steady Navier-Stokes
equations (1.2) has a solution preserving the following symmetry condition,

u1(−x1, x2) = −u1(x1, x2),

u2(−x1, x2) = u2(x1, x2).

In a similar effort, Sazonov [18] provided a proof of the existence problem in the
presence of the aforementioned symmetry condition. By introducing the concept
of ”Virtual drain”, Fujita [5] also proved the existence of a symmetric solution
through constructing a symmetric solenoidal extension of the boundary value. Fur-
thermore, Morimoto [14] presented a different proof by invoking the concept of
stream functions. In extending the previous works to R3, Punhnachev [16, 15] and
subsequently Korobkov et al. [10] proved an existence theorem for the axially sym-
metric problem in a domain with a multiply connected boundary. Note that the
function h = (hr, hθ, hz) in the cylindrical coordinate is called axially symmetric if
hθ = 0, and hr and hz are not dependent on θ.
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2. Proof of Theorem 1.1

We shall need some preliminary results before proving our abstract Theorem 1.1.
We define V = {u ∈ H1

0 (Ω) : ∇ ·u = 0}, and assume K is a closed convex subset of
V . Furthermore, define B : V × V → Rm (m = 2, 3, 4) as follows:

B(u, v) = (u · ∇)v =

m∑
j,k=1

uk
∂vj
∂xk

ej , (2.1)

where ej is the unit vector along the jth axis. Note that in particular B(u, u) = Λu.

Lemma 2.1. The function M1 : K × K → R defined by M1(u, v) = 〈Λu, v〉 is
weakly lower semi-continuous on K ×K for each v ∈ K.

Proof. Let v ∈ C1(Ω) ∩ K and un ⇀ u weakly in V . Using Rellich-Konrachov
Compactness Theorem, one can prove that un → u strongly in Lp(Ω) for 1 ≤ p <
2m/(m− 2). Applying Lemma 4.3 in the Appendix results in

M1(un, v) =

∫
Ω

(un · ∇)un · v dx = −
∫

Ω

(un · ∇)v · undx. (2.2)

Therefore,

|M1(un, v)−M1(u, v)|

=
∣∣∣ m∑
j,k=1

∫
Ω

(
unk

∂vj
∂xk

unj − uk
∂vj
∂xk

uj

)
dx
∣∣∣

≤ ‖v‖C1(Ω)

m∑
j,k=1

∫
Ω

∣∣unkunj − ukuj∣∣dx
≤ ‖v‖C1(Ω)

m∑
j,k=1

(∫
Ω

|unkunj − ukunj |+
∫

Ω

|ukunj − ukuj |
)
dx

≤ ‖v‖C1(Ω)

m∑
j,k=1

(
‖unj ‖L2(Ω)‖unk − uk‖L2(Ω) + ‖uk‖L2(Ω)‖unj − uj‖L2(Ω)

)
.

Therefore, M1(un, v) converges strongly to M1(u, v) on K for every v ∈ C1(Ω)∩K.
Using Lemma 4.2 in the Appendix, we know that M1(u, v) is strongly continuous
on H1(Ω); hence, by using the density argument we can conclude that M1(u, v) is
weakly lower semi-continuous on K ×K for each v ∈ K. �

Next, we define M : V × V → R as

M(u, v) =
1

2

∫
Ω

|∇u|2dx− 1

2

∫
Ω

|∇v|2dx+

∫
Ω

Λu · (u− v)dx+

∫
Ω

f(x) · (u− v)dx,

where f ∈ L2(Ω).

Lemma 2.2. The function M(u, v) is lower semi-continuous on K ×K, where K
is a convex and closed subset of V .

Proof. Assume that un ⇀ u weakly in V ,

• It follows from the lower semi continuity of the norm that∫
Ω

|∇u|2dx ≤ lim inf
n→∞

∫
Ω

|∇un|2dx;
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• we have Λu · (u) = 0 resulting from Lemma 4.3 in the Appendix, and
M1(u, v) = 〈Λu, v〉 is weakly lower semi-continuous as proven in Lemma
2.1;
• since f ∈ L2(Ω), applying the strong convergence of un → u in L2(Ω) leads

to ∫
Ω

f(x)u dx = lim
n→∞

∫
Ω

f(x)undx.

This proves that M(u, v) is lower semi-continuous on K ×K. �

Proof of Theorem 1.1. Part 1: Assume condition (i) holds. Set M : V × V → R as
follows:

M(u, v) =
1

2

∫
Ω

|∇u|2dx− 1

2

∫
Ω

|∇v|2dx+

∫
Ω

Λu · (u− v)dx+

∫
Ω

f(x) · (u− v)dx,

where f ∈ L2(Ω). Note that M : K ×K → R satisfies all the conditions of the Ky
Fan’s Min-Max Principle presented in Theorem 4.1 in the Appendix:

(1) For each v ∈ K, the map u 7→M(u, v) is weakly lower semi-continuous on
K as proved in Lemma 2.2.

(2) For each u ∈ V , the map v 7→M(u, v) is concave on K: note that M(u, v)
is a linear functional with respect to v except for 1

2

∫
Ω
|∇v|2dx, which is in

fact convex.
(3) Note that M(u, u) = 0 = γ for every u ∈ K.
(4) As required in Theorem 4.1, we should show that there exists v0 ∈ K such

that the set {u ∈ K : M(u, v0) ≤ γ} is bounded. Set v0 = 0, we show that
such that K0 = {u ∈ K : M(u, v0) ≤ γ} is bounded. Take u ∈ K0, using
Hölder’s inequality, we have

1

2
‖∇u‖2L2(Ω) =

1

2

∫
Ω

|∇u|2dx ≤ −
∫

Ω

f(x) · (u)dx ≤ ‖f‖L2(Ω)‖u‖L2(Ω).

Using Sobolev embedding results ‖u‖L2(Ω) ≤ c‖∇u‖L2(Ω) on the right hand
side, we obtain

‖∇u‖L2(Ω) ≤ C‖f‖L2(Ω).

Therefore, the set K0 is bounded under the ‖ · ‖H1(Ω).

We now apply the Ky Fan’s Min-Max Principle to conclude that there exists ū ∈ K
such that

M(ū, v) ≤ 0 ∀v ∈ K;

that is
1

2

∫
Ω

|∇ū|2dx− 1

2

∫
Ω

|∇v|2dx+

∫
Ω

Λū · (ū− v)dx+

∫
Ω

f(x) · (ū− v)dx ≤ 0 (2.3)

for all v ∈ K. By assumption (i), there exits v̄ ∈ K such that∫
Ω

Λū · η dx+

∫
Ω

f(x) · η dx = −
∫

Ω

∇v̄ · ∇η dx ∀η ∈ V. (2.4)

Now, choose η = ū− v̄, we have∫
Ω

Λū · (ū− v̄) dx+

∫
Ω

f(x) · (ū− v̄) dx = −
∫

Ω

∇v̄ · ∇ (ū− v̄) dx. (2.5)

On the other hand, equation (2.3) holds for v̄ ∈ K, i.e.,

1

2

∫
Ω

|∇ū|2dx− 1

2

∫
Ω

|∇v̄|2dx+

∫
Ω

Λū · (ū− v̄)dx+

∫
Ω

f(x) · (ū− v̄)dx ≤ 0.
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Replacing the last two terms of the above inequality with the right-hand side of
equation (2.5) results in the inequality

1

2

∫
Ω

|∇ū|2dx− 1

2

∫
Ω

|∇v̄|2dx−
∫

Ω

∇v̄ · ∇ (ū− v̄) dx ≤ 0.

Therefore,
1

2

∫
Ω

|∇ū−∇v̄|2dx ≤ 0.

Hence, we have ∇ū = ∇v̄, and since ū = v̄ = 0 on ∂Ω, we conclude that ū = v̄ on
Ω. Substituting ū = v̄ in equation (2.4) results in∫

Ω

Λū · η dx+

∫
Ω

f(x) · η dx = −
∫

Ω

∇ū · ∇η dx ∀η ∈ V.

or equivalently

Λū+ f(x) = ∆ū−∇pū ∀x ∈ Ω,

∇ · ū = 0 ∀x ∈ Ω,

ū = 0 ∀x ∈ ∂Ω.

Part 2: Assume condition (ii) holds. Using Lemma 4.3 in the Appendix, we have

Λu · (u− v) = (u · ∇)u · (u− v) = (u · ∇)v · (u− v) = B(u, v) · (u− v). (2.6)

The rest of the proof is identical to Part 1. �

3. Applications

In this section, we demonstrate how Theorem 1.1 can be used for proving the
existence of symmetric solutions to the Navier-Stokes equations in dimension three.
The less involved two dimensional cases can be addressed using a similar approach;
thus, they are not repeated here. In light of this objective, let us define the maps
π1, π2, π3 : Ω→ Ω as follows

π1(x1, x2, x3) = (−x1, x2, x3),

π2(x1, x2, x3) = (x1,−x2, x3),

π3(x1, x2, x3) = (x1, x2,−x3).

Theorem 3.1. Consider the 3D stationary Navier-Stokes equations presented in
equation (1.1). Assume that Ω is invariant under the map π1 : Ω→ Ω. Moreover,
assume that K is a subset of V containing all u ∈ V with the following properties:

u1(x1, x2, x3) = −u1(−x1, x2, x3),

u2(x1, x2, x3) = u2(−x1, x2, x3),

u3(x1, x2, x3) = u3(−x1, x2, x3).

(3.1)

Furthermore, assume that f(x) ∈ L2(Ω) also holds the same properties; i.e.,

f1(x1, x2, x3) = −f1(−x1, x2, x3),

f2(x1, x2, x3) = f2(−x1, x2, x3),

f3(x1, x2, x3) = f3(−x1, x2, x3).

Then, the Navier-Stokes equation has a solution in K.
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Proof. Step 1: It can be shown that the set K is convex and closed in V . To be
precise, since K ⊂ V , the identities in (3.1) are to be understood almost every
where in Ω. If {un} is a sequence in K such that un converges weakly in V to
a function u ∈ V, then un converges strongly in L2(Ω). Therefore, up to a sub-
sequence, un(x) → u(x) for a.e. x ∈ Ω. This implies that u satisfies the identities
in (3.1) almost every where in Ω. On the other hand since K is a linear subset of
V it is clearly convex.

Step 2: Fix u ∈ K. We now show that there exits v ∈ V such that

Λu− f(x) = ∆v −∇pv ∀x ∈ Ω, (3.2)

in a weak sense. To this end, define the the functional I : V → R as follows:

I(w) =
1

2

∫
Ω

|∇w|2dx+

∫
Ω

Λu · w dx+

∫
Ω

f(x) · w dx.

The functional I is coercive, lower semi-continuous and strictly convex; thus, there
exist a unique v ∈ V such that

I(v) = inf
w∈V

I(w),

and satisfies equation (3.2).
Step 3: We then need to show that v ∈ K. Define v̄(x) as follows:

v̄1(x1, x2, x3) = −v1(−x1, x2, x3),

v̄2(x1, x2, x3) = v2(−x1, x2, x3),

v̄3(x1, x2, x3) = v3(−x1, x2, x3).

(3.3)

Now by calculations, we have

I(v̄) =
1

2

∫
Ω

|∇v̄(x)|2dx+

∫
Ω

Λu(x) · v̄(x) dx+

∫
Ω

f(x) · v̄(x) dx.

To rewrite I(v̄) in terms of v, we set x̄ = (−x1, x2, x3). We first show that

Λu(x) · v̄(x) = Λu(x̄) · v(x̄). (3.4)

For simplicity of notation, Di denotes derivative with respect to the ith variable of
a given function u(x). Therefore,

Du(x) =

D1u1(x) D2u1(x) D3u1(x)
D1u2(x) D2u2(x) D3u2(x)
D1u3(x) D2u3(x) D2u3(x)


=

+D1u1(x̄) −D2u1(x̄) −D3u1(x̄)
−D1u2(x̄) +D2u2(x̄) +D3u2(x̄)
−D1u3(x̄) +D2u3(x̄) +D2u3(x̄)

 .
(3.5)

Now we expand the left-hand side of (3.4) as follows:

Λu(x) · v̄(x) = [u1(x)D1u1(x) + u2(x)D2u1(x) + u3D3u1(x)] v̄1(x)

+ [u1(x)D1u2(x) + u2(x)D2u2(x) + u3D3u2(x)] v̄2(x)

+ [u1(x)D1u3(x) + u2(x)D2u3(x) + u3D3u3(x)] v̄3(x).

Using the relationships in (3.1), (3.3) and (3.5), we have

Λu(x) · v̄(x) =
[
(−u1(x̄))(+D1u1(x̄)) + (+u2(x̄))(−D2u1(x̄))

+ (+u3(x̄))(−D3u1(x̄))
]
(−v1(x̄)) +

[
(−u1(x̄))(−D1u2(x̄))
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+ (+u2(x̄))(+D2u2(x̄)) + (+u3(x̄))(+D3u2(x̄))
]
(+v2(x̄))

+
[
(−u1(x̄))(−D1u3(x̄)) + (+u2(x̄))(+D2u3(x̄))

+ (+u3(x̄))(+D3u3(x̄))
]
(+v3(x̄))

= Λu(x̄) · v(x̄).

Moreover, one can similarly prove that

f(x) · v̄(x) = f(x̄) · v(x̄)

|∇v̄(x)|2 = |∇v(x̄)|2.

Since |J | = |∂x/∂x̄| = 1, we can equivalently write

I(v̄) =
1

2

∫
Ω

|∇v(x̄)|2dx̄+

∫
Ω

Λu(x̄) · v(x̄) dx̄+

∫
Ω

f(x̄) · v(x̄) dx̄.

Finally, we conclude that I(v̄) = I(v).
Step 4: Note that

∇ · v̄(x) = ∇ · v(x) = 0.

Therefore, v̄(x) ∈ V . Since v is the unique minimizer of I, we can conclude that
v̄(x) = v(x); therefore, there exits v ∈ K such that equation (3.2) is satisfied for a
fixed u ∈ K.

Step 5: Note that the existence of v ∈ K (as proved above) satisfies condition
(i) of Theorem 1.1; therefore, a solution of the Navier-Stokes equations exist in the
set K; i.e., there exists ū ∈ K that satisfies the following equations:

Λū+ f(x) = ∆ū−∇pū ∀x ∈ Ω,

∇ · ū = 0 ∀x ∈ Ω,

ū = 0 ∀x ∈ ∂Ω. �

One can generalize the aforementioned theorem to encompass a variety of prob-
lems that follow the same structure. In order to achieve this, let us define the maps
γ1, γ2, γ3 : L2(Ω)→ L2(Ω) as follows:

γ1(u1(x), u2(x), u3(x)) = (−u1(x), u2(x), u3(x)),

γ2(u1(x), u2(x), u3(x)) = (u1(x),−u2(x), u3(x)),

γ3(u1(x), u2(x), u3(x)) = (u1(x), u2(x),−u3(x)).

We denote the the group generated by γ1, γ2 and γ3 as Gγ and it isomorphic
counterpart by Gπ which is generated by the elements π1, π2 and π3. The two
groups correspond to each other by the isomorphism g : Gπ → Gγ , as follows:

g(πi) = γi,

g(πi ◦ πj) = γi ◦ γj ,
g(πi ◦ πj ◦ πk) = γi ◦ γj ◦ γk,

where i, j, k = 1, 2, 3.

Theorem 3.2. Consider the 3D stationary Navier-Stokes equations presented in
equation (1.1). Define the groups Gπ and Gγ and their isomorphism g as above.
Assume that Ω is invariant under the map π̄1, . . . , π̄m ∈ Gπ, and K is a subset of
V containing all u ∈ V with the property that when g(π̄1) = γ̄1, . . . , g(π̄m) = γ̄m
we have u(x) = γ̄1(u(π̄1(x))), . . . , u(x) = γ̄m(u(π̄m(x))). Furthermore, assume that
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f(x) ∈ H1
0 (Ω) also holds the same property; i.e., f(x) = γ̄1(f(π̄1(x))), . . . , f(x) =

γ̄m(f(π̄m(x))). Then, the Navier-Stokes equation has a solution in K.

Proof. The proof of this theorem follows the steps presented in the previous example
except that Step 3 needs to be verified for the pair of functions π̄1, γ̄1 to π̄m, γ̄m
instead of π1, γ1. �

The following two corollaries, whose 2D versions have been solved in the litera-
ture using other techniques, are also worthwhile pointing out herein.

Corollary 3.3. Consider the 3D stationary Navier-Stokes equations presented in
equation (1.1). Assume that Ω is invariant under the map π : Ω → Ω, which is
defined as follows:

π(x) = π(x1, x2, x3) = (−x1,−x2,−x3) = −x. (3.6)

Moreover, assume that K is a subset of V containing all u ∈ V with the property

u(x1, x2, x3) = −u(−x1,−x2,−x3).

Furthermore, assume that f(x) ∈ H1
0 (Ω) also holds the same property; i.e.,

f1(x1, x2, x3) = −f(−x1,−x2,−x3). (3.7)

Then, the Navier-Stokes equation has a solution in K.

Proof. Applying Theorem 3.2 for the case m = 1, we set π̄1 = π3 ◦ π2 ◦ π1 and
γ̄1 = γ1 ◦ γ2 ◦ γ3. �

Corollary 3.4. Consider the 3D stationary Navier-Stokes equations presented in
equation (1.1). Assume that Ω is invariant under the maps π1, π2, π3 : Ω → Ω.
Moreover, assume that K is a subset of V containing all u ∈ V with the property

ui(x) =

{
−ui(πj(x)) i = j,

ui(πj(x)) otherwise,

where u(x) = (u1(x), u2(x), u3(x)). Furthermore, assume that f(x) ∈ H1
0 (Ω) also

holds the same property; i.e.,

fi(x) =

{
−fi(πj(x)) i = j,

fi(πj(x)) otherwise,

where f(x) = (f1(x), f2(x), f3(x)). Then, the Navier-Stokes equation has a solution
in K.

Proof. Applying Theorem 3.2 for the case m = 3, we set π̄i = πi and γ̄i = γi for
i = 1, 2, 3. �

4. Appendix

The following is the well-known Ky Fan’s Min-Max Principle by Brezis-Nirenberg-
Stampacchia [3].

Theorem 4.1. Let E be a closed convex subset of a reflexive Banach space Z, and
consider M : E × E → R̄ to be a function such that

(1) For each y ∈ E, the map x→M(x, y) is weakly lower semi-continuous on
E;

(2) For each x ∈ E, the map y →M(x, y) is concave on E;
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(3) There exists γ ∈ R such that M(x, x) ≤ γ for every x ∈ E;
(4) There exists a y0 ∈ E such that E0 = {x ∈ E : M(x, y0) ≤ γ} is bounded.

Then, there exits x̄ ∈ E such that M(x̄, y) ≤ γ for all y ∈ E.

We have made frequent use of the following standard result. Now we provide a
short proof, for the convenience of the reader.

Lemma 4.2. Let f(u, v, w) in Rm (m = 2, 3, 4) be defined as

f(u, v, w) = 〈(u · ∇) · v, w〉 =

m∑
j,k=1

uk
∂vj
∂xk

wj . (4.1)

Then, f(u, v, w) is continuous on H1 ×H1 ×H1.

Proof. Using Hölder’s inequality, we have

|f(u, v, w)| ≤ ‖u‖L4‖∇v‖L2‖w‖L4 . (4.2)

Using the Sobolev embedding H1(Ω) ⊂ L
2m

m−2 (Ω), we have that

|f(u, v, w)| ≤ C‖u‖H1‖v‖H1‖w‖H1 , (4.3)

for an appropriate constant C. This proves that that f(u, v, w) is strongly contin-
uous. �

Lemma 4.3. Let u ∈ V and v, w ∈ H1. Then

f(u, v, w) = 〈(u · ∇) · v, w〉 = −〈(u · ∇) · w, v〉 = −f(u,w, v), (4.4)

and in particular,

f(u, v, v) = 〈(u · ∇) · v, v〉 = 0. (4.5)

Proof. Assume u ∈ C∞
c (Ω) ∩ V and v, w ∈ C1(Ω). Using integration by parts, we

have

〈(u · ∇)v, w〉 =

∫
Ω

m∑
j,k=1

uk
∂vj
∂xk

wjdx

= −
∫

Ω

m∑
j,k=1

∂uk
∂xk

vjwjdx−
∫

Ω

m∑
j,k=1

ukvj
∂wj
∂xk

dx

= −〈(u · ∇) · w, v〉.

Since f(u, v, w) is continuous on H1 × H1 × H1 (proven in Lemma 4.2), we use
the density argument to extend the above conclusion to u ∈ V and v, w ∈ H1.
Furthermore, note that 〈(u · ∇)v, v〉 = −〈(u · ∇)v, v〉, therefore,

〈(u · ∇)v, v〉 = 0. (4.6)

�
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