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PRINCIPAL EIGENVALUES FOR THE FRACTIONAL
p-LAPLACIAN WITH UNBOUNDED SIGN-CHANGING
WEIGHTS

OUMAROU ASSO, MABEL CUESTA, JONAS TELE DOUMATE, LIAMIDI LEADI

ABSTRACT. Let Q be a bounded regular domain of RN, N > 1, p € (1, +00),
and s € (0,1). We consider the eigenvalue problem

(—=Ap)%u + V|ulP~2u = Am(x)|[ulP"%u  in Q
u=0 inRV\Q,

where the potential V' and the weight m are possibly unbounded and are sign-
changing. After establishing the boundedness and regularity of weak solutions,
we prove that this problem admits principal eigenvalues under certain condi-
tions. We also show that when such eigenvalues exist, they are simple and
isolated in the spectrum of the operator.

1. INTRODUCTION

For p € (1,400) and s € (0,1), the fractional (s, p)-Laplacian is an extension of
the s-fractional Laplacian and it is defined, for a regular function v : RY — R, as

w(z) —u(y)|P~2(u(z) —u
(—A,) u(z) == 2K(1 — s)P. V. (/RN |u(z) |(i/)| y|15+(sp) (y))dy)

for all z € RY with

-1
lCzp([SN?l\(w,e>|pd%N_1(w)) , ec SN

where 7V ~1 denotes the (N —1)-dimensional Hausdorff measure of the unit sphere
SN=1 of RN, Let us recall that for all measurable function on a subset D of RV and
for all z € RV, the principal value function on the integral | p ¥ (x,y)dy is denoted
by

P.V. ( ¥ (z, y)dy) = lim ¥ (z,y)dz,
D e—0 D\Bg(m)

where B.(z) is a ball centered at x € R with radius ¢ > 0.
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In this article, we study the conditions under which the principal eigenvalues of
the following homogeneous Dirichlet problem exist

(—Ap)*u+ V]ulP~?u = dm(z)[ulP*u in Q,

1.1
u=0 inRV\Q, 1)

where € is a bounded regular domain of RY, V and m are indefinite sign-changing
functions and satisfying the following conditions:

(C1) V, me L™(Q) with r € (1, +00) N (£, +00),

(C2) m™* = max(m,0) Z 0.
Our aim is to extend some results obtained by Del-Pezzo et al. in [12] for the eigen-
value problem . These authors studied, among other issues, the existence of
eigenvalues, the positivity of the eigenfunctions associated with the first eigenvalue
of with m = 1 and V satisfying (C1). We want here to address the question
of existence of principal eigenvalue in a wide range of weights, precisely when m
and V changing sign. The presence of such weights in problem brings us to
proceed by a considerably different approach called “eigencurve arguments” which
requires the construction of some equivalent problem.

To illustrate this eigencurve argument, let us mention the work of Fleckinger et
al. [15], where the following eigenvalue problem is considered.

—Au+ag(x)u=Im(x)u, inQ, u=0 on IN (1.2)

with  a bounded smooth domain, ag,m € L"(Q), r > % are indefinite and m is
unbounded. After separating the positive and negative parts of ag and m one find

equation (1.2)) as
— Au+ad (z)u+ I~ (2)u = dIm™ (2)u + ay (z)u. (1.3)

So, for any fixed A, they were led to study the following eigenvalue problem of
eigenvalue parameter o(\),

—Au+ (af (z) + D)u+ Am™ (z)u = o(N) (m+(x) " %
u=0 on0df.

It is clear that A > 0 is an eigenvalue of if and only if o(\) = A. For this
purpose, they studied the properties of continuity, concavity and monotonicity of
the curve A — o()\) and they proved that, under certain conditions, the existence
of A > 0 satisfies o(A) = A. For more details see [15].

Our construction of the equivalent problem is different from the one made in [15]
and it is closer to the one used by Binding and Huang [3]. These authors considered,
for bounded potential V' and bounded weight m, the principal eigencurve pq(\),
that is, 1 () is the principal eigenvalue of

—Apu+ (V(z) = dm(z))|ulP2u = py(N)|ulPu inQ, u=0 on dQ

and deduced the existence of A € R such that pq(A) = 0 under some conditions
on V and m. This technique has generated several results which have enriched the
scientific literature (see for example [2 [3, [, 19, 2T]). For instance, recently [8]
made use of such arguments when solving the above problem for a potential V' and
a weight function m that may change sign and may be unbounded. They looked
and established additional conditions on V' and m that guarantee the existence

)u in €,
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of principal eigenvalues. In this work, our main results extend those of [§] and
references therein to the fractional p-Laplacian.

This article is organized as follows. We start by recalling some basic proper-
ties of essential the fractional Sobolev spaces in Section [2] In Section [3| we prove
the boundedness and regularity of the weak solutions. Section [ is devoted to the
existence of principal eigenvalues. In Section [b] we show that when principal eigen-
values exist, they are isolated in the spectrum and we give a lower bound of the
measure of the nodal domains for changing sign eigenfunctions. Finally in Section
[6] we prove some sort of continuity of the principal eigenvalues when varying s.
We collect in appendix the proof of a discrete version of some well known identity
as well as a regularity result for more general equations involving the fractional
p-Laplacian with unbounded terms.

2. PRELIMINARIES
The Lebesgue measure of a Lebesgue measurable set Z C RY is denoted by |Z|.

2.1. Basic results about fractional Sobolev spaces. Let p € [1,+0), s €
(0,1) and let 2 C RY be an open set.

e The (s, p)-fractional Sobolev space, denoted by W*P(Q), is defined by

W (@) = {ue (@) : / Ju(@) — uly)|”

P
oo Ty dxdy<+oo}.

The space W*#P(Q) is a separable Banach space endowed with the norm

— |u(z) — u(y)|” 1/p
il i= ([ [ 0 dody+ [ fulras) ™

WeP(Q) is reflexive if p > 1.
e For any function u of W*#P(Q) we denote the Gagliardo semi-norm by

_ |u(z) — u(y)l? 1/p
[U]W-W(m o (/Q q |z —y|Ntsp dxdy) ’

e The space W*P(Q) is defined as the space of all u € W*P() such that
@ € W*P(RN), where 1 is the extension by zero of u, outside of 2. W*P(Q)

is a Banach space endowed with the norm
H“”'Ws,p(g) = ”ﬂHWS:P(]RN)
and it is a reflexive space if p > 1.
Let us quote some properties of these spaces that will be used later. Here we

will denote by C'(N, p) any positive constant depending only on N and p.

Proposition 2.1 ([10]). Let Q be a bounded open set of RN.
(1) There exists C(N,p) such that, for any u € W“’(Q), it holds

[ull7 () < C(N, p)(diam(2))*F (1 — s) [u] (2.1)

P
Wep(RN)

Thus, the Gagliardo semi-norm H is @ norm in W”’(Q) equivalent

Ws.p(RN)
to the previous norm || - ”Ww(ﬂ) (c.f. [10, Lemma 2.5]).
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(2) Let 0 < s < ' < 1. Then there exists a positive constant C(N,p) such that
1 1
P P
[u] Ws.p(RN) < [’LL] Ws/,p(]RN) + C(Na p) (g - %) ||u||1£p(RN)
for any u € W P(RYN) (¢f. [10, Lemma 2.3]).

Proposition 2.2 ([7, 13, [17]). Let @ C RY be a bounded open set with Lipschitz
boundary. Then

(1) C§°(QY) is dense in W‘W(Q) (c.f. [I7, Theorem 1.4.2.2]).

(2) If u € W*P(Q) and f is a Lipschitz function then f(u) € WHP(Q).

(3) Let 0 < s <" < 1. Then there exists a positive constant C(N,p) such that

(1= 8)[ulfyen(oy < 207 diam(Q)® =P (1 = ) ul}y0 g

for any u € W' 2(Q) (c.f. [T, Lemma 2]; [I3, Lemmas 4.3 and 4.4]).
(4) For any u € WhP(Q),

lim (1—98)u?.,o= [ |[VulPdz.
wer@ = |

s—1—
(c.f. [1, Corollary 2 ]).
2.2. Embeddings. Let the fractional critical exponent of Sobolev be defined by

= N]\l’;p if sp < N,
: 400 if sp > N.

The following results are versions of the classical Sobolev injection theorem in the
case of fractional Sobolev spaces (c.f. [14], pages 218 and 219]).

Theorem 2.3. [I4] Let Q2 be an open set with a Lipschitz boundary. We have the
following continuous injections:

(1) If sp < N, W2P(Q) — L2(Q) for all q € [p, p¥].

(2) If sp= N, WP(Q) — LI(Q) for all q € [p, +00).

(3) If sp> N, WP(Q) = C%*(Q) with o € (0,5 - %]

Furthermore we have the following compact injections when € is an open bounded
domain of RN with a Lipschitz boundary:

4. If sp < N, then W2P(Q) <. L1(Q) for all g € [1, p¥).

5. If sp > N, then W*P(Q) <. C%%(Q) with a € (0,5 — %)

6. W*P(Q) <, LP7 (Q) with max{1, TY<g<+ooand ;4 5 =1

Throughout this work we will assume that Q is a bounded domain of R with a
Lipschitz boundary.

3. WEAK SOLUTIONS OF THE EIGENVALUE PROBLEM AND REGULARITY RESULTS

For simplicity, from now on we will denote by u, instead of u, the extension by
0 of any function u € W*P(2).

Definition 3.1. (1) We will say that a function u € W“’(Q) is a weak solution

of if
H(uﬂ))—l—/ V(@) |ulP~2uvde = )\/ m(x)|uP~2uv dx (3.1)
Q Q
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for all v € Wg’p(Q ), where

: —s u(@) — u(y)P~> (u(z) — u(y)) o(a) i
Al =10 /]RN /]RN |z — y|N+sp ( (z) (y)) d ?:2)

It should be noted that for all u € Ws’p(ﬂ), we have
H(u,u) = K(1 - s)[u]”

WSvP(]RN)'

(2) We will say that a real number ) is an eigenvalue of if there exist u # 0
satisfying . In this case, we say that u is an eigenfunction associated
with A.

(3) Moreover, if the eigenfunction u has a constant sign on €2, then A is called
a principal eigenvalue of the problem .

(4) Finally, the eigenvalue A is said to be simple if any two eigenfunctions u
and v associated with A are such that u = cv for some real constant c.

Definition 3.2. For each u € W”’(Q), let the energy associated with the problem

be
Ev(u) :=H(u,u) + /Q V(@) |ulP de = K(1 — s)[u]” + /Q V(z)|ulP dz. (3.3)

ws.p(RN)
It is clear that Ey is of class €' on W”’(Q) with
(E{,(u),v) = pH(u,v) +p/ V(@) |uP2uvdr  Y(u,v) € W“’(Q) X W”’(Q).
Q

Let us now state the main result of this section. Let us consider the homogeneous
problem
(=Ap)*u+V'|[uP2u=0 inQ,
u=0 inRY\Q,
where V' satisfies condition (C1).

(3.4)

Theorem 3.3. Ifu € W*P(Q) is a weak solution of [B.4), then u € L=(Q)NC(Q).
Furthermore, there exists a positive constant C' = C(s,p, N, [|[V'||Lrq)) such that
[ull @) < Cllull s - (3.5)

The proof of this theorem will follow from Lemma below, based on the De
Giorgi-Stampacchia iteration technique (see for instance [I1], [16] 22], where the case
V'’ =1 has been considered).

Lemma 3.4. Assume that sp < N. Let u be a weak solution of (3.4)) admitting a
positive part ut # 0. Let us define the sequence (wg)r by

im0 (- 2)"

Then there exists a positive constant o = o(s,p, N,Q, ||V'||1rq)) such that, if
lutll , <o, thenu<1 ae.

L' p(Q)
Proof. Let us denote Wy = ||wy|” The conclusion of the lemma will follow

L™'?(Q)"
from the following results that we prove below:
(1) limg oo Wi = [|(u = )F|P |

L'p)



6 0. ASSO, M. CUESTA, J. T. DOUMATE, L. LEADI EJDE-2023/38

(2) limg oW = 0.
Notice that, by definition, w, € W*P(Q) and wy = 0 a.e. in Q°.
1. Trivially the sequence (wy); is decreasing so, for all k € N we have |w|"? <
lwo|”? = |ut|"? € LY(Q). Moreover the sequence (|wy|”?)x converges to ((u —
1)*)™? almost everywhere in Q. Hence Wy, — ||(u — 1)+||Izir’?<m by the Lebesgue’s
dominated convergence theorem.

2. Let us first prove two claims.
Claim 1. For all k € N,

||u|p71wk+l||Lr/(Q) S 2(p71)(k+1)Wk~ (3.6)

Indeed, first observe that if w1 (x) > 0, that is, if u(x) > %, then

1 1 u(x)
wi () = wiy1 () + oF+1 Z ok+17 wi(z) > okl _ 1

and

’ / / ’
r (p—1 r _ r (p—1 r
/ | ( )warldx = / | ( )warld:E
Q {wr4+1>0}

< / (2F+1 1)’"1(1’_1)11),:/(]”*1)10,:' (z)dw
{wk+1>0}

(3.7)
< (2k+1 _ l)r'(pfl)HwM r'z/;
L'p(Q)
< 2T’(P*1)(k+1)W]:'_
Claim 2. There exist D > 1 and 8 > 0 such that for all £ € N,
W1 < DFWTE,
To prove this claim, let us quote the following (trivial) inequality:
Y(a,b) € R?  |at —bT [P <|a—bP2(a —b)(aT —bT). (3.8)

By taking

@ =u(z) - (1_ 2k1+1)’ b=uly) = (1_ 2k1+1)

in (3.8) for all (z,y) € RY, we obtain

ulx) —u P=2(y(x) —u
fwlfyeny < [, [ 42 l(j)_'yzéép) WD) (1 ()1 () i .

Besides, by taking wg11 in the weak formulation of (3.4), we obtain from the
previous inequality

K1 = 8) [k sy € [ V@Il w1

and therefore, using Claim 1,

» 1/r’
K(l—s) [wk+1}§vs,p(RN) < HV’HM(Q) [/Q (|U|P*1wk+1) dx}

< oD+ py

(3.9)
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for some positive constant C' depending on ||[V'{|1+(qy, s,p, IV, and Q. On the other

hand, using Holder’s inequality with the exponents g := if ¢ < Ns (or any

N
T(N=5p)
q > 1if N = ps), by Sobolev’s embedding we have

p

Wig1 = ||wk+1||1f"’(ﬂ)

< fwesal?, wesr > 0} (3.10)

Lr'pa(q)
q—1
< C[wk-‘rl]s{/s,p(RN)Hwk-‘rl > 0}‘ ra
for some 0 < C'= C(N, p, s,9). Moreover, since wy, = wr4+1 + 2’&'%’ then
Wi+ < T < "p(k ' .
{wis1 > 03] < [{wy, > 27571} < 2P+ Dy (3.11)
and hence, using (3.9)), (3.10) and (3.11)
Wi < C207DEDWL o [{wyy > 0}|%1
< Ca VDY, o (2P DY)

qg—1

p(g—1)

< C(ar=t x 2" Rty
kyy1+8
< DM,

r(q

with D = {[1+C]2°~! x 2 o }2 >1and f= q%ql > 0. Claim 2 is proved.
2

—_a _
Now we complete the proof of 2. Let 0 = D™ »@-5% denote p = [|u™|P oo
LT P(Q

and assume that p'/? < o. Choose 7 € (p%l,D_q%l). It should be noted that
g—1 g—1

n€l0,1,p © <mn,and Dy © < 1. Let us prove by induction that for all k € N
Wi < pn”. (3.12)

By definition

Wo = flwoll? ,, = llus

Assume that (3.12]) holds at order k and let us show that it holds at order k + 1.
By Claim 2,

P =p<pm.

Lr'p(0)

Ky R e TNk Tk k41

Wiy < D"W,, * < D¥(pn”) =p(n " )p " 0" <pn™th
Thus by passing to the limit in (3.12)), we finally obtain that W} — 0. O
Proof of Theorem[3.3 Take v = e Where o = o(s,0, N, |V || r () is

L' P(0)
given by Lemma Since v is a weak solution of (1.1]) and satisfies ||v™ HLT'P(Q) =2
then v <1 a.e., which gives

2
u < g||u+||LT/p(Q) a.e.

If w~ is not identically zero, we apply the same argument to —u, which is a weak
solution of (1.1)), to find that

> 2 -
U_—;HU I ae

and estimate (3.5)) follows.
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Finally, the continuity of w results from [6, Theorem 3.13], which derives from
[23, Theorem 1.5]. O

Remark 3.5. To our knowledge, it is not known if the solutions are continuous
up to the boundary of Q or class C%® in the case sp < N and V' unbounded.
Indeed, when V' is bounded then f = V’|u[P~2u € L°°(f2) and, by the results by
Tannizzotto et al. [20], u € C%(Q) for some a > 0.

4. EXISTENCE OF PRINCIPAL EIGENVALUES WITH INDEFINITE WEIGHTS

Let us assume in this section that V' and m satisfy conditions (C1) and (C2) and
consider the eigenvalue problem

(=A) u+ V' |ulP~?u = plufP~u in Q, 1)

u=0 in RY\Q, .

with V' = (V — Am) and p an eigenvalue parameter depending on the real .
According to [12], problem (4.1)) admits a unique principal eigenvalue which we will
denote p(A). Moreover, p(A) is simple and can be characterized as

) = inf {0 = )l + [ (V)= dm(@)ful do s uw € Fo0(@), "

ooy = 1}

Note that )\ is a principal eigenvalue of our problem if and only if (M) = 0.
Our aim here is to give reasonable assumptions on V and m so that the curve of
the function A — u(\) intersects the x-axis.

We introduce the sets

Go = {u € W)+ [ullay =1, | ml)ful?do = 0},

Q (4.3)
G = {u S Ws’p(Q) : ||u||LP(ﬂ) = 1} :

The following proposition gives useful properties on the function A — p(A). We

will denote here

OF = {z e Q, m(z) >0}, Q :={zreQ m) <0}, Q:i={rcQ m(z)=0}

and @) the unique positive eigenfunction of LP(€))-norm equal to 1 associated with

1(A).

Proposition 4.1. (i) u: R — R is concave and differentiable, with
W) =— | m(z)phde VAeR.
Q
(il) (a) lmx— oo (A) = —00.
(b) If |27 | > 0 then limy__oo u(A) = —00.
(iii) If|Q~| =0 then u is strictly decreasing on R and, if moreover |2~ UQ°| =

0, then
lim p(A) = +oo.
A——o0
(iv) supyer #(A) = a(V,m) where

a(V,m) :=inf {Ey(u),u € Gp}. (4.4)
Moreover, a(V,m) is finite if and only if |QT] < |Q].
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Proof. (i) We prove that u : R — R is concave. Let A and § be two distinct real
numbers. Let t € [0,1] and set 6, = tA+ (1 —t)5. Let u € G. Since

—Ev_g,m(u) = t(—Ev_xm(u) + (1 = t)(=Ev_gm(u)),
we have
—p(0r) <t(=p(X) + (1 =1) (=pu(B)),
which means that the function —pu is convex.
Let A € R and (A;)x be a sequence converging to A. Let ¢ and ¢, be eigen-
functions associated with pu(Ag) and p(A) respectively with LP(Q)-norm equal to

1. By the results of [I2] Theorem 2.9], the eigenfunction ¢y is > 0 a.e. in  (see
Remark . By Lemma below we have, for some C; > 0 and Cy > 0,

[ox]” < C1Ev_x,m(¢k) + Cz/ lor[Pdr = Cru(Ag) + Co,
Q

ws.p (&N
SO
limsup [¢,]” < Cip(A) + Gy

k— 00 wsP(RN)
and therefore the sequence (pg)i is bounded in Ws’p(Q). Hence there exists
o € W*P(Q) and some subsequence, written again (¢r)k, such that ¢ — o
in Ws’p(Q), ©r — o in LP(Q) and in L"'?(Q). In particular leoll ipe = 1. Since
w(A) = limg 400 (Ag), it follows that

p(A) = lm Ey_xm(ek) = Ev_am(vo) = u(N)
k——+o0

and hence u(A\) = Ev_xm(po). Using the simplicity of the principal eigenvalue
of problem (4.1) and the fact that |¢ollzr@) = 1 and ¢o > 0, we conclude that
wo = @x. Moreover,

w(Ar) = By _x,m(er)

= By _am(or) + (A=) [ m(z)|ox|Pdx
Q

> uN) + (= M) [ m@)leePda
and, by replacing A\ by A and ¢ by ¢, in the inequality above, we obtain:
BV > 1)+ O =) [ (@)l P
Putting together this two inequalities we obtain
(A= 20) [ m@lenPds < un) = ) < (=30 [ mia)leapds
from which we conclude that
HO) = = [ m@)lesPda.

(i) Since |Q*| > 0 by (C1), there exists a function & € W*P(Q) such that
Jom(z)|E[Pdz > 0, [, |¢[Pde =1 and therefore

i <Kki-s [ Wdxdy+/QV(x)|£|pdx—)\/Qm(x)§|pdx.

Thus im0 #(A) = —oo. Similarly, if |Q27| > 0 then limy_,_ o p(A) = —o0.
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(iii) If |2~ | = 0, then p is strictly decreasing on R because —u'(X) = [, m(z)|ex[Pdz >
0 for all A € R. If |2~ UQY| = 0 assume by contradiction that the function A — u(\)
is bounded. Let (A)x be such that A\, — —oo and write ¢ = ¢,,. Using Lemma

[4:4 we have

sup u(A) > pw(Ae) = Eqv—x,m)(¢k)
AeR

— Bv(er) — M / m(z)|onlPde
Q
<0

> By (k) > Cil([cpk}p

_ 02)

wssp(RN)

so (pr)r is a bounded sequence in W“’(Q). Thus, there exist ¢ € Ws’p(Q) and
some subsequence (@), such that ¢ — ¢ in W“’(Q) and @ — @ in LP" ()
and in LP(Q). As ¢ is LP-normalized, then ||| =1and [, m(z)|elPde =
limy o0 [, m(2)|@k|P dz > 0. Then

LP(Q)

—oo = lim )\k/ m(z)|prl? de > Eyv () — sup u(A) > —oo,
k—oo Q AER

a contradiction.
(iv). If |27 UQ°| = 0 then Gy = 0 and using (ii) and (iii) we obtain

a(Vm) =4oo= lim p(A) = sup u(A).
A——o0 AER

If |~ UN° >0, as Gy C G and
w(A) < By _xm(u) = Ey(u) — )\/ m(z)|ulPde = Ey(u) VYu € G.
Q

then supycp #(A) < a(V,m). To obtain the reverse inequality observe that, by (i)
and (ii), the function p possesses a global maximum, that is, sup,cp () is reached
at some A\g € R, which in particular implies that

0=4(%) = [ m@)lps, Pda.
Q
Consequently, ¢y, € Gp and then a(V,m) < Ey (p,,). But
11(A0) = Ev_xom(®r,) = Ev(px,) and  p(ro) = §u§u(>\),
€

then o(V,m) < sup,cp (). Thus we obtain

a(V,m) = sup u(A).
A€ER

The proof that «(V,m) is achieved whenever it is finite, is standard and we omit
it. O

As a consequence of this proposition we have the following result.

Theorem 4.2. Assume that V' and m satisfy the hypotheses (C1) and (C2).
(i) If|27| =0, then admits a principal eigenvalue if and only if a(V,m) >
0. In this case the principal eigenvalue is unique and it is character-
ized by the equation A1 (V,m) = miny By, where M := {u € W”’(Q) :
Jo m(z)|uPdz = 1}.
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(ii) If|Q27| > 0, then (1.1)) admits a principal eigenvalue if and only if «(V,m) >
0. More precisely,
(a) if a(V,m) >0, then (L.1) admits exactly two principal eigenvalues

A1 (V,m) = —Ij{l/liIlEv <M(V,m) = %nEvy
where
M™={ue W”’(Q) : / mluPdx = —1};
Q

(b) if a(V,m) =0, then (1.1) admits a unique principal eigenvalue Ay (V, m)
given by
Al(V, m) = IJI\IAf EV = — ./l\illf—. Ev.

These infima are not achieved. In addition, any function u € Ws’p(ﬂ)\
{0} such that By (u) = [, m|u|Pdz =0 is an eigenfunction associated
with A1 (V,m).
(ili) In the case a(V,m) > 0 any function uw € M satisfying Ev (u) = A\ (V,m)
is an eigenfunction associated with A1 (V,m) and it is sign definite. Same
result for u € M~ satisfying Ev (u) = A_1(V,m).

Proof. The proof given in [§] can be easily adapted here as a corollary of Proposition
We only give the proof (b) of ii. to show how to use Picone’s inequality stated
in Lemma If «(V,m) = 0, then there exists a real Ag such that p(Ag) = 0 so
Ao is a principal eigenvalue of . Let us show that

)\0 = le\l/lev = —./léllg Ev.
We only give the proof of the first identity, the proof of the second one is similar.
As a(V,m) = supycz 1(A) then 1/ (h) = 0 = — fo, m()[ia, Pd.
Let v € M be such that u > 0. For any T' > 0 deﬁne wp := min{u, T} and take
©x, + € with € > 0 Let us prove that z := (17}%),1,1 € W“’(Q). Indeed, for any
PrgTE

(z,y) € RNV x RN we have

ur(x)? —
|z(x) — 2(y)| < (on(@ )—1—61’ -

(20 (1) + P71 = (i, (2) + )P~

(20 (y) + )P~ (o () + )P~ 1
(4.5)

2|+ e

and using for all (a,b) € RT™ x RT and ¢ > 0 the trivial inequality
la® = b7 < g (|a*™" + [b]7) |a — 0]
with ¢ = p or ¢ = p — 1 we have
2pTP1 2(p—1)T7
|2(z) = 2(y)| < B

lu(z) —u(y)| +
and therefore

o " lxo () — @20 (Y)] (4.6)

[Z]gvs.p(]RN) < C([ ]Ws P(RN) + [‘pko]wa p(]RN)) < 0.
An application of Picone’s inequality to functions ur and ¢y, +¢, and the fact that

Lp,l € W“’(Q), imply that
(er0+2)

O < / L(UT, (ID/\O +€)(.’If7y) de dy
R2N |y — x|Ntep
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e 10a®) = e @] (o W) — en (@)
N [ T]WS~P<RN> /RzN |z —y|Ntsp
W) )
g ( (30)\0 + E)p_l(y) (90/\0 + E)p_l(x)) ’

_ p 1 . / p—1 Up
B [UT] wspRN) + /C 1 78 ( )\0 Qm(x)‘w%(‘r)‘ (SOAO +E)p71d‘r

'4
/V |90>\0 P 1( T E)p ldx)

©xo T

So when ¢ — 0, by the Lebesgue convergence theorem
0 < K(1 =) fulfnaemy = Ao | mlelurpds + [ Via)udda

for all T > 0. Moreover, since as T — +o0o we obtain up = u. Then by Fatou’s
lemma,

0<K(1—38)[u ]WSP(]RN) )\0—1-/&2V(x)|u|pda:. (4.7)

So Ay < infaq Ey. To prove the reverse inequality let us show that there exists a
sequence of functions of M whose energy EV converges to Ag. Let ¥ € C*°(Q) such
that ¢ > 0, [, m(z)yYPdz > 0 and [, m glwdx > 0. Let the sequence (uy)g
be of the form

Pxo T %

(fQ m@),(p}\g + %’pdx>l/p.

It is straightforward that all elements of this sequence are in manifold M, and when
k is big enough uy; > 0. Furthermore, because the functions ¢t — FEy (gp)\o + t’(/J)

U =

and s — |<p>\0 + sw‘p are continuous and at least once differentiable on [0, +], then
there exist 0 < tg, s < 1/k such that

Ev (e, + %) = %(E(/ (xo + tr®0), 1),

1 _
/ m(a:)|<p>\0 + Ez/)|pdx = %/ m(x)|go>\o + Sk’t/J|p lz/de.
Q Q

As a result,
1 v
By (ur) = Ev(ex + 7
Jom(@)|ex, + 1| dx (20 k:)
— k % <E{/ (@Ao + tkw)a¢>
= — .
plom(@)|en, + sk K
So when k tends to infinity we find that Ey (ux) — Ao. Thus we can conclude that
)\() = inf Ev. (48)
But cpAO is an eigenfunction associated Wlth (Ao) = 0, that means that Ev (o) =
Ao fom |<p,\0| d:c =0 Wthh implies Ao is not achieved. Finally, if u € W* P(Q)\
{0} satlsﬁes Ey(u) = [, m(x)ulPdz = 0 we have
iuﬁﬂ()\) =0=Ey(u) = Ey_x;m(u) = p(Ao) / |ulPdx = 0, (4.9)
€
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and therefore u is a function where the infimum u(Ag) of equation (4.2)) is achieved.
Then, as the eigenvalue p(Ag) is simple, there exists ¢ > 0 such that u = c¢y, so
then Ao = A (V,m). O

Remark 4.3. One can prove, as at the beginning of the previous proof, that if
0<ue W”’(Q) N L>(Q) and v € W*P(Q) satisfies v > ¢ > 0 a.e. for some ¢ > 0
then = € Ws’p(Q) N L>(9).

Lemma 4.4. Let w be a function satisfying (C1) and let Z be a bounded subset of

L™(Q). If w > 0 a.e. is a function on L™(Q) for some 1 < r < p%, then there are
two strictly positive constants C1 and Cy such that

[u]p < C1Ey(u) + Cg/Qw(m)\uP’dx (4.10)

ws.pRN)
for all functions V € Z and for all u € W”’(Q).

Proof. This proof is a partial adaptation of Lemma 2 of [8]. Let T be a positive

real such that ||V||rq) < T for all V € Z. Let € > 0 fixed such that e < ’C(l %)
According to Holder inequality and the hypothesis (C1), we can write

| [ V@upde] < IVir@llulf,.. o
Claim. For all € > 0, there exists M. > 0 such that

P, <efu]” M. / ) ulPdz (411)

e’ () ws.p&N)

for all u € W*P(9).
Indeed, suppose by contradiction that there exists g > 0, and sequence (ug )y of
W#P(Q) such that

P
luell .. o =1 and & Mws,p@w)

+k/w(x)\uk|pdx< 1.
Q

Then (ug)x is bounded WeP(1), so there exists uy € WQP(Q) and sub-sequence
also denoted by (ug)y of W“’?”(Q) such that uj — ug in W‘”’(Q) and u; — ug in
L () (see [0, Theorem 2.16]). S

lim ||uk||
k—+oo

, we have on one hand

- HUOHLPT',(Q)

e’ () ’

and therefore ug # 0 in . Moreover, using once again the inequality of the

hypothesis we have
1
/ w(z)|ug|Pde < —.
o k

Then passing to the limit we find by Fatou’s lemma that

/ w(z)|uo|Pdz < 0
Q

which is a contradiction since w > 0 in ©Q and ug # 0 in 2. We have proved the
claim.

By applying the inequality (4.11]) for 0 < & < @ there is a positive real M,
such that

‘/V(m)|u\pdx’ <
Q

[u]p + IVl Q)M x)|u|Pdz
we,
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<erfuf! | +TM [ @l
ws,p(RN)
So we obtain
P 1 T M, /
07— F [ Pdq.
) wer@N) = K(1—s) —eT v+ K(1—s)—eT Qw(x)\u| !
The lemma follows by setting
1 TM,
Cr= d Co=——"7""""—.
YT KRO—s) —er MY PT K —s)—eT

O

As an application of Picone’s inequality of Lemmal[7.1] we can prove the simplicity
and the uniqueness of the principal eigenvalues Ay (V,m).

Proposition 4.5. Assume that a(V,m) > 0. Let u > 0 a.e. be an eigenfunction
of problem associated with A\ (V,m) and let v > 0 a.e. be an eigenfunction
associated with an eigenvalue A > A1 (V,m). Then there exists ¢ € R such that
u=cv a.e. and X\ = A (V,m).

Similarly, if v is an eigenfunction of problem associated with A_1(V, m)
with uw > 0 a.e. and v is eigenfunction associated with an eigenvalue A < Ay (V, m)
with v > 0 a.e. then there exists ¢ € R such that u = cv a.e. and A = _1(V,m).

Proof. Let us apply Picone’s inequality given in Lemma to the functions u and
v+ ¢ with ¢ > 0. By Remark [4.3]

L(u,v +¢)(z,y)
dr d
/RN / |x—y|N+sp Y

Iv() 2)[P~? (v y)—v(w‘))( uly)  uP(x)
(v

= N @) e

—ﬁ(h (V,m) /m |u|pdx—/V |u|pdx)
/m ol H)p S —/QV(x)|v|p—1#dx).

By using the Lebesgue dominated convergence theorem and passing to the limit we

have
>d dy )\1 Vm m x)|ulPdx.
RN JRN |50* |N+5p

Therefore if a(V,m) > 0 and A > A (V,m), as we have me x)|ulPdz > 0, we
conclude from the previous inequality that A;(V,m) = X and L(u,v) = 0. Hence, by
Picone’s inequality there is a constant ¢ > 0 such that v = cv. In the case a(V,m) =
0 we have [, m(z)|u[Pdz = 0 and we can conclude from the previous calculation that
L(u,v) = 0. Hence, by the conclusions of Picone’s inequality, there is a constant
¢ > 0 such that u = cv from which we deduce that Ey(v) = [, m(z)[v[Pdz = 0.
Thus, according to the result (ii)(b) of Theorem[4.2] v is an elgenfunctlon associated
with A1 (V,m), and therefore one must have A = A (V, m). O

X ) dzx dy
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5. NODAL DOMAINS AND ISOLATION OF THE PRINCIPAL EIGENVALUES

5.1. Measure of the nodal domains of non principal eigenvalues. By a nodal
domain of a function v € W*P(Q) N C(2), v # 0, we mean a maximal connected
open subset of either {x € Q : v(z) > 0} or { € Q: v(z) < 0}.

Theorem 5.1. Let v be an eigenfunction of (1.1) associated with an eigenvalue X

different from A1 (V,m) and A\_1(V,m). Then there exists constant C = C(s,p, N,Q) >

0 such that, if N is a nodal domain of v, then

N> (CIIV = AmllLr)) " >0, (5.1)
for
, g=00 if N <sp
v = rq/ with q>p if N=sp
q—Tp

q=ps; if N> sp.

Proof. Let N be a nodal domain, and assume for instance that v < 0 on N. Let
us take ¢ = v~ .xA as test function in (T.1)). Notice that trivially ¢ € WP)(Q).

Thus
(@)[P2 (v(y) — v(@)) (p(y) — ¢(x))
A=) /]RN/RN | — y|N s e dy
_ / (m — V)|o~ |Pdz
N
Ka-9el | | = /N(v —am)|o Pz < |V — AmHLr(Q)(/N |v’|prlda:>l/r .

Let us start with the case N > ps. By the previous Sobolev embedding theorem,
for some constant ¢ > 0, we have

CHQDHI;;:: (Q) S [sp]p

WS»P(]RN).
Hence
CK:(l - S)H(pHLp Q) = K:(l - S) IZSD]WS p@EN)
RV
< ||V - )\m| L'V(Q)(/ |fU ‘PT dac)
i _p
<V = Al @02 s o VT

and the estimate (|5.1)) follows.
If N = sp there exists some ¢ > 0 such that for all ¢ > p,

KL= )|l a0y < K1 = 5)[0]"

ws,P (RN )

, 1/r'
<|v- Am|Lr(Q)(/N o7 d)

_ 1_p
<V = x0T 5
and the estimate (5.1)) follows.
In the case N < sp, there exists some ¢ > 0 such that

K (1= )l oy < K(1— 5)[]”

ws,p(RN)
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P O M
N
<V = amllpr@)llv” 17~ @) VT
and the estimate follows. O
The following statement is a straightforward consequence of the above theorem.
Corollary 5.2. Any weak solution of has a finite number of nodal domains.

Proof. Let Nj be a nodal domain of a certain eigenfunction associated with an
eigenvalue. Let us assume by contradiction that there exists an infinity of nodal
domains (N ),>1 of this eigenfunction. We know that according to there exists
a positive constant ¢ > 0 such that we have

V| >c Vj.

2> SN > e S
J J

which is a contradiction. O

Thus

5.2. Isolation of A\;(V,m) and A_;(V,m). The following theorem states that the
eigenvalues Ay1(V,m) are isolated provided a(V,m) > 0. Notice that if a(V,m) >
0, there are no eigenvalues in the interval (A_1(V,m), A\ (V,m)).

Theorem 5.3. Let a(V,m) > 0. The eigenvalues A11(V,m) are isolated in the
spectrum of (L.1]), that is to say that there exists 6+ > 0 such that there are no eigen-
values in the intervals (A (V,m), A\ (V,m)+ 1) and (A_1(V,m) —d_, A_1(V,m)).

Proof. We only prove the result for \;(V,m) by arguing by contradiction. Let us
assume that there exists a sequence (\g)j of eigenvalues such that

Ak > A1(V,m)  and klim A = A (V,m).
—00

Denote by uy, a positive eigenfunction associated with A\;. Replacing uy by uk/[uk}wsﬁp(g)

if necessary, we can assume that the sequence (uy )y is bounded. By the results on
compact embeddings, there exists a subsequence (still denoted (ug)x) converging
to some u € WP (Q) weakly in W5?((Q), strongly in L"?(Q), a.e. and in measure
in © such that

lim V(m)\uk|pdx:/V(x)|u|pdx, lim /m(w)|uk|pdm:/m(x)|u|pdx.
Q Q k=00 Jo Q

k—o0

Since uy is an eigenfunction associated with A; we have
Ev(uk) = ’C(l — S) [uk]ng(RN) + /Q V($)|U,Ig|p dx

:IC(l—s)—i—/QV(x)|uk|pdx:/\k/ﬂm(m)|uk|pdx.

Thus passing to the limit and using that Ey is weakly lower semi-continuous we
obtain

Ey(u)=K(1 - s)[u]@vs_,p(RN) + /Q V(z)|ul? dx
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SIC(l—s)+/ﬂV(x)|u|pdx:Al(‘/,m)/gm(x)|u|pdz.

In particular v # 0 and

Ev(u) < A (V, m)/ m(z)|u|? d. (5.2)
Assume first that a(V,m) > 0. Then (5.2)) implies that [, m |u|p dz # 0. In fact
we have [, m(z)|ul? dz > 0 otherwise, by taking v = u/ (- fQ z)|ul? dz) VP e
M~ we will have from the definition of A_;(V,m) that
EV( )

_1(V,m) < Ey(v) = = A_1(V, m)/ﬂm(w)wp dx < Ey(u)

— Jo m(x)|ulP dx
which, jointly with the inequality (5.2) will give A_1(V,m) > Ai(v, M), a contra-
diction. Since we have proved that [, m(z) [u|P dz > 0 we then have, by definition
of A\1(V,m), that

A (V, m)/ m(x) |u|? dz < Ey(u)

and therefore A (V,m) [, m(z) [ul’ dz = Ey(u). Thus, u is an eigenfunction as-
sociated with the principal elgenvalue A1(V,m) and it must be either positive a.e.
or negative a.e. in 2. On the other hand, if for each k we denote N,j' ={z €
Q: up(z) >0} and N, = {z € Q: ug(z) < 0}, by Theorem we obtain the
existence of a constant ¢ > 0 such that |[N;[| > ¢ and [N | > ¢. However, if we
assume that v > 0 (the case u < 0 is analogous) it follows from the convergence in
measure that |V, | — 0, which is a contradiction.

Assume now that a(V m) = 0. We claim that [, m(x)|u|P dz = 0. Indeed, if for
instance [, m(x)|u|? dz > 0 then we will have, by deﬁnltlon of A1 (V,m), that

A1 (V,m) /Q m(x)|ulf de < By (u)

that, jointly with equation (5.2)) will give that the infimum \; (V,m) is achieved, a
contradiction. If [, m(x)|u|P dz < 0 then we will have instead

A (V, m)/ﬂm(x) Wl da < By (u)

and, since A;(V, m) = A_1(V,m), we again get a contradiction. We have just
proved that [, m(z)|ul’ dz = 0. Hence, by equation (5.2) Fy(u) < 0, it must be
Ev(u) =0 by the deﬁnltlon of a(V,m) =0. Thus u is an eigenfunction associated
with A\ (V,m) so v must be either > 0 a.e. or < 0 a.e. in 2 and we obtain a
contradiction as in the previous case. O

6. REGULARITY OF THE PRINCIPAL EIGENVALUES WITH RESPECT TO s

Now we study the behaviour of the first eigenvalues Ay1(V, m) with respect to s.
As we want to vary s, then to simplify the study, we now impose conditions on V and
m which are independent of s. So we assume V,m in L"(Q) with r > max{1, %}

We start by proving a lemma in the behaviour of sequences (1 — s)[us]’;vsvp(RN)
as s varies.
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Lemma 6.1. Let so € (0,1] and (s,)n be a sequence in (0,1) converging to so. Let
(un) be a sequence of functions such that, for all n € N, u,, € W*P(Q) and
(1 - Sn)[un]svs”,p(]RN) <L

for some L > 0. Let q € [1,p*). Then there exists a function u € WSM’(Q) such
that, up to a subsequence,

(1) [u]gvsw(RN) < lim infnﬁoo[un]’;vsn,p(RN) if so <1 and

Jo IVul? dz < liminfy o0 (1 = 80)Kun]fy e, p gy if S0 = 1.

(2) up — win L1Y(Q) and u, — u in LP(Q).
Proof. First of all, by Poincaré’s inequality,
lnlly < CON, p)(diam(@)*"P(1 — s0)fuunlfy ) < CON,p)(diam(R)*7L < C
for some constant depending only N, p, diam(€2), sg and L. Assume first that sg < 1
and let € > 0 be small enough. Observe that since ¢ < p* it follows that ¢ < p§ _.

if £ is small enough. Hence, if sg — & < s,,, using property 2 of Proposition 2.1} and
the previous estimate we have

1 1
il € Bl + O (g = 5 5) <€ 6)

for some C' independent of n. Then there exists u € WSO’”’(Q) and a subsequence,
still denoted by (up,)n, such that

Up —u  in WOEP(RY),
u, — u in LI(Q),
U, — u in LP(Q),
where we have used the compact imbedding of W!=P(Q) into L9(Q) and into
L?(Q). Hence for all € > 0, using (6.1)),
[y co—en(ravy < Hminflunlfy e )
1 1
< i o (7 B 7)
< Iminflunliyen @) + O P25, ~ 50p
Letting ¢ — 0 and using Fatou’s lemma the conclusion 1 is reached.
If 50 = 1, by Lemma 3.10 of [5] we infer the existence of u € W, ?(Q) such that,
up to a subsequence, u,, — u in LP(2). Moreover, using property 3 of Proposition
[2:2] and the hypothesis we obtain that, since 1 — ¢ < s,, if n is large enough,

E[un]gvlfs,p(g) <(1- sn)2(1—8n+8)17 diam(Q)(S"_Ha)p[un]%,sn,p(m <C (6.2

for some C' independent of n. Thus, the sequence (u,) is bounded in W!=P(Q) .

Hence there exists u € W1=s? (©) and a subsequence, still denoted by (uy)n, such
that

Up —u  in WHEP(Q),
u, = u in LI(Q),
up, — u in LP(Q).
Thus, letting n — oo in and using that u,, — u in W=5P(RY) we obtain

elulfyi—c ) < liylrggfe[un]%ﬂ,wm) < 277 diam(Q)? hnn—l>i<>%f(1 = $n) [Unljyen o @ny-
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Finally, letting £ — 0 and using Corollary 2 of [7] we obtain the result of 1. O

Our next result concerns the hypothesis on «(V,m) that allow us to have prin-
cipal eigenvalues. As we want to study the sign of a(V, m) as s varies, for s € (0,1]
let us write

a(s) = it {(1 = WLy, + [ V@l do s w e WO (@), Jul, =1, and

/ m(z)|ul? de =0}
Q
if s # 1, and

a(s) = inf { /Q |VulP dx + /Q V(2)|ulP dz - u € WP (Q), |lull, =1 and

/ m(z)|ul’ dz =0}
Q
if s =1.

Proposition 6.2. Let so € (0,1] and assume that a(sg) > 0. Then there exists
e > 0 such that a(s) > 0 for all s € (sg —€,50 +¢)N(0,1].

Proof. Assume by contradiction that there exists a sequence s,, — sg and a function
U, € W3 P(Q) such that

(1= 50Kl sy + [ V@lnPde <0, ually =1 [ m@)fun]? do =0,
Q Q

Let t,, = ||un||r7p and distinguish two cases.

Case (a): the sequence (t, ), is bounded. Then the sequence (1 —sn)lC[un]ivsn,p(RN)
is bounded.

Case (b): the sequence (t,), tends to +o00. Then taking v, = u,/t, we have

(1= 5Ky + [ V@enl? do <0
Q

and the sequence (1—s,)K[vn]y ., »
occurs and z, = v, if case (b) occurs. Let us now distinguish the cases 0 < sg < 1
and the case sg = 1.

1. Case 0 < so < 1. It follows from Lemma m with ¢ = 7’p that there exists

z € W#o2(Q) such that, in case (a),

(1- sO)IC[z]gvso,p(RN) + /Q V(z)|z[Pdx

(R is bounded. Let us write z,, = u,, if case (a)

<tliminf (1= s0)Klzalfye vy +/QV(x)\zn|pdm dz) <0, ||zll, = 1,
and the same inequality holds in case (b) with ||z||,/, = 1. Since [, m(z)|z|? =0
we have a contradiction with a(sg) > 0.

2. Case sp = 1. We obtain similarly that the sequence (1 — sn)IC[zn]gvsmp(RN)
is bounded, with either ||z,|, = 1 or ||zs|~p = 1. By Lemma there exists
z € W, P(Q) such that

/Q [Vul? dx—&—/ﬂ V(z)|z|P dx < linrr_1>i£f(1—sn)lC[zn]ijSmp(RN) —1—/9 V(2)|zn|P dz < 0.
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Notice that again ||z||, = 1, with either ¢ = p or ¢ = v'p, and [, m|(z)z[? = 0
Thus a(1) < 0, a contradiction. O
Let us now write
_ ) |u(z) — u(y)|P dz dy
)\il(s) = )\:i:l(‘/; m) = +inf {IC(]. — S) AQN |Jj — |N+€p V|u\1’dx

u e WHP(K), / mlulPdz = +1}
Q
and
Ay = +inf {/ (\Vu|p + V(m)|u\p)dx cue WyP(Q), / m(z)|ulPde = £1}.
Q Q

We have the following result that generalizes, for indefinite weights, [I0, Lemma
4.12].

Proposition 6.3. Assume that for some so € (0,1], a(sg) > 0. Then
lim )\il(S) = )\:i:l(SO)'
S—S0

Proof. We only give the proof for A;(s). By Proposition a(s) > 0 for s close to
S0, 80 A1(8) is a principal eigenvalue associated with problem (1.1)). Let (s,), be a
sequence in (0, 1] converging to sg € (0, 1]. Let us show that

hm A1(sn) = A1(s0). (6.3)

n—-+

1. Case 50 € (0,1). By definition of the first eigenvalue, we know that if ¢ € C§°(Q)
and [, m(z)|¢[P = 1, then

Mo <K(1-5,) [

R

lp(z) — p(y) P

P
o o= g Fer d:rdy+/QV(x)\go| dx

for alln € N. Therefore, by dominated convergence theorem, we obtain limsup,, ., ., A1(s,) <
A1(s0). To prove the reverse inequality let (s,, )r be a subsequence of (s,), such
that

lim  A1(8pn,) = liminf Ay (sy,).

k—+o0 n—~+00

Let 0 < up,, € Wsk7p(9) be an eigenfunction associated with Aj(sy, ) such that
Jo m|tn, |P dz >0 and

[unk]s‘/snk ’p(RN) -5

then in particular, using u,, as test function in equation (1.1)) for A = A(sp, ), we
have

Al(snk)/ m(z)|un, [Pde = K(1 — sp,) —|—/ V(2)|un, |Pdz. (6.4)
Q Q
By Lemma there exists u € W*o-P (©2) such that, up to a subsequence,

[u]z‘;[/so,p(RN) < likrggéf[unk]gvsnk,p(RN) =1, up, —uwin L"?(Q) and u,, — uin LP(Q).

(6.5)
Hence, using (6.4) we find on the one hand that

lim inf Ay (sy,, ) /m uPde = (1—80)+/ V(z)|ulP dx (6.6)
Q

k—o0
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and, on the other hand using and (6.6)),
K(1— 50)[u]€vm,p &™) +/ V(x)|ulP dz
< K(1—s9) + hmlnf/ V(z)|un, P dzx (6.7)
= 11m1nf)\1 (Sny /m YulP dx.

It remains to prove that [, m(z)|ul? dz > 0 to conclude from the previous inequality
that

A1(s0) < liminf A(s,,)

k—o0

(notice that the function v = u/( [, m(x)|ul? dx) P will be then admissible in the
definition of A1 (sp)) and the proof of the proposition is completed

To prove that [, m(x)|u|? dz > 0, remember ﬁrst that [, m(z)|un, [P dz > 0 for
all k € N and assume by contradiction that [, m(x)lulP dz = O Using we
infer that « # 0 and, using we obtain

K(l — SO)[u]Iv)vSoYP(RN) +/ V(m)|u|p dx <0,
Q

a contradiction with the hypothesis a(sg) > 0.
2. Case so = 1. Let ¢ € C§°() such that [, m(z)|p|? dz = 1. Then for any n € N,

M(sn) < K01 — sn)/ le(@) = o(y)l”

R2N |Jj—y|N+9 P dxdy—'_/ V |90|pdx

Thus, by Proposition
lim sup A1 (s,) / [VplPdz —l—/ V(z)|p|Pdx.
n—-+oo

As o is arbitrary, we have

limsup A1 (s,,) < A1(1).

n—-+00

As in the previous case, let us prove that

hmlnf A1(sn) > A (1).

'n,—> o0
Let (sp,)r be a subsequence of (sy,), such that

kEI—&I-l A1(Sn,) = hminf A1(sn)- (6.8)

Let uy be an eigenfunction associated with A;(s,, ) such that

K(1 - si)[ur]? =1 (6.9)

WP (RN

Then, as u,, is an eigenfunction we have

o) [ ()l Pde = K= sty )+ [ V@l e
@ @ (6.10)

= 1+/ V(z)|un, |Pdx.
Q
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By Lemma 6.1 ﬂ there exists u € W, () such that

/\Vu|pdx—|—/V )|ul|P dx

<timinf (1= 50Kl Sy ey + [ V@l 7o) (611

= liminf M (Sn,) [ m(x)|u|Pde.
o

Thus, if fQ x)|ulP dx > 0, we can conclude, rescaling the previous inequality, that
A1 < liminf A\ (sp,)
k—+oco

and the proof of the proposition is complete. To prove that fQ x)|ulP dz >
0 we argue as before using now equations 7 and that a( ) > 0 by
hypothesis. [

7. APPENDIX A

The following two results are, essentially, consequence of the convexity of the
function t > |t|P~2t.

Lemma 7.1. A discrete version of Picone’s inequality [I] Let p € (1,400). For
all functions € and ¢ defined on RN such that € >0, and ¢ > 0, we have

L(£,¢) =0 on RY xRY
with

L(&, 0)(x,y) = [€(y) —E(@) P = |o(y) — o () "> (d(y) — d(2)) (

for all (z,y) € RN x RN. Moreover, we have
L(,¢)=0 < Tk R s.t. p =k&.

Proof. For sake of completeness we give the proof of this inequality. It uses the
following convexity inequality due to [I]. Fix =,y in R and put a = £(y), b = &(z),

t= ig; and assume that 0 < b < a. It suffices to prove that for any p > 1 and
0 <t <1, one has
1 _
ja = b > a?(1 =)' — (5~ 1P

which is equivalent to say that

|a — bJP bP
1) )+t >ab
( ) A=ty i, >a
which follows from the convexity of the function f(z) = |z|P. Notice that the
equality on this inequalities arrives if and only if ¢t = b/a, that is, L(§, ¢)(x,y) =0
for all 7,y € RY if and only if £/¢ = cte. d

Let us quote without proof the following second estimate.

Lemma 7.2 ([6 Lemma A;]). Let 1 < p < 0o and g : R — R be a convex function,
then
la = bIP(a — b) [Alg'(a)"~2¢(a) — Blg'(b)["~2¢' (b)]

> lg(a) — 9(0)"(g(a) — 9(8)) (4 — B). (7.1)
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for every a,b € R, and every A, B > 0.

8. APPENDIX B

For completeness we give the following regularity result for the nonlocal non-
homogeneous problem

(—Ap)*u+ V(x)|uf2u= f(z) inQ, wu=0inRY\Q. (8.1)

Proposition 8.1. Assume sp < N, f € L1(Q), V € LI(Q) for some ¢ > N/sp,
and u € W*P(Q) is a solution of (8.1). Then for any t € [1,400), u € L*(Q) and
there exists a constant Cy depending on t and on Q, ||V|n/sp, | fln/sps N, 8, P
such that

[ull ey < Cr. (8.2)

Proof. We borrow some ideas from [0} [I8]. For every 0 < ¢ < 1 and any positive
function ¢ € C§°(02) we define the smooth convex Lipschitz function

gg(t) — (52 +t2)1/2,

and choose the test function ¢ = ¢|g’ (u)[P~2g.(u) in the variational formulation of
(8.1). Then we obtain

u(@) — uy)|" " (u(z) —u(y) , .y
K@—w)@w| DN =) a2 )
eW)lgl (u)) P ?g. (u(y))) dz dy
/u )9 (u(@) P2 (u(x)) da

/W ) (@)~ o) lg! (u(@) P24 (u(e)) e

By using with @ = u(x), b = u(y), A = ¢(x) and B = ¢(y) we have

K(1—s) /RQN ’ga (u(aj)) — Y (u(y))‘p—2 (95 (u(aj)) — 9e (u(y)))

[z — y[N+sp ((z) — o(y)) dzdy

SLV@WW@@MW4M+LWwwmw*mmgmeAM

By observing that g. converges to g(t) := |t| ase — 0, |¢g.(¢)| < 1 and using Fatou’s
Lemma, we obtain

p—2 _lu
/C(l —s) /RQN ||u(x)‘ — |u(y)H (|u(m)’ ‘ (y)|) ((p(m) _ @(y)) dz dy

|z —y[ NP

SAU@W@®+AW@M@WMMM

By the density of C§°(Q) in W*P(Q) (see Proposition , the same inequality
remains true for any positive ¢ € WP (Q).
For k > 0 and ¢t > p we define u; and ¢y, as follows:

(8.3)

tP t—p+1

— min{|u|,k} and S
ug = min{|u|,k} and @g(u) pP(t—p—l—l)uk
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By definition, ¢y (u) € rVV”’(Q), and then by relation (8.3)), we can write

p—2 _lu
- [ RO =100 o) - gt aeay
< / (@)l () + /Q V(@) ()P ()

For M > 0, set Qp:={zx € Q: |V(z)] > M}. We have &4
/ [V (@)lul"~ o (u)de < M Ju(@) P~ |ow (u)|da
Q O\Q M
IV lwrions (| Ju(e) ()N a)
Moreover, thanks to [4, Lemma C.2] we have
)| - }u P (@] = [u)]) g (@) = 0 (w)
- (t— pp| t/p B uk(y)t/p]p. (8.5)

Thus, by (8.4) and -, the relation

|k ()77 — g (y)"/?]”

(1-9)K o e dx dy
p+1pp/| ()l
tpHVHLN/sp Q . p/P;

+m/ﬂ|f($)|%(u($))dm

holds and by the Sobolev’s embedding of W*?(Q) into LP (€2), there exists a con-
stant Sy s, such that

SN,s.p ( /Q uk(m)%yﬂp:

|k ()77 — ug(y)"/?]”

<(1-9)K dod
- ( S) R2N |Jj—y|N+Sp Tay
M v s p/pg
< 7/ |U|p_1‘<,0k(u)|dl’ + ” ||LN/ p( QM) / || |p 1 |p5/pd$)
(t—p+1)pP Jq (t—p+1)p

tP
v d
* (t—p+1) pp/ I @lor(w)dw
{=ptDp"Snsp and use the definition

If we choose M such that [|[V|[p~/(q,,) < (t—p+ L
of ¢, and Holder’s inequality for the last term of right-hand side of the previous
inequality, we obtain

10/1)e
Sn s p/Pb < / d Ns,p / -
vl [ furta)l pﬂp,, u(w)'dz + e

p/Ps
+ on( u(x pb(t+1 p)/pdx>
( _p_|_ 1) Hf”LN/ Q) / |
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(/ () p:(t+1_p)/pdx)p/p: < |Q‘p(p—1)/p:t(/ |u(m)‘tp:/p)19(t+l—p)/tp:'
Q N Q
Then for all t 2 p we obtain

(t —p+ )p SN s,p / e |tN/(N sp)>( —sp)/N

and

<M / () d (8.6)

(t+1—p) (N —sp)

+IIfHLN/w(Q)|Q|p<p—1>/p:t( /Q ‘u(x”uv/uv-sp)) i

Let us set tg = p. Since by definition, u € L' (), it follows that u € LtoN/(N=sp)(Q),
and thus, thanks to Fatou’s Lemma we have

(tO —p+ 1)ppSN,s,p
2th
< MJul| Ep gy + QPP PE0Y f e

‘ |LtON/(N sp)

Jull Fo a7y

Therefore using Young’s inequality we obtain

1 1
lull o < Crgollll Lo () + Coeo I FI1TAELY,

where C1 4, and Ca 4, depend on M, N, s, p, to, and |£2].

Now if we take t; = A’iof\s[p > p and since u € L"(Q), it follows that u €

Lth/(N_Sp)(Q) and we let k — +o0, by Fatou’s Lemma, and using Young’s in-
equality we obtain

[ ull g/ v—sp < Cogy [l Loy + Corey L FIAELY,

where C14, and Cay, depend on M, N, s, p, t1, and |€2].
Thus as a consequence, if we define the sequence (¢;);en by

N !
to=p, U= (7—51)) p, leN*

N
we find that v € L"(Q) for any [ € N*. Since 1 < p < ¢ for all [ € N and
t l—+> +00, we conclude that u € L*(Q2) for any ¢ > 1, and ({8.2)) follows. O
—+00

When V € L™(Q) and f € L™(Q) with r > %, a better estimate holds.

Proposition 8.2. Assume that V. € L"(Q) and f € L™(2) with r > % Let

u € W”’S(Q) be a solution of (8.1). Then u € L*°(Q) and there exists C =
C (&p,

L™ () ||u||Lp§ Q) such that
[ull oo () < C. (8.7)

Proof. By Proposition[8.1 u € L!(Q) for any ¢ > 1 and therefore V|u|P~2u € L!(Q2)
for any t € (%, r) N (p = 7—1—00) Moreover, by Holder’s inequality,

||V‘u|p*2u||Lt(Q) S ||V||L7‘(Q)O(y;jitr .



26 O. ASSO, M. CUESTA, J. T. DOUMAT}\E]7 L. LEADI EJDE-2023/38

Thus, by replacing f by f+ V|u[P~2u we can assume that V = 0 in equation (8.1)).
Let us assume first that v > 0. For any k > 0 take u; defined as above and define
now for any a > 0,

ok = (ur) T € WP(Q) N L®(Q).

Using ¢q,, as test function, one obtains

- [ 1) P l) ) e g

|x_y|N+sp k — U (y>) d.’L‘dy

- / Fla)ul da.
Q
Thanks to Lemma [7.2] one has

K —s)(ap+1) / up (@) — g ()]
(a+ 1) R2N |z —y[NHer

dzdy < /Q @)l de .

pa+1
< /Q |F () + da.

By Holder’s inequality we have

a+l (a+1)P 1/p / P aprn)) TP
[ v = (= aapsn) (Ml ([ @) )

(8.9)
Since uf ™' € W*P(), by the Sobolev’s embedding theorem there exists C; > 0
such that

1 1 1
HukHLPZ(aJrl)(Q) = ”ug-i_l”z:;l(g) < Cwla-*—1 [ug+1]l(jl;—sl’P(RN)'

Then, by , we obtain

HukHLP:<a+1>(sz)
1 o+ 1)p ﬁ , 1/ m
< Oa+1 < ( ) ( - (/ u” (ap+1)) ) .
= V1 K(l —8)(04;0—1—1) Hf”L (Q) 0
So, denoting Cs = || f| z~(q), We have
20 Cola+1)P  Ns@m / e
o) < OF (g ) (/ op ) ) T
Fllioz o < G BT = ap 1) 0
On the other hand there exists C3 > 0 such that
( 02(01 + 1)]7
K1 —s)(ap+1)

Consequently, we obtain that

1
)p o+t < (Cs forall «>0.

||’LL ” . < Ca}rl C\/aliﬂ ||UH (:f;)lp
Ellppset (@) = “1 3 Lpat1)r’ ()
1 1 p—1 ap+1 (8'10)
< OPT Ot rr syl ﬁzjr)f)pr'(ﬂ)'

Choosing o = o in (8.10)) such that (a; + 1)pr’ = p¥ we obtain
1 == p—1 oyptl
aq+1 aq+1 D21t 2 (1 +1)
) <O CB\/ QP2 ||uHL(ll+1’;m,(Q).

[kl zrz@i+0 (g
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Next we choose o = a2 in (8.10)) such that (1 + ag)pr’ = (1 + a1)p? and obtain

agp+1

1 [ — p—1
etk | oz rmay gy < Gy G372 QY PFER Ju| ET  -

By induction, for all m € N* we can show that
Itamp

1 1 p—1
||uk||ij;(1+am)(Q) < Cll-mm C3 Them |Q‘p2(l+ﬂm)27"/ HUHZ((ll:Z:L)A)PE @’ (8.11)

where (@ )men is a sequence of positive numbers defined by

ap=0 and (1+an)pr' =1+ am-1)pi Vm>1.

* m
One easily see that for all m € N, 1 + «, = (5:,) , and then, by hypothesis,

Q. — +00 as m — +o00 since r > p—]\g. Moreover we have

2 5:1”(1)71>
el om0y < CL Oy Q77 [lul5m

Lr’;mfl(ﬂ)7
with 0., = pi(am + 1), Bm = \/ﬁ, and §,, = %. Notice that o, — +00,

Bm — 0 and §,, T 1 as m — +oo. Letting ¥ — +00 and using Fatou’s lemma we
obtain

m Om
lall o ) < CE Nl . (8.12)

for some constant Cy > 0. A simple computation gives

(Bm+27;:1ﬁm7in’;;;témk) e s
[ull Lom () < Cy l[ull 55 () -

Using that d,, 1 1 and that S, = (Z—f)m/2 one can find that

m—1 i—1

- 1
; (ﬁmigémk) < ;/Bmfi < W < 0

SO
[l Lom (@) < Cmax {1, ||ull oz ) }
and the conclusion follows. If u changes sign one can use instead, as in Proposition

uy = max{|ul, k}. O
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