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PRINCIPAL EIGENVALUES FOR THE FRACTIONAL

p-LAPLACIAN WITH UNBOUNDED SIGN-CHANGING

WEIGHTS

OUMAROU ASSO, MABEL CUESTA, JONAS TÊLÉ DOUMATÈ, LIAMIDI LEADI

Abstract. Let Ω be a bounded regular domain of RN , N > 1, p ∈ (1,+∞),

and s ∈ (0, 1). We consider the eigenvalue problem

(−∆p)su+ V |u|p−2u = λm(x)|u|p−2u in Ω

u = 0 in RN \ Ω,

where the potential V and the weight m are possibly unbounded and are sign-
changing. After establishing the boundedness and regularity of weak solutions,

we prove that this problem admits principal eigenvalues under certain condi-

tions. We also show that when such eigenvalues exist, they are simple and
isolated in the spectrum of the operator.

1. Introduction

For p ∈ (1,+∞) and s ∈ (0, 1), the fractional (s, p)-Laplacian is an extension of
the s-fractional Laplacian and it is defined, for a regular function u : RN → R, as

(−∆p)
s u(x) := 2K(1− s) P.V.

(∫
RN

|u(x)− u(y)|p−2
(
u(x)− u(y)

)
|x− y|N+sp

dy
)

for all x ∈ RN with

K = p
(∫

SN−1

|〈ω, e〉|pdH N−1(ω)
)−1

, e ∈ SN−1,

where H N−1 denotes the (N−1)-dimensional Hausdorff measure of the unit sphere
SN−1 of RN . Let us recall that for all measurable function on a subset D of RN and
for all x ∈ RN , the principal value function on the integral

∫
D
Ψ(x, y)dy is denoted

by

P.V.
(∫

D

Ψ(x, y)dy
)

:= lim
ε→0

∫
D\Bε(x)

Ψ(x, y)dx,

where Bε(x) is a ball centered at x ∈ RN with radius ε > 0.
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In this article, we study the conditions under which the principal eigenvalues of
the following homogeneous Dirichlet problem exist

(−∆p)
su+ V |u|p−2u = λm(x)|u|p−2u in Ω,

u = 0 in RN \ Ω,
(1.1)

where Ω is a bounded regular domain of RN , V and m are indefinite sign-changing
functions and satisfying the following conditions:

(C1) V , m ∈ Lr(Ω) with r ∈ (1, +∞) ∩ (Nsp , +∞),

(C2) m+ = max(m, 0) 6≡ 0.

Our aim is to extend some results obtained by Del-Pezzo et al. in [12] for the eigen-
value problem (1.1). These authors studied, among other issues, the existence of
eigenvalues, the positivity of the eigenfunctions associated with the first eigenvalue
of (1.1) with m ≡ 1 and V satisfying (C1). We want here to address the question
of existence of principal eigenvalue in a wide range of weights, precisely when m
and V changing sign. The presence of such weights in problem (1.1) brings us to
proceed by a considerably different approach called “eigencurve arguments” which
requires the construction of some equivalent problem.

To illustrate this eigencurve argument, let us mention the work of Fleckinger et
al. [15], where the following eigenvalue problem is considered.

−∆u+ a0(x)u = λm(x)u, in Ω, u = 0 on ∂Ω (1.2)

with Ω a bounded smooth domain, a0,m ∈ Lr(Ω), r > N
2 are indefinite and m is

unbounded. After separating the positive and negative parts of a0 and m one find
equation (1.2) as

−∆u+ a+
0 (x)u+ λm−(x)u = λm+(x)u+ a−0 (x)u. (1.3)

So, for any fixed λ, they were led to study the following eigenvalue problem of
eigenvalue parameter σ(λ),

−∆u+ (a+
0 (x) + 1)u+ λm−(x)u = σ(λ)

(
m+(x) +

a−0 (x) + 1

λ

)
u in Ω,

u = 0 on ∂Ω .

It is clear that λ > 0 is an eigenvalue of (1.2) if and only if σ(λ) = λ. For this
purpose, they studied the properties of continuity, concavity and monotonicity of
the curve λ 7→ σ(λ) and they proved that, under certain conditions, the existence
of λ > 0 satisfies σ(λ) = λ. For more details see [15].

Our construction of the equivalent problem is different from the one made in [15]
and it is closer to the one used by Binding and Huang [3]. These authors considered,
for bounded potential V and bounded weight m, the principal eigencurve µ1(λ),
that is, µ1(λ) is the principal eigenvalue of

−∆pu+ (V (x)− λm(x))|u|p−2u = µ1(λ)|u|p−2u in Ω, u = 0 on ∂Ω

and deduced the existence of λ ∈ R such that µ1(λ) = 0 under some conditions
on V and m. This technique has generated several results which have enriched the
scientific literature (see for example [2, 3, 9, 19, 21]). For instance, recently [8]
made use of such arguments when solving the above problem for a potential V and
a weight function m that may change sign and may be unbounded. They looked
and established additional conditions on V and m that guarantee the existence
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of principal eigenvalues. In this work, our main results extend those of [8] and
references therein to the fractional p-Laplacian.

This article is organized as follows. We start by recalling some basic proper-
ties of essential the fractional Sobolev spaces in Section 2. In Section 3 we prove
the boundedness and regularity of the weak solutions. Section 4 is devoted to the
existence of principal eigenvalues. In Section 5, we show that when principal eigen-
values exist, they are isolated in the spectrum and we give a lower bound of the
measure of the nodal domains for changing sign eigenfunctions. Finally in Section
6 we prove some sort of continuity of the principal eigenvalues when varying s.
We collect in appendix the proof of a discrete version of some well known identity
as well as a regularity result for more general equations involving the fractional
p-Laplacian with unbounded terms.

2. Preliminaries

The Lebesgue measure of a Lebesgue measurable set Z ⊂ RN is denoted by |Z|.

2.1. Basic results about fractional Sobolev spaces. Let p ∈ [1,+∞), s ∈
(0, 1) and let Ω ⊂ RN be an open set.

• The (s, p)-fractional Sobolev space, denoted by W s,p(Ω), is defined by

W s,p(Ω) :=
{
u ∈ Lp(Ω) :

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+sp
dx dy < +∞

}
.

The space W s,p(Ω) is a separable Banach space endowed with the norm∥∥u∥∥
W s,p(Ω)

:=
(∫

Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
Ω

|u|pdx
)1/p

.

W s,p(Ω) is reflexive if p > 1.
• For any function u of W s,p(Ω) we denote the Gagliardo semi-norm by[

u
]
Ws,p(Ω)

:=
(∫

Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+sp
dx dy

)1/p

.

• The space W̃ s,p(Ω) is defined as the space of all u ∈ W s,p(Ω) such that

ũ ∈W s,p(RN ), where ũ is the extension by zero of u, outside of Ω. W̃ s,p(Ω)
is a Banach space endowed with the norm

‖u‖
W̃ s,p(Ω)

:= ‖ũ‖W s,p(RN )

and it is a reflexive space if p > 1.

Let us quote some properties of these spaces that will be used later. Here we
will denote by C(N, p) any positive constant depending only on N and p.

Proposition 2.1 ([10]). Let Ω be a bounded open set of RN .

(1) There exists C(N, p) such that, for any u ∈ W̃ s,p(Ω), it holds

‖u‖pLp(Ω) ≤ C(N, p)(diam(Ω))sp(1− s)
[
u
]p
W s,p(RN )

. (2.1)

Thus, the Gagliardo semi-norm
[
·
]
W s,p(RN )

is a norm in W̃ s,p(Ω) equivalent

to the previous norm ‖ · ‖
W̃ s,p(Ω)

(c.f. [10, Lemma 2.5]).
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(2) Let 0 < s ≤ s′ < 1. Then there exists a positive constant C(N, p) such that[
u
]p
W s,p(RN )

≤
[
u
]p
W s′,p(RN )

+ C(N, p)
( 1

sp
− 1

s′p

)
‖u‖p

Lp(RN )

for any u ∈W s′,p(RN ) (cf. [10, Lemma 2.3]).

Proposition 2.2 ([7, 13, 17]). Let Ω ⊂ RN be a bounded open set with Lipschitz
boundary. Then

(1) C∞0 (Ω) is dense in W̃ s,p(Ω) (c.f. [17, Theorem 1.4.2.2]).

(2) If u ∈ W̃ s,p(Ω) and f is a Lipschitz function then f(u) ∈ W̃ 1,p(Ω).
(3) Let 0 < s ≤ s′ < 1. Then there exists a positive constant C(N, p) such that

(1− s)[u]pW s,p(Ω) ≤ 2(1−s)p diam(Ω)(s′−s)p(1− s′)[u]p
W s′,p(Ω)

for any u ∈W s′,p(Ω) (c.f. [7, Lemma 2]; [13, Lemmas 4.3 and 4.4]).
(4) For any u ∈W 1,p(Ω),

lim
s→1−

(1− s)[u]pW s,p(Ω =

∫
Ω

|∇u|p dx.

(c.f. [7, Corollary 2 ]).

2.2. Embeddings. Let the fractional critical exponent of Sobolev be defined by

p∗
s

=

{
Np
N−sp if sp < N,

+∞ if sp > N.

The following results are versions of the classical Sobolev injection theorem in the
case of fractional Sobolev spaces (c.f. [14, pages 218 and 219]).

Theorem 2.3. [14] Let Ω be an open set with a Lipschitz boundary. We have the
following continuous injections:

(1) If sp < N, W s,p(Ω) ↪→ Lq(Ω) for all q ∈ [p, p∗s].
(2) If sp = N, W s,p(Ω) ↪→ Lq(Ω) for all q ∈ [p, +∞).

(3) If sp > N , W s,p(Ω) ↪→ C0, α(Ω̄) with α ∈
(

0, s− N
p

]
.

Furthermore we have the following compact injections when Ω is an open bounded
domain of RN with a Lipschitz boundary:

4. If sp 6 N , then W s,p(Ω) ↪→c L
q(Ω) for all q ∈ [1, p∗s).

5. If sp > N , then W s,p(Ω) ↪→c C
0, α(Ω̄) with α ∈ (0, s− N

p ).

6. W s,p(Ω) ↪→c L
pq′(Ω) with max{1, Nsp} < q < +∞ and 1

q + 1
q′ = 1.

Throughout this work we will assume that Ω is a bounded domain of RN with a
Lipschitz boundary.

3. Weak solutions of the eigenvalue problem and regularity results

For simplicity, from now on we will denote by u, instead of ũ, the extension by

0 of any function u ∈ W̃ s,p(Ω).

Definition 3.1. (1) We will say that a function u ∈ W̃ s,p(Ω) is a weak solution
of (1.1) if

H(u, v) +

∫
Ω

V (x)|u|p−2uvdx = λ

∫
Ω

m(x)|u|p−2uv dx (3.1)
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for all v ∈ W̃ s,p(Ω), where

H(u, v) := K(1− s)
∫
RN

∫
RN

|u(x)− u(y)|p−2
(
u(x)− u(y)

)
|x− y|N+sp

(
v(x)− v(y)

)
dx dy.

(3.2)

It should be noted that for all u ∈ W̃ s,p(Ω), we have

H(u, u) = K(1− s)
[
u
]p
Ws,p(RN )

.

(2) We will say that a real number λ is an eigenvalue of (1.1) if there exist u 6≡ 0
satisfying (3.1). In this case, we say that u is an eigenfunction associated
with λ.

(3) Moreover, if the eigenfunction u has a constant sign on Ω, then λ is called
a principal eigenvalue of the problem (1.1).

(4) Finally, the eigenvalue λ is said to be simple if any two eigenfunctions u
and v associated with λ are such that u = cv for some real constant c.

Definition 3.2. For each u ∈ W̃ s,p(Ω), let the energy associated with the problem
(1.1) be

EV (u) := H(u, u) +

∫
Ω

V (x)|u|p dx = K(1− s)
[
u
]p
Ws,p(RN )

+

∫
Ω

V (x)|u|p dx. (3.3)

It is clear that EV is of class C 1 on W̃ s,p(Ω) with

〈E′V (u), v〉 = pH(u, v) + p

∫
Ω

V (x)|u|p−2uv dx ∀(u, v) ∈ W̃ s,p(Ω)× W̃ s,p(Ω).

Let us now state the main result of this section. Let us consider the homogeneous
problem

(−∆p)
su+ V ′|u|p−2u = 0 in Ω,

u = 0 in RN \ Ω,
(3.4)

where V ′ satisfies condition (C1).

Theorem 3.3. If u ∈ W̃ s,p(Ω) is a weak solution of (3.4), then u ∈ L∞(Ω)∩C(Ω).
Furthermore, there exists a positive constant C = C(s, p,N,Ω, ‖V ′‖Lr(Ω)) such that

‖u‖L∞(Ω) ≤ C‖u‖Lr′p(Ω). (3.5)

The proof of this theorem will follow from Lemma 3.4 below, based on the De
Giorgi-Stampacchia iteration technique (see for instance [11, 16, 22], where the case
V ′ ≡ 1 has been considered).

Lemma 3.4. Assume that sp ≤ N . Let u be a weak solution of (3.4) admitting a
positive part u+ 6≡ 0. Let us define the sequence (wk)k by

wk :=
(
u−

(
1− 1

2k

))+

.

Then there exists a positive constant σ = σ(s, p,N,Ω, ‖V ′‖Lr(Ω)) such that, if

‖u+‖
Lr
′p(Ω)

< σ, then u ≤ 1 a.e.

Proof. Let us denote Wk = ‖wk‖pLr′p(Ω)
. The conclusion of the lemma will follow

from the following results that we prove below:

(1) limk→+∞Wk = ‖(u− 1)+‖p
Lr
′p(Ω)

.



6 O. ASSO, M. CUESTA, J. T. DOUMATÈ, L. LEADI EJDE-2023/38

(2) limk→+∞Wk = 0.

Notice that, by definition, wk ∈W s,p(Ω) and wk = 0 a.e. in Ωc.

1. Trivially the sequence (wk)k is decreasing so, for all k ∈ N we have |wk|r
′p ≤

|w0|r
′p = |u+|r′p ∈ L1(Ω). Moreover the sequence (|wk|r

′p)k converges to ((u −
1)+)r

′p almost everywhere in Ω. Hence Wk → ‖(u− 1)+‖p
Lr
′p(Ω)

by the Lebesgue’s

dominated convergence theorem.
2. Let us first prove two claims.
Claim 1. For all k ∈ N,

‖u|p−1wk+1‖Lr′ (Ω) ≤ 2(p−1)(k+1)Wk. (3.6)

Indeed, first observe that if wk+1(x) > 0, that is, if u(x) > 2k+1−1
2k+1 , then

wk(x) = wk+1(x) +
1

2k+1
≥ 1

2k+1
, wk(x) ≥ u(x)

2k+1 − 1

and ∫
Ω

|u|r
′(p−1)wr

′

k+1dx =

∫
{wk+1>0}

|u|r
′(p−1)wr

′

k+1dx

≤
∫
{wk+1>0}

(2k+1 − 1)r
′(p−1)w

r′(p−1)
k wr

′

k (x)dx

≤ (2k+1 − 1)r
′(p−1)‖wk‖r

′p

Lr
′p(Ω)

≤ 2r
′(p−1)(k+1)W r′

k .

(3.7)

Claim 2. There exist D > 1 and β > 0 such that for all k ∈ N,

Wk+1 ≤ DkW 1+β
k .

To prove this claim, let us quote the following (trivial) inequality:

∀(a, b) ∈ R2, |a+ − b+|p ≤ |a− b|p−2(a− b)(a+ − b+). (3.8)

By taking

a = u(x)−
(

1− 1

2k+1

)
, b = u(y)−

(
1− 1

2k+1

)
in (3.8) for all (x, y) ∈ RN , we obtain[
wk+1

]p
W s,p(RN )

≤
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
(wk+1(x)−wk+1(y)) dx dy.

Besides, by taking wk+1 in the weak formulation of (3.4), we obtain from the
previous inequality

K(1− s)
[
wk+1

]p
W s,p(RN )

≤
∫

Ω

|V ′(x)‖u|p−1wk+1dx,

and therefore, using Claim 1,

K(1− s)
[
wk+1

]p
W s,p(RN )

≤ ‖V ′‖
Lr(Ω)

[ ∫
Ω

(
|u|p−1wk+1

)r′
dx
]1/r′

≤ C2(p−1)(k+1)Wk

(3.9)
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for some positive constant C depending on ‖V ′‖Lr(Ω), s, p,N, and Ω. On the other

hand, using Hölder’s inequality with the exponents q := N
r′(N−sp) if q < Ns (or any

q > 1 if N = ps), by Sobolev’s embedding we have

Wk+1 = ‖wk+1‖p
Lr
′p(Ω)

≤ ‖wk+1‖p
Lr
′pq(Ω)

|{wk+1 > 0}|
q−1
r′q

≤ C
[
wk+1

]p
W s,p(RN )

|{wk+1 > 0}|
q−1
r′q

(3.10)

for some 0 < C = C(N, p, s,Ω). Moreover, since wk = wk+1 + 1
2k+1 , then

|{wk+1 > 0}| ≤ |{wk > 2−k−1}| ≤ 2r
′p(k+1)W r′

k (3.11)

and hence, using (3.9), (3.10) and (3.11)

Wk+1 ≤ C2(p−1)(k+1)Wk × |{wk+1 > 0}|
q−1
r′q

≤ C2(p−1)(k+1)Wk ×
(
2r
′p(k+1)W r′

k

) q−1
r′q

≤ C(2p−1 × 2
p(q−1)
q )k+1W

1+ q−1
q

k

≤ DkW 1+β
k ,

with D =
{

[1 + C] 2p−1 × 2
p(q−1)
q
}2

> 1 and β = q−1
q > 0. Claim 2 is proved.

Now we complete the proof of 2. Let σ = D
− q2

p(q−1)2 , denote ρ = ‖u+‖p
Lr
′p(Ω)

and assume that ρ1/p < σ. Choose η ∈ (ρ
q−1
q , D−

q
q−1 ). It should be noted that

η ∈]0, 1[, ρ
q−1
q ≤ η, and Dη

q−1
q ≤ 1. Let us prove by induction that for all k ∈ N

Wk ≤ ρηk. (3.12)

By definition

W0 := ‖w0‖p
Lr
′p(Ω)

= ‖u+‖p
Lr
′p(Ω)

= ρ ≤ ρη0.

Assume that (3.12) holds at order k and let us show that it holds at order k + 1.
By Claim 2,

Wk+1 ≤ DkW
1+

q−1
q

k ≤ Dk(ρηk)
1+

q−1
q

= ρ
(
η
q−1
q )k

ρ
q−1
q
ηk ≤ ρηk+1.

Thus by passing to the limit in (3.12), we finally obtain that Wk → 0. �

Proof of Theorem 3.3. Take v = σu
2‖u+‖

Lr
′p(Ω)

, where σ = σ(s, p,N,Ω, ‖V ′‖Lr(Ω)) is

given by Lemma 3.4. Since v is a weak solution of (1.1) and satisfies ‖v+‖Lr′p(Ω) = σ
2

then v ≤ 1 a.e., which gives

u ≤ 2

σ
‖u+‖Lr′p(Ω) a.e.

If u− is not identically zero, we apply the same argument to −u, which is a weak
solution of (1.1), to find that

u ≥ − 2

σ
‖u−‖Lr′p(Ω) a.e.

and estimate (3.5) follows.
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Finally, the continuity of u results from [6, Theorem 3.13], which derives from
[23, Theorem 1.5]. �

Remark 3.5. To our knowledge, it is not known if the solutions are continuous
up to the boundary of Ω or class C0,α in the case sp ≤ N and V ′ unbounded.
Indeed, when V ′ is bounded then f = V ′|u|p−2u ∈ L∞(Ω) and, by the results by
Iannizzotto et al. [20], u ∈ Cα(Ω) for some α > 0.

4. Existence of principal eigenvalues with indefinite weights

Let us assume in this section that V and m satisfy conditions (C1) and (C2) and
consider the eigenvalue problem

(−∆p)
su+ V ′|u|p−2u = µ|u|p−2u in Ω,

u = 0 in RN \ Ω,
(4.1)

with V ′ = (V − λm) and µ an eigenvalue parameter depending on the real λ.
According to [12], problem (4.1) admits a unique principal eigenvalue which we will
denote µ(λ). Moreover, µ(λ) is simple and can be characterized as

µ(λ) = inf
{
K(1− s)[u]p

W s,p(RN )
+

∫
Ω

(V (x)− λm(x))|u|p dx : u ∈ W̃ s,p(Ω),

‖u‖Lp(Ω) = 1
}
.

(4.2)

Note that λ0 is a principal eigenvalue of our problem (1.1) if and only if µ(λ0) = 0.
Our aim here is to give reasonable assumptions on V and m so that the curve of
the function λ 7→ µ(λ) intersects the x-axis.

We introduce the sets

G0 :=
{
u ∈ W̃ s,p(Ω) : ‖u‖

Lp(Ω)
= 1,

∫
Ω

m(x)|u|pdx = 0
}
,

G :=
{
u ∈ W̃ s,p(Ω) : ‖u‖

Lp(Ω)
= 1
}
.

(4.3)

The following proposition gives useful properties on the function λ 7→ µ(λ). We
will denote here

Ω+ := {x ∈ Ω, m(x) > 0}, Ω− := {x ∈ Ω, m(x) < 0}, Ω0 := {x ∈ Ω, m(x) = 0},
and ϕλ the unique positive eigenfunction of Lp(Ω)-norm equal to 1 associated with
µ(λ).

Proposition 4.1. (i) µ : R→ R is concave and differentiable, with

µ′(λ) = −
∫

Ω

m(x)ϕpλdx ∀λ ∈ R.

(ii) (a) limλ→+∞ µ(λ) = −∞.
(b) If |Ω−| > 0 then limλ→−∞ µ(λ) = −∞.

(iii) If |Ω−| = 0 then µ is strictly decreasing on R and, if moreover |Ω−∪Ω0| =
0, then

lim
λ→−∞

µ(λ) = +∞.

(iv) supλ∈R µ(λ) = α(V,m) where

α(V,m) := inf {EV (u), u ∈ G0} . (4.4)

Moreover, α(V,m) is finite if and only if |Ω+| < |Ω|.
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Proof. (i) We prove that µ : R → R is concave. Let λ and β be two distinct real
numbers. Let t ∈ [0, 1] and set θt = tλ+ (1− t)β. Let u ∈ G. Since

−EV−θtm(u) = t(−EV−λm(u)) + (1− t)(−EV−βm(u)),

we have
−µ(θt) 6 t (−µ(λ)) + (1− t) (−µ(β)) ,

which means that the function −µ is convex.
Let λ ∈ R and (λk)k be a sequence converging to λ. Let ϕk and ϕλ be eigen-

functions associated with µ(λk) and µ(λ) respectively with Lp(Ω)-norm equal to
1. By the results of [12, Theorem 2.9], the eigenfunction ϕλ is > 0 a.e. in Ω (see
Remark 4.3). By Lemma 4.4 below we have, for some C1 > 0 and C2 > 0,[

ϕk
]p
Ws,p(RN )

≤ C1EV−λkm(ϕk) + C2

∫
Ω

|ϕk|pdx = C1µ(λk) + C2,

so
lim sup
k→∞

[
ϕk
]p
Ws,p(RN )

≤ C1µ(λ) + C2

and therefore the sequence (ϕk)k is bounded in W̃ s,p(Ω). Hence there exists

ϕ0 ∈ W̃ s,p(Ω) and some subsequence, written again (ϕk)k, such that ϕk ⇀ ϕ0

in W̃ s,p(Ω), ϕk → ϕ0 in Lp(Ω) and in Lr
′p(Ω). In particular ‖ϕ0‖Lp(Ω)

= 1. Since

µ(λ) = limk→+∞ µ(λk), it follows that

µ(λ) > lim
k→+∞

EV−λkm(ϕk) > EV−λm(ϕ0) > µ(λ)

and hence µ(λ) = EV−λm(ϕ0). Using the simplicity of the principal eigenvalue
of problem (4.1) and the fact that ‖ϕ0‖Lp(Ω) = 1 and ϕ0 ≥ 0, we conclude that
ϕ0 = ϕλ. Moreover,

µ(λk) = EV−λkm(ϕk)

= EV−λm(ϕk) + (λ− λk)

∫
Ω

m(x)|ϕk|pdx

> µ(λ) + (λ− λk)

∫
Ω

m(x)|ϕk|pdx

and, by replacing λk by λ and ϕk by ϕλ in the inequality above, we obtain:

µ(λ) > µ(λk) + (λk − λ)

∫
Ω

m(x)|ϕλ|pdx.

Putting together this two inequalities we obtain

(λ− λk)

∫
Ω

m(x)|ϕk|pdx 6 µ(λk)− µ(λ) 6 (λ− λk)

∫
Ω

m(x)|ϕλ|pdx

from which we conclude that

µ′(λ) = −
∫

Ω

m(x)|ϕλ|pdx.

(ii) Since |Ω+| > 0 by (C1), there exists a function ξ ∈ W̃ s,p(Ω) such that∫
Ω
m(x)|ξ|pdx > 0,

∫
Ω
|ξ|pdx = 1 and therefore

µ(λ) 6 K(1− s)
∫
R2N

|ξ(x)− ξ(y)|p

|x− y|N+sp
dx dy +

∫
Ω

V (x)|ξ|pdx− λ
∫

Ω

m(x)|ξ|pdx.

Thus limλ→+∞ µ(λ) = −∞. Similarly, if |Ω−| > 0 then limλ→−∞ µ(λ) = −∞.
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(iii) If |Ω−| = 0, then µ is strictly decreasing on R because−µ′(λ) =
∫

Ω
m(x)|ϕλ|pdx >

0 for all λ ∈ R. If |Ω−∪Ω0| = 0 assume by contradiction that the function λ 7→ µ(λ)
is bounded. Let (λk)k be such that λk → −∞ and write ϕk = ϕλk . Using Lemma
4.4, we have

sup
λ∈R

µ(λ) ≥ µ(λk) = E(V−λkm)(ϕk)

= EV (ϕk)− λk
∫

Ω

m(x)|ϕk|pdx︸ ︷︷ ︸
60

≥ EV (ϕk) >
1

C1

([
ϕk
]p
Ws,p(RN )

− C2

)
so (ϕk)k is a bounded sequence in W̃ s,p(Ω). Thus, there exist ϕ ∈ W̃ s,p(Ω) and

some subsequence (ϕk)k such that ϕk ⇀ ϕ in W̃ s,p(Ω) and ϕk → ϕ in Lpr
′
(Ω)

and in Lp(Ω). As ϕk is Lp-normalized, then ‖ϕ‖
Lp(Ω)

= 1 and
∫

Ω
m(x)|ϕ|p dx =

limk→∞
∫

Ω
m(x)|ϕk|p dx > 0. Then

−∞ = lim
k→∞

λk

∫
Ω

m(x)|ϕk|p dx ≥ EV (ϕ)− sup
λ∈R

µ(λ) > −∞,

a contradiction.
(iv). If |Ω− ∪ Ω0| = 0 then G0 = ∅ and using (ii) and (iii) we obtain

α(V m) = +∞ = lim
λ→−∞

µ(λ) = sup
λ∈R

µ(λ).

If |Ω− ∪ Ω0| > 0, as G0 ⊂ G and

µ(λ) 6 EV−λm(u) = EV (u)− λ
∫

Ω

m(x)|u|pdx = EV (u) ∀u ∈ G0.

then supλ∈R µ(λ) 6 α(V,m). To obtain the reverse inequality observe that, by (i)
and (ii), the function µ possesses a global maximum, that is, supλ∈R µ(λ) is reached
at some λ0 ∈ R, which in particular implies that

0 = µ′(λ0) =

∫
Ω

m(x)|ϕλ0
|pdx.

Consequently, ϕλ0
∈ G0 and then α(V,m) 6 EV (ϕλ0

). But

µ(λ0) = EV−λ0m(ϕλ0
) = EV (ϕλ0

) and µ(λ0) = sup
λ∈R

µ(λ),

then α(V,m) 6 supλ∈R µ(λ). Thus we obtain

α(V,m) = sup
λ∈R

µ(λ).

The proof that α(V,m) is achieved whenever it is finite, is standard and we omit
it. �

As a consequence of this proposition we have the following result.

Theorem 4.2. Assume that V and m satisfy the hypotheses (C1) and (C2).

(i) If |Ω−| = 0, then (1.1) admits a principal eigenvalue if and only if α(V,m) >
0. In this case the principal eigenvalue is unique and it is character-

ized by the equation λ1(V,m) = minMEV , where M :=
{
u ∈ W̃ s,p(Ω) :∫

Ω
m(x)|u|pdx = 1

}
.
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(ii) If |Ω−| > 0, then (1.1) admits a principal eigenvalue if and only if α(V,m) >
0. More precisely,
(a) if α(V,m) > 0, then (1.1) admits exactly two principal eigenvalues

λ−1(V,m) = −min
M−

EV < λ1(V,m) = min
M

EV ,

where

M− :=
{
u ∈ W̃ s,p(Ω) :

∫
Ω

m|u|pdx = −1
}

;

(b) if α(V,m) = 0, then (1.1) admits a unique principal eigenvalue λ1(V,m)
given by

λ1(V,m) = inf
M
EV = − inf

M−
EV .

These infima are not achieved. In addition, any function u ∈ W̃ s,p(Ω)\
{0} such that EV (u) =

∫
Ω
m|u|pdx = 0 is an eigenfunction associated

with λ1(V,m).
(iii) In the case α(V,m) > 0 any function u ∈ M satisfying EV (u) = λ1(V,m)

is an eigenfunction associated with λ1(V,m) and it is sign definite. Same
result for u ∈M− satisfying EV (u) = λ−1(V,m).

Proof. The proof given in [8] can be easily adapted here as a corollary of Proposition
4.1. We only give the proof (b) of ii. to show how to use Picone’s inequality stated
in Lemma 7.1. If α(V,m) = 0, then there exists a real λ0 such that µ(λ0) = 0 so
λ0 is a principal eigenvalue of (1.1). Let us show that

λ0 = inf
M
EV = − inf

M−
EV .

We only give the proof of the first identity, the proof of the second one is similar.
As α(V,m) = supλ∈R µ(λ) then µ′(λ0) = 0 = −

∫
Ω
m(x)|ϕλ0

|pdx.
Let u ∈M be such that u > 0. For any T > 0 define uT := min{u, T} and take

ϕλ0
+ ε with ε > 0 Let us prove that z :=

upT(
ϕλ0

+ε
)p−1 ∈ W̃ s,p(Ω). Indeed, for any

(x, y) ∈ RN × RN we have

|z(x)− z(y)| ≤
∣∣∣uT (x)p − uT (y)p

(ϕλ0
(x) + ε)p−1

∣∣∣+ |uT (y)|p
∣∣∣ (ϕλ0

(y) + ε)p−1 − (ϕλ0
(x) + ε)p−1

(ϕλ0
(y) + ε)p−1(ϕλ0

(x) + ε)p−1

∣∣∣
(4.5)

and using for all (a, b) ∈ R+ × R+ and q > 0 the trivial inequality

|aq − bq| ≤ q
(
|a|q−1 + |b|q−1

)
|a− b|

with q = p or q = p− 1 we have

|z(x)− z(y)| ≤ 2pT p−1

εp−1
|u(x)− u(y)|+ 2(p− 1)T p

εp
|ϕλ0

(x)− ϕλ0
(y)| (4.6)

and therefore

[z]p
W s,p(RN )

≤ C
(

[u]p
W s,p(RN )

+ [ϕλ0
]p
W s,p(RN )

)
<∞.

An application of Picone’s inequality to functions uT and ϕλ0 +ε, and the fact that
upT(

ϕλ0
+ε
)p−1 ∈ W̃ s,p(Ω), imply that

0 6
∫
R2N

L(uT , ϕλ0 + ε)(x, y)

|y − x|N+sp
dx dy
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=
[
uT
]p
Ws,p(RN )

−
∫
R2N

∣∣ϕλ0
(y)− ϕλ0

(x)
∣∣p−2(

ϕλ0
(y)− ϕλ0

(x)
)

|x− y|N+sp

×
( upT (y)(
ϕλ0

+ ε
)p−1

(y)
−

upT (x)(
ϕλ0

+ ε
)p−1

(x)

)
dx dy

=
[
uT
]p
Ws,p(RN )

+
1

K(1− s)

(
− λ0

∫
Ω

m(x)
∣∣ϕλ0

(x)
∣∣p−1 upT(

ϕλ0
+ ε
)p−1 dx

+

∫
Ω

V (x)
∣∣ϕλ0

∣∣p−1 upT(
ϕλ0 + ε

)p−1 dx
)
.

So when ε→ 0, by the Lebesgue convergence theorem

0 ≤ K(1− s)[uT ]p
W s,p(RN )

− λ0

∫
Ω

m(x)|uT |pdx+

∫
Ω

V (x)upT dx

for all T > 0. Moreover, since as T → +∞ we obtain uT = u. Then by Fatou’s
lemma,

0 6 K(1− s)[u]p
W s,p(RN )

− λ0 +

∫
Ω

V (x)|u|pdx. (4.7)

So λ0 6 infMEV . To prove the reverse inequality let us show that there exists a
sequence of functions ofM whose energy EV converges to λ0. Let ψ ∈ C∞(Ω) such

that ψ > 0,
∫

Ω
m(x)ψpdx > 0 and

∫
Ω
m(x)ϕp−1

λ0
ψdx > 0. Let the sequence (uk)k

be of the form

uk =
ϕλ0

+ ψ
k( ∫

Ω
m(x)

∣∣ϕλ0 + ψ
k

∣∣pdx)1/p
.

It is straightforward that all elements of this sequence are in manifoldM, and when
k is big enough uk > 0. Furthermore, because the functions t 7→ EV

(
ϕλ0

+ tψ
)

and s 7→
∣∣ϕλ0

+ sψ
∣∣p are continuous and at least once differentiable on

[
0, 1

k

]
, then

there exist 0 < tk, sk < 1/k such that

EV
(
ϕλ0

+
ψ

k

)
=

1

k
〈E′V

(
ϕλ0

+ tkψ
)
, ψ〉,∫

Ω

m(x)
∣∣ϕλ0 +

1

k
ψ
∣∣pdx =

p

k

∫
Ω

m(x)
∣∣ϕλ0 + skψ

∣∣p−1
ψdx.

As a result,

EV (uk) =
1∫

Ω
m(x)

∣∣ϕλ0 + 1
kψ
∣∣pdxEV (ϕλ0 +

ψ

k

)
=

k

p
∫

Ω
m(x)

∣∣ϕλ0
+ skψ

∣∣p−1
ψdx

×
〈E′V

(
ϕλ0

+ tkψ
)
, ψ〉

k
.

So when k tends to infinity we find that EV (uk) −→ λ0. Thus we can conclude that

λ0 = inf
M
EV . (4.8)

But ϕλ0 is an eigenfunction associated with µ(λ0) = 0, that means that EV (ϕ0) =

λ0

∫
Ω
m(x)

∣∣ϕλ0

∣∣pdx = 0 which implies λ0 is not achieved. Finally, if u ∈ W̃ s,p(Ω) \
{0} satisfies EV (u) =

∫
Ω
m(x)|u|pdx = 0 we have

sup
λ∈R

µ(λ) = 0 = EV (u) = EV−λ0m(u) > µ(λ0)

∫
Ω

|u|pdx = 0, (4.9)
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and therefore u is a function where the infimum µ(λ0) of equation (4.2) is achieved.
Then, as the eigenvalue µ(λ0) is simple, there exists c > 0 such that u = cφλ0 so
then λ0 = λ1(V,m). �

Remark 4.3. One can prove, as at the beginning of the previous proof, that if

0 ≤ u ∈ W̃ s,p(Ω) ∩ L∞(Ω) and v ∈ W̃ s,p(Ω) satisfies v ≥ c > 0 a.e. for some c > 0

then up

vp−1 ∈ W̃ s,p(Ω) ∩ L∞(Ω).

Lemma 4.4. Let ω be a function satisfying (C1) and let Z be a bounded subset of
Lr(Ω). If ω > 0 a.e. is a function on Lr(Ω) for some 1 ≤ r < p∗s, then there are
two strictly positive constants C1 and C2 such that[

u
]p
Ws,p(RN )

6 C1EV (u) + C2

∫
Ω

ω(x)|u|pdx (4.10)

for all functions V ∈ Z and for all u ∈ W̃ s,p(Ω).

Proof. This proof is a partial adaptation of Lemma 2 of [8]. Let T be a positive

real such that ‖V ‖Lr(Ω) 6 T for all V ∈ Z. Let ε > 0 fixed such that ε < K(1−s)
T .

According to Hölder inequality and the hypothesis (C1), we can write∣∣∣ ∫
Ω

V (x)|u|pdx
∣∣∣ 6 ‖V ‖Lr(Ω)‖u‖pLpr′ (Ω)

.

Claim. For all ε > 0, there exists Mε > 0 such that

‖u‖p
Lpr
′
(Ω)
6 ε
[
u
]p
Ws,p(RN )

+Mε

∫
Ω

ω(x)|u|pdx (4.11)

for all u ∈ W̃ s,p(Ω).
Indeed, suppose by contradiction that there exists ε0 > 0, and sequence (uk)k of

W̃ s,p(Ω) such that

‖uk‖
Lpr
′
(Ω)

= 1 and ε0

[
u
]p
Ws,p(RN )

+ k

∫
Ω

ω(x)|uk|pdx < 1.

Then (uk)k is bounded W̃ s,p(Ω), so there exists u0 ∈ W̃ s,p(Ω) and sub-sequence

also denoted by (uk)k of W̃ s,p(Ω) such that uk ⇀ u0 in W̃ s,p(Ω) and uk → u0 in

L
pr′

(Ω) (see [10, Theorem 2.16]). So, we have on one hand

lim
k→+∞

‖uk‖
Lpr
′
(Ω)

= ‖u0‖
Lpr
′
(Ω)

= 1,

and therefore u0 6≡ 0 in Ω. Moreover, using once again the inequality of the
hypothesis we have ∫

Ω

ω(x)|uk|pdx <
1

k
.

Then passing to the limit we find by Fatou’s lemma that∫
Ω

ω(x)|u0|pdx 6 0,

which is a contradiction since ω > 0 in Ω and u0 6≡ 0 in Ω. We have proved the
claim.

By applying the inequality (4.11) for 0 < ε < K(1−s)
T there is a positive real Mε

such that∣∣ ∫
Ω

V (x)|u|pdx
∣∣ 6 ε‖V ‖Lr(Ω)

[
u
]p
Ws,p(RN )

+ ‖V ‖Lr(Ω)Mε

∫
Ω

ω(x)|u|pdx
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6 εT
[
u
]p
Ws,p(RN )

+ TMε

∫
Ω

ω(x)|u|pdx.

So we obtain[
u
]p
Ws,p(RN )

6
1

K(1− s)− εT
EV (u) +

TMε

K(1− s)− εT

∫
Ω

ω(x)|u|pdx.

The lemma follows by setting

C1 =
1

K(1− s)− εT
and C2 =

TMε

K(1− s)− εT
.

�

As an application of Picone’s inequality of Lemma 7.1 we can prove the simplicity
and the uniqueness of the principal eigenvalues λ±1(V,m).

Proposition 4.5. Assume that α(V,m) ≥ 0. Let u > 0 a.e. be an eigenfunction
of problem (1.1) associated with λ1(V,m) and let v ≥ 0 a.e. be an eigenfunction
associated with an eigenvalue λ ≥ λ1(V,m). Then there exists c ∈ R such that
u = cv a.e. and λ = λ1(V,m).

Similarly, if u is an eigenfunction of problem (1.1) associated with λ−1(V,m)
with u > 0 a.e. and v is eigenfunction associated with an eigenvalue λ ≤ λ1(V,m)
with v > 0 a.e. then there exists c ∈ R such that u = cv a.e. and λ = λ−1(V,m).

Proof. Let us apply Picone’s inequality given in Lemma 7.1 to the functions u and
v + ε with ε > 0. By Remark 4.3,

0 6
∫
RN

∫
RN

L(u, v + ε)(x, y)

|x− y|N+sp
dx dy

= [u]p
Ws,p(RN )

−
∫
RN

∫
RN

× |v(y)− v(x)|p−2 (v(y)− v(x))

|x− y|N+sp

( up(y)

(v(y) + ε)p−1
− up(x)

(v(x) + ε)p−1

)
dx dy

=
1

K(1− s)

(
λ1(V,m)

∫
Ω

m(x)|u|pdx−
∫

Ω

V (x)|u|pdx
)

− 1

K(1− s)

(
λ

∫
Ω

m(x)|v|p−1 up

(v + ε)p−1
dx−

∫
Ω

V (x)|v|p−1 up

(v + ε)p−1
dx
)
.

By using the Lebesgue dominated convergence theorem and passing to the limit we
have

0 6
∫
RN

∫
RN

L(u, v)(x, y)

|x− y|N+sp
dx dy 6

λ1(V,m)− λ
K(1− s)

∫
Ω

m(x)|u|pdx.

Therefore if α(V,m) > 0 and λ > λ1(V,m), as we have
∫

Ω
m(x)|u|pdx > 0, we

conclude from the previous inequality that λ1(V,m) = λ and L(u, v) = 0. Hence, by
Picone’s inequality there is a constant c > 0 such that u = cv. In the case α(V,m) =
0 we have

∫
Ω
m(x)|u|pdx = 0 and we can conclude from the previous calculation that

L(u, v) = 0. Hence, by the conclusions of Picone’s inequality, there is a constant
c > 0 such that u = cv from which we deduce that EV (v) =

∫
Ω
m(x)|v|pdx = 0.

Thus, according to the result (ii)(b) of Theorem 4.2, v is an eigenfunction associated
with λ1(V,m), and therefore one must have λ = λ1(V,m). �
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5. Nodal domains and isolation of the principal eigenvalues

5.1. Measure of the nodal domains of non principal eigenvalues. By a nodal

domain of a function v ∈ W̃ s,p(Ω) ∩ C(Ω), v 6≡ 0, we mean a maximal connected
open subset of either {x ∈ Ω : v(x) > 0} or {x ∈ Ω : v(x) < 0}.

Theorem 5.1. Let v be an eigenfunction of (1.1) associated with an eigenvalue λ
different from λ1(V,m) and λ−1(V,m). Then there exists constant C = C(s, p,N,Ω) >
0 such that, if N is a nodal domain of v, then

|N | ≥
(
C‖V − λm‖Lr(Ω)

)−γ
> 0, (5.1)

for

γ =
r′q

q − r′p
with


q =∞ if N < sp

q ≥ p if N = sp

q = p∗s if N > sp.

Proof. Let N be a nodal domain, and assume for instance that v < 0 on N . Let

us take ϕ = v−.χN as test function in (1.1). Notice that trivially ϕ ∈ W̃ (s,p)(Ω).
Thus

K(1− s)
∫
RN

∫
RN

|v(y)− v(x)|p−2 (v(y)− v(x)) (ϕ(y)− ϕ(x))

|x− y|N+sp
dx dy

=

∫
N

(λm− V )|v−|pdx

so

K(1− s)
[
ϕ
]p
Ws,p(RN )

=

∫
N

(V − λm)|v−|pdx ≤ ‖V − λm‖Lr(Ω)

(∫
N
|v−|pr

′
dx
)1/r′

.

Let us start with the case N > ps. By the previous Sobolev embedding theorem,
for some constant c > 0, we have

c‖ϕ‖p
Lp
∗
s (Ω)
≤
[
ϕ
]p
Ws,p(RN )

.

Hence

cK(1− s)‖ϕ‖p
Lp
∗
s (Ω)
≤ K(1− s)

[
ϕ
]p
Ws,p(RN )

≤ ‖V − λm‖Lr(Ω)

(∫
N
|v−|pr

′
dx
)1/r′

≤ ‖V − λm‖Lr(Ω)‖v−‖pLp∗s (Ω)
|N |

1
r′−

p
p∗s ,

and the estimate (5.1) follows.
If N = sp there exists some c > 0 such that for all q ≥ p,

cK(1− s)‖ϕ‖pLq(Ω) ≤ K(1− s)
[
ϕ
]p
Ws,p(RN )

≤ ‖V − λm‖Lr(Ω)

(∫
N
|v−|pr

′
dx
)1/r′

≤ ‖V − λm‖Lr(Ω)‖v−‖pLq(Ω)|N |
1
r′−

p
q ,

and the estimate (5.1) follows.
In the case N < sp, there exists some c > 0 such that

cK(1− s)‖ϕ‖pL∞(Ω) ≤ K(1− s)
[
ϕ
]p
Ws,p(RN )
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≤ ‖V − λm‖Lr(Ω)

(∫
N
|v−|pr

′
dx
)1/r′

≤ ‖V − λm‖Lr(Ω)‖v−‖pL∞(Ω)|N |
1/r′ ,

and the estimate (5.1) follows. �

The following statement is a straightforward consequence of the above theorem.

Corollary 5.2. Any weak solution of (1.1) has a finite number of nodal domains.

Proof. Let Nj be a nodal domain of a certain eigenfunction associated with an
eigenvalue. Let us assume by contradiction that there exists an infinity of nodal
domains (Nj)j≥1 of this eigenfunction. We know that according to (5.1) there exists
a positive constant c > 0 such that we have

|Nj | > c ∀j .

Thus

|Ω| >
∑
j

|Nj | > c
∑
j

1 ,

which is a contradiction. �

5.2. Isolation of λ1(V,m) and λ−1(V,m). The following theorem states that the
eigenvalues λ±1(V,m) are isolated provided α(V,m) ≥ 0. Notice that if α(V,m) >
0, there are no eigenvalues in the interval (λ−1(V,m), λ1(V,m)).

Theorem 5.3. Let α(V,m) ≥ 0. The eigenvalues λ±1(V,m) are isolated in the
spectrum of (1.1), that is to say that there exists δ± > 0 such that there are no eigen-
values in the intervals (λ1(V,m), λ1(V,m) + δ+) and (λ−1(V,m)− δ−, λ−1(V,m)).

Proof. We only prove the result for λ1(V,m) by arguing by contradiction. Let us
assume that there exists a sequence (λk)k of eigenvalues such that

λk > λ1(V,m) and lim
k→∞

λk = λ1(V,m).

Denote by uk a positive eigenfunction associated with λk. Replacing uk by uk/[uk]
W̃ s,p(Ω)

if necessary, we can assume that the sequence (uk)k is bounded. By the results on
compact embeddings, there exists a subsequence (still denoted (uk)k) converging

to some u ∈ W̃ s,p(Ω) weakly in W̃ s,p(Ω), strongly in Lr
′p(Ω), a.e. and in measure

in Ω such that

lim
k→∞

∫
Ω

V (x)|uk|p dx =

∫
Ω

V (x)|u|p dx, lim
k→∞

∫
Ω

m(x)|uk|p dx =

∫
Ω

m(x)|u|p dx.

Since uk is an eigenfunction associated with λk we have

EV (uk) = K(1− s)
[
uk
]p
W s,p(RN )

+

∫
Ω

V (x)|uk|p dx

= K(1− s) +

∫
Ω

V (x)|uk|p dx = λk

∫
Ω

m(x)|uk|p dx.

Thus passing to the limit and using that EV is weakly lower semi-continuous we
obtain

EV (u) = K(1− s)[u]p
W s,p(RN )

+

∫
Ω

V (x)|u|p dx
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≤ K(1− s) +

∫
Ω

V (x)|u|p dx = λ1(V,m)

∫
Ω

m(x)|u|p dx.

In particular u 6≡ 0 and

EV (u) ≤ λ1(V,m)

∫
Ω

m(x)|u|p dx. (5.2)

Assume first that α(V,m) > 0. Then (5.2) implies that
∫

Ω
m(x)|u|p dx 6= 0. In fact

we have
∫

Ω
m(x)|u|p dx > 0 otherwise, by taking v = u/

(
−
∫

Ω
m(x)|u|p dx

)1/p ∈
M− we will have from the definition of λ−1(V,m) that

−λ−1(V,m) ≤ EV (v) =
EV (u)

−
∫

Ω
m(x)|u|p dx

=⇒ λ−1(V,m)

∫
Ω

m(x)|u|p dx ≤ EV (u)

which, jointly with the inequality (5.2) will give λ−1(V,m) ≥ λ1(v,M), a contra-
diction. Since we have proved that

∫
Ω
m(x) |u|p dx > 0 we then have, by definition

of λ1(V,m), that

λ1(V,m)

∫
Ω

m(x) |u|p dx ≤ EV (u)

and therefore λ1(V,m)
∫

Ω
m(x) |u|p dx = EV (u). Thus, u is an eigenfunction as-

sociated with the principal eigenvalue λ1(V,m) and it must be either positive a.e.
or negative a.e. in Ω. On the other hand, if for each k we denote N+

k := {x ∈
Ω : uk(x) > 0} and N−k := {x ∈ Ω : uk(x) < 0}, by Theorem 5.1, we obtain the

existence of a constant c > 0 such that |N+
k | > c and |N−k | > c. However, if we

assume that u > 0 (the case u < 0 is analogous) it follows from the convergence in
measure that |N−k | → 0, which is a contradiction.

Assume now that α(V,m) = 0. We claim that
∫

Ω
m(x)|u|p dx = 0. Indeed, if for

instance
∫

Ω
m(x)|u|p dx > 0 then we will have, by definition of λ1(V,m), that

λ1(V,m)

∫
Ω

m(x)|u|p dx ≤ EV (u)

that, jointly with equation (5.2) will give that the infimum λ1(V,m) is achieved, a
contradiction. If

∫
Ω
m(x)|u|p dx < 0 then we will have instead

λ−1(V,m)

∫
Ω

m(x) |u|p dx ≤ EV (u)

and, since λ1(V,m) = λ−1(V,m), we again get a contradiction. We have just
proved that

∫
Ω
m(x)|u|p dx = 0. Hence, by equation (5.2) EV (u) ≤ 0, it must be

EV (u) = 0 by the definition of α(V,m) = 0. Thus u is an eigenfunction associated
with λ1(V,m) so u must be either > 0 a.e. or < 0 a.e. in Ω and we obtain a
contradiction as in the previous case. �

6. Regularity of the principal eigenvalues with respect to s

Now we study the behaviour of the first eigenvalues λ±1(V,m) with respect to s.
As we want to vary s, then to simplify the study, we now impose conditions on V and
m which are independent of s. So we assume V,m in Lr(Ω) with r > max{1, Np }.

We start by proving a lemma in the behaviour of sequences (1 − s)[us]pW s,p(RN )

as s varies.
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Lemma 6.1. Let s0 ∈ (0, 1] and (sn)n be a sequence in (0, 1) converging to s0. Let

(un) be a sequence of functions such that, for all n ∈ N, un ∈ W̃ sn,p(Ω) and

(1− sn)[un]p
W sn,p(RN )

≤ L

for some L ≥ 0. Let q ∈ [1, p∗). Then there exists a function u ∈ W̃ s0,p(Ω) such
that, up to a subsequence,

(1) [u]p
W s0,p(RN )

≤ lim infn→∞[un]p
W sn,p(RN )

if s0 < 1 and∫
Ω
|∇u|p dx ≤ lim infn→∞(1− sn)K[un]p

W sn,p(RN )
if s0 = 1.

(2) un → u in Lq(Ω) and un → u in Lp(Ω).

Proof. First of all, by Poincaré’s inequality,

‖un‖pp ≤ C(N, p)(diam(Ω))snp(1− sn)[un]p
W sn,p(RN )

≤ C(N, p)(diam(Ω)snpL ≤ C

for some constant depending only N, p, diam(Ω), s0 and L. Assume first that s0 < 1
and let ε > 0 be small enough. Observe that since q < p∗ it follows that q < p∗s0−ε
if ε is small enough. Hence, if s0− ε < sn, using property 2 of Proposition 2.1, and
the previous estimate we have

[un]p
W s0−ε,p(RN )

≤ [un]p
W sn,p(RN )

+ C(N, p)
( 1

(s0 − ε)p
− 1

snp

)
≤ C (6.1)

for some C independent of n. Then there exists u ∈ W̃ s0−ε,p(Ω) and a subsequence,
still denoted by (un)n, such that

un ⇀ u in W s0−ε,p(RN ),

un → u in Lq(Ω),

un → u in Lp(Ω),

where we have used the compact imbedding of W 1−ε,p(Ω) into Lq(Ω) and into
Lp(Ω). Hence for all ε > 0, using (6.1),

[u]p
W s0−ε,p(RN )

≤ lim inf
n→∞

[un]p
W s0−ε,p(RN )

≤ lim inf
n→∞

[un]p
W sn,p(RN )

+ C(N, p)
( 1

(s0 − ε)p
− 1

s0p

)
.

Letting ε→ 0 and using Fatou’s lemma the conclusion 1 is reached.
If s0 = 1, by Lemma 3.10 of [5] we infer the existence of u ∈W 1,p

0 (Ω) such that,
up to a subsequence, un → u in Lp(Ω). Moreover, using property 3 of Proposition
2.2 and the hypothesis we obtain that, since 1− ε < sn if n is large enough,

ε[un]pW 1−ε,p(Ω) ≤ (1− sn)2(1−sn+ε)p diam(Ω)(sn−1+ε)p[un]pW sn,p(Ω) ≤ C (6.2)

for some C independent of n. Thus, the sequence (un) is bounded in W 1−ε,p(Ω) .

Hence there exists u ∈ W̃ 1−ε,p(Ω) and a subsequence, still denoted by (un)n, such
that

un ⇀ u in W 1−ε,p(Ω),

un → u in Lq(Ω),

un → u in Lp(Ω).

Thus, letting n→∞ in (6.2) and using that un ⇀ u in W 1−ε,p(RN ) we obtain

ε[u]pW 1−ε,p(Ω) ≤ lim inf
n→∞

ε[un]pW 1−ε,p(Ω) ≤ 2εp diam(Ω)εp lim inf
n→∞

(1− sn)[un]p
W sn,p(RN )

.
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Finally, letting ε→ 0 and using Corollary 2 of [7] we obtain the result of 1. �

Our next result concerns the hypothesis on α(V,m) that allow us to have prin-
cipal eigenvalues. As we want to study the sign of α(V,m) as s varies, for s ∈ (0, 1]
let us write

α(s) = inf
{

(1− s)K[u]p
W s,p(RN )

+

∫
Ω

V (x)|u|p dx : u ∈ W̃ s,p(Ω), ‖u‖p = 1, and∫
Ω

m(x)|u|p dx = 0
}

if s 6= 1, and

α(s) = inf
{∫

Ω

|∇u|p dx+

∫
Ω

V (x)|u|p dx : u ∈W 1,p
0 (Ω), ‖u‖p = 1 and∫

Ω

m(x)|u|p dx = 0
}

if s = 1.

Proposition 6.2. Let s0 ∈ (0, 1] and assume that α(s0) > 0. Then there exists
ε > 0 such that α(s) > 0 for all s ∈ (s0 − ε, s0 + ε) ∩ (0, 1].

Proof. Assume by contradiction that there exists a sequence sn → s0 and a function

un ∈ W̃ sn,p(Ω) such that

(1− sn)K[un]p
W sn,p(RN )

+

∫
Ω

V (x)|un|pdx ≤ 0, ‖un‖p = 1,

∫
Ω

m(x)|un|p dx = 0.

Let tn = ‖un‖r′p and distinguish two cases.
Case (a): the sequence (tn)n is bounded. Then the sequence (1−sn)K[un]p

W sn,p(RN )

is bounded.
Case (b): the sequence (tn)n tends to +∞. Then taking vn = un/tn we have

(1− sn)K[vn]p
W sn,p(RN )

+

∫
Ω

V (x)|vn|p dx ≤ 0

and the sequence (1−sn)K[vn]p
W sn,p(RN )

is bounded. Let us write zn = un if case (a)

occurs and zn = vn if case (b) occurs. Let us now distinguish the cases 0 < s0 < 1
and the case s0 = 1.
1. Case 0 < s0 < 1. It follows from Lemma 6.1 with q = r′p that there exists

z ∈ W̃ s0,p(Ω) such that, in case (a),

(1− s0)K[z]p
W s0,p(RN )

+

∫
Ω

V (x)|z|pdx

≤ lim inf
n→∞

(
(1− sn)K[zn]p

W sn,p(RN )
+

∫
Ω

V (x)|zn|pdx dx
)
≤ 0, ‖z‖p = 1,

and the same inequality holds in case (b) with ‖z‖r′p = 1. Since
∫

Ω
m(x)|z|p = 0

we have a contradiction with α(s0) > 0.
2. Case s0 = 1. We obtain similarly that the sequence (1 − sn)K[zn]p

W sn,p(RN )

is bounded, with either ‖zn‖p = 1 or ‖zn‖r′p = 1. By Lemma 6.1 there exists

z ∈W 1,p
0 (Ω) such that∫

Ω

|∇u|p dx+

∫
Ω

V (x)|z|p dx ≤ lim inf
n→∞

(1−sn)K[zn]p
W sn,p(RN )

+

∫
Ω

V (x)|zn|p dx ≤ 0.
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Notice that again ‖z‖q = 1, with either q = p or q = r′p, and
∫

Ω
m|(x)z|p = 0.

Thus α(1) ≤ 0, a contradiction. �

Let us now write

λ±1(s) := λ±1(V,m) = ± inf
{
K(1− s)

∫
R2N

|u(x)− u(y)|p dx dy
|x− y|N+sp

+

∫
Ω

V |u|pdx :

u ∈ W̃ s,p(Ω),

∫
Ω

m|u|pdx = ±1
}

and

λ±1 := ± inf
{∫

Ω

(
|∇u|p + V (x)|u|p

)
dx : u ∈W 1,p

0 (Ω),

∫
Ω

m(x)|u|pdx = ±1
}
.

We have the following result that generalizes, for indefinite weights, [10, Lemma
4.12].

Proposition 6.3. Assume that for some s0 ∈ (0, 1], α(s0) > 0. Then

lim
s→s0

λ±1(s) = λ±1(s0).

Proof. We only give the proof for λ1(s). By Proposition 6.2 α(s) > 0 for s close to
s0, so λ1(s) is a principal eigenvalue associated with problem (1.1). Let (sn)n be a
sequence in (0, 1] converging to s0 ∈ (0, 1]. Let us show that

lim
n→+∞

λ1(sn) = λ1(s0). (6.3)

1. Case s0 ∈ (0, 1). By definition of the first eigenvalue, we know that if ϕ ∈ C∞0 (Ω)
and

∫
Ω
m(x)|ϕ|p = 1, then

λ1(sn) ≤ K(1− sn)

∫
R2N

|ϕ(x)− ϕ(y)|p

|x− y|N+snp
dx dy +

∫
Ω

V (x)|ϕ|p dx

for all n ∈ N. Therefore, by dominated convergence theorem, we obtain lim supn→+∞ λ1(sn) ≤
λ1(s0). To prove the reverse inequality let (snk)k be a subsequence of (sn)n such
that

lim
k→+∞

λ1(snk) = lim inf
n→+∞

λ1(sn).

Let 0 ≤ unk ∈ W̃ sk,p(Ω) be an eigenfunction associated with λ1(snk) such that∫
Ω
m|unk |p dx > 0 and

[unk ]p
W
snk

,p
(RN )

= 1,

then in particular, using unk as test function in equation (1.1) for λ = λ(snk), we
have

λ1(snk)

∫
Ω

m(x)|unk |pdx = K(1− snk) +

∫
Ω

V (x)|unk |pdx. (6.4)

By Lemma 6.1 there exists u ∈ W̃ s0,p(Ω) such that, up to a subsequence,

[u]p
W s0,p(RN )

≤ lim inf
k→∞

[unk ]p
W
snk

,p
(RN )

= 1, unk → u in Lr
′p(Ω) and unk → u in Lp(Ω).

(6.5)
Hence, using (6.4) we find on the one hand that

lim inf
k→∞

λ1(snk)

∫
Ω

m(x)|u|pdx = K(1− s0) +

∫
Ω

V (x)|u|p dx (6.6)
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and, on the other hand using (6.4) and (6.6),

K(1− s0)[u]p
W s0,p(RN )

+

∫
Ω

V (x)|u|p dx

≤ K(1− s0) + lim inf
k→∞

∫
Ω

V (x)|unk |p dx

= lim inf
k→∞

λ1(snk)

∫
Ω

m(x)u|p dx.

(6.7)

It remains to prove that
∫

Ω
m(x)|u|p dx > 0 to conclude from the previous inequality

that

λ1(s0) ≤ lim inf
k→∞

λ(snk)

(notice that the function v = u/
( ∫

Ω
m(x)|u|p dx

)1/p
will be then admissible in the

definition of λ1(s0)) and the proof of the proposition is completed.
To prove that

∫
Ω
m(x)|u|p dx > 0, remember first that

∫
Ω
m(x)|unk |p dx > 0 for

all k ∈ N and assume by contradiction that
∫

Ω
m(x)|u|p dx = 0. Using (6.6) we

infer that u 6≡ 0 and, using (6.7) we obtain

K(1− s0)[u]p
Ws0,p(RN )

+

∫
Ω

V (x)|u|p dx ≤ 0,

a contradiction with the hypothesis α(s0) > 0.
2. Case s0 = 1. Let ϕ ∈ C∞0 (Ω) such that

∫
Ω
m(x)|ϕ|p dx = 1. Then for any n ∈ N,

λ1(sn) ≤ K(1− sn)

∫
R2N

|ϕ(x)− ϕ(y)|p

|x− y|N+snp
dx dy +

∫
Ω

V (x)|ϕ|pdx.

Thus, by Proposition 2.2,

lim sup
n→+∞

λ1(sn) ≤
∫

Ω

|∇ϕ|pdx+

∫
Ω

V (x)|ϕ|pdx.

As ϕ is arbitrary, we have

lim sup
n→+∞

λ1(sn) ≤ λ1(1).

As in the previous case, let us prove that

lim inf
n→+∞

λ1(sn) ≥ λ1(1).

Let (snk)k be a subsequence of (sn)n such that

lim
k→+∞

λ1(snk) = lim inf
n→+∞

λ1(sn). (6.8)

Let uk be an eigenfunction associated with λ1(snk) such that

K(1− sk)[uk]p
Wsk,p(RN )

= 1. (6.9)

Then, as unk is an eigenfunction we have

λ1(snk)

∫
Ω

m(x)|unk |pdx = K(1− sk)[unk ]p
Wsk,p(RN )

+

∫
Ω

V (x)|unk |pdx

= 1 +

∫
Ω

V (x)|unk |pdx.
(6.10)
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By Lemma 6.1 there exists u ∈W 1,p
0 (Ω) such that∫

Ω

|∇u|p dx+

∫
Ω

V (x)|u|p dx

≤ lim inf
k→∞

(
(1− snk)K[unk ]p

W sk,p(RN )
+

∫
Ω

V (x)|unk |p dx
)

= lim inf
k→∞

λ1(snk)

∫
Ω

m(x)|u|pdx.

(6.11)

Thus, if
∫

Ω
m(x)|u|p dx > 0, we can conclude, rescaling the previous inequality, that

λ1 ≤ lim inf
k→+∞

λ1(snk)

and the proof of the proposition is complete. To prove that
∫

Ω
m(x)|u|p dx >

0 we argue as before using now equations (6.10), (6.11) and that α(1) > 0 by
hypothesis. �

7. Appendix A

The following two results are, essentially, consequence of the convexity of the
function t 7→ |t|p−2t.

Lemma 7.1. A discrete version of Picone’s inequality [1] Let p ∈ (1,+∞). For
all functions ξ and φ defined on RN such that ξ > 0, and φ > 0, we have

L(ξ, φ) > 0 on RN × RN

with

L(ξ, φ)(x, y) := |ξ(y)−ξ(x)|p−|φ(y)−φ(x)|p−2 (φ(y)− φ(x))
( ξp(y)

φ(y)p−1
− ξp(x)

φ(x)p−1

)
,

for all (x, y) ∈ RN × RN . Moreover, we have

L(ξ, φ) = 0 ⇐⇒ ∃k ∈ R s.t. φ = kξ.

Proof. For sake of completeness we give the proof of this inequality. It uses the
following convexity inequality due to [1]. Fix x, y in RN and put a = ξ(y), b = ξ(x),

t = φ(x)
φ(y) and assume that 0 < b < a. It suffices to prove that for any p > 1 and

0 < t < 1, one has

|a− b|p ≥ ap(1− t)p−1 − bp
(1

t
− 1
)p−1

which is equivalent to say that

(1− t)
( |a− b|p

(1− t)p
)

+ t
bp

tp
> ap

which follows from the convexity of the function f(x) = |x|p. Notice that the
equality on this inequalities arrives if and only if t = b/a, that is, L(ξ, φ)(x, y) = 0
for all x, y ∈ RN if and only if ξ/φ = cte. �

Let us quote without proof the following second estimate.

Lemma 7.2 ([6, Lemma A1]). Let 1 < p <∞ and g : R→ R be a convex function,
then

|a− b|p−2(a− b)
[
A|g′(a)|p−2g′(a)−B|g′(b)|p−2g′(b)

]
≥ |g(a)− g(b)|p−2

(
g(a)− g(b)

)(
A−B

)
,

(7.1)
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for every a, b ∈ R, and every A,B ≥ 0.

8. Appendix B

For completeness we give the following regularity result for the nonlocal non-
homogeneous problem

(−∆p)
su+ V (x)|u|p−2u = f(x) in Ω, u = 0 in RN \ Ω. (8.1)

Proposition 8.1. Assume sp < N , f ∈ Lq(Ω), V ∈ Lq(Ω) for some q ≥ N/sp,

and u ∈ W̃ s,p(Ω) is a solution of (8.1). Then for any t ∈ [1,+∞), u ∈ Lt(Ω) and
there exists a constant Ct depending on t and on Ω, ‖V ‖N/sp, ‖f‖N/sp, N , s, p
such that

‖u‖Lt(Ω) ≤ Ct. (8.2)

Proof. We borrow some ideas from [6, 18]. For every 0 < ε � 1 and any positive
function ϕ ∈ C∞0 (Ω) we define the smooth convex Lipschitz function

gε(t) = (ε2 + t2)1/2,

and choose the test function ψ = ϕ|g′ε(u)|p−2g′ε(u) in the variational formulation of
(8.1). Then we obtain

K(1− s)
∫
R2N

∣∣u(x)− u(y)
∣∣p−2(

u(x)− u(y)
)

|x− y|N+sp

(
ϕ(x)|g′ε

(
u(x)

)
|p−2g′ε

(
u(x)

)
− ϕ(y)|g′ε

(
u(y)

)
|p−2g′ε

(
u(y)

))
dx dy

≤
∫

Ω

|f(x)ϕ(x)|g′ε
(
u(x)

)
|p−2g′ε

(
u(x)

)
|dx

+

∫
Ω

|V (x)|u(x)|p−1ϕ(x)|g′ε
(
u(x)

)
|p−2g′ε

(
u(x)

)
|dx.

By using (7.1) with a = u(x), b = u(y), A = ϕ(x) and B = ϕ(y) we have

K(1− s)
∫
R2N

∣∣gε(u(x)
)
− gε

(
u(y)

)∣∣p−2(
gε
(
u(x)

)
− gε

(
u(y)

))
|x− y|N+sp

(
ϕ(x)− ϕ(y)

)
dx dy

≤
∫

Ω

|f(x)|ϕ(x)|g′ε
(
u(x)

)
|p−1dx+

∫
Ω

|V (x)‖u(x)|p−1ϕ(x)|g′ε
(
u(x)

)
|p−1dx.

By observing that gε converges to g(t) := |t| as ε→ 0, |g′ε(t)| ≤ 1 and using Fatou’s
Lemma, we obtain

K(1− s)
∫
R2N

∣∣∣∣u(x)
∣∣− ∣∣u(y)

∣∣∣∣p−2(∣∣u(x)
∣∣− ∣∣u(y)

∣∣)
|x− y|N+sp

(
ϕ(x)− ϕ(y)

)
dx dy

≤
∫

Ω

|f(x)|ϕ(x)dx+

∫
Ω

|V (x)‖u(x)|p−1ϕ(x)dx.

(8.3)

By the density of C∞0 (Ω) in W̃ s,p(Ω) (see Proposition 2.2), the same inequality

remains true for any positive ϕ ∈ W̃ s,p(Ω).
For k > 0 and t ≥ p we define uk and ϕk as follows:

uk := min{|u|, k} and ϕk(u) :=
tp

pp(t− p+ 1)
ut−p+1
k .
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By definition, ϕk(u) ∈ W̃ s,p(Ω), and then by relation (8.3), we can write

K(1− s)
∫
R2N

∣∣∣∣u(x)
∣∣− ∣∣u(y)

∣∣∣∣p−2(∣∣u(x)
∣∣− ∣∣u(y)

∣∣)
|x− y|N+sp

(ϕk(u)(x)− ϕk(u)(y)) dx dy

≤
∫

Ω

|f(x)|ϕk(u(x))dx+

∫
Ω

|V (x)‖u(x)|p−1ϕk(u(x))dx.

(8.4)
For M > 0, set ΩM := {x ∈ Ω : |V (x)| > M}. We have∫

Ω

|V (x)‖u|p−1ϕk(u)dx ≤M
∫

Ω\ΩM
|u(x)|p−1|ϕk(u)|dx

+ ‖V ‖LN/sp(ΩM )

(∫
Ω

‖u(x)|p−1ϕk(u)|N/(N−sp)dx
)N−sp/N

.

Moreover, thanks to [4, Lemma C.2] we have∣∣∣∣u(x)
∣∣− ∣∣u(y)

∣∣∣∣p−2(∣∣u(x)
∣∣− ∣∣u(y)

∣∣)(ut−p+1
k (x)− ut−p+1

k (y))

≥ (t− p+ 1)pp

tp
∣∣uk(x)t/p − uk(y)t/p

∣∣p. (8.5)

Thus, by (8.4) and (8.5), the relation

(1− s)K
∫
R2N

∣∣uk(x)t/p − uk(y)t/p
∣∣p

|x− y|N+sp
dx dy

≤ Mtp

(t− p+ 1)pp

∫
Ω

|u(x)|p−1|ϕk(u(x))|dx

+
tp‖V ‖LN/sp(ΩM )

(t− p+ 1)pp

(∫
Ω

‖u(x)|p−1ϕk(u(x))|p
∗
s/pdx

)p/p∗s
+

tp

(t− p+ 1)pp

∫
Ω

|f(x)|ϕk(u(x))dx

holds and by the Sobolev’s embedding of W̃ s,p(Ω) into Lp
∗
s (Ω), there exists a con-

stant SN,s,p such that

SN,s,p

(∫
Ω

uk(x)
tp∗s
p

)p/p∗s
≤ (1− s)K

∫
R2N

∣∣uk(x)t/p − uk(y)t/p
∣∣p

|x− y|N+sp
dx dy

≤ Mtp

(t− p+ 1)pp

∫
Ω

|u|p−1|ϕk(u)|dx+
tp‖V ‖LN/sp(ΩM )

(t− p+ 1)pp

(∫
Ω

‖u|p−1ϕk(u)|p
∗
s/pdx

)p/p∗s
+

tp

(t− p+ 1)pp

∫
Ω

|f(x)|ϕk(u)dx.

If we choose M such that ‖V ‖LN/sp(ΩM ) ≤
(t−p+1)ppSN,s,p

2tp and use the definition
of ϕk and Hölder’s inequality for the last term of right-hand side of the previous
inequality, we obtain

SN,s,p
( ∫

Ω

|uk(x)|
tp∗s
p
)p/p∗s ≤ Mtp

(t− p+ 1)pp

∫
Ω

|u(x)|tdx+
SN,s,p

2

(∫
Ω

|uk(x)|
tp∗s
p

)p/p∗s
+

tp

(t− p+ 1)pp
‖f‖LN/sp(Ω)

(∫
Ω

|u(x)|p
∗
s(t+1−p)/pdx

)p/p∗s
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and (∫
Ω

|u(x)|p
∗
s(t+1−p)/pdx

)p/p∗s
≤ |Ω|p(p−1)/p∗st

(∫
Ω

|u(x)|tp
∗
s/p
)p(t+1−p)/tp∗s

.

Then for all t = p we obtain

(t− p+ 1)ppSN,s,p
2tp

(∫
Ω

|uk(x)|tN/(N−sp)
)(N−sp)/N

≤M
∫

Ω

|u(x)|tdx

+ ‖f‖LN/sp(Ω)|Ω|p(p−1)/p∗st
(∫

Ω

|u(x)|tN/(N−sp)
) (t+1−p)(N−sp)

tN

.

(8.6)

Let us set t0 = p. Since by definition, u ∈ Lt0(Ω), it follows that u ∈ Lt0N/(N−sp)(Ω),
and thus, thanks to Fatou’s Lemma we have

(t0 − p+ 1)ppSN,s,p
2tp0

‖u‖t0
Lt0N/(N−sp)

≤M‖u‖t0Lt0 (Ω) + |Ω|p(p−1)/p∗st0‖f‖LN/sp‖u‖
t0+1−p
Lt0N/N−sp

.

Therefore using Young’s inequality we obtain

‖u‖Lt0 ≤ C1,t0‖u‖Lt0 (Ω) + C2,t0‖f‖
1/(p−1)

LN/sp
,

where C1,t0 and C2,t0 depend on M , N , s, p, t0, and |Ω|.
Now if we take t1 = t0N

N−sp ≥ p and since u ∈ Lt1(Ω), it follows that u ∈
Lt1N/(N−sp)(Ω) and we let k → +∞, by Fatou’s Lemma, and using Young’s in-
equality we obtain

‖u‖Lt1N/(N−sp) ≤ C1,t1‖u‖Lt(Ω) + C2,t1‖f‖
1/(p−1)

LN/sp
,

where C1,t1 and C2,t1 depend on M , N , s, p, t1, and |Ω|.
Thus as a consequence, if we define the sequence (tl)l∈N by

t0 = p, tl =
( N

N − sp

)l
p, l ∈ N∗

we find that u ∈ Ltl(Ω) for any l ∈ N∗. Since 1 < p ≤ tl for all l ∈ N and
tl −→
l→+∞

+∞, we conclude that u ∈ Lt(Ω) for any t > 1, and (8.2) follows. �

When V ∈ Lr(Ω) and f ∈ Lr(Ω) with r > N
sp , a better estimate holds.

Proposition 8.2. Assume that V ∈ Lr(Ω) and f ∈ Lr(Ω) with r > N
sp . Let

u ∈ W̃ p,s(Ω) be a solution of (8.1). Then u ∈ L∞(Ω) and there exists C =

C
(
s, p,N,Ω, ‖f‖Lr(Ω), ‖V ‖Lr(Ω), ‖u‖Lp∗s (Ω)

)
such that

‖u‖L∞(Ω) ≤ C. (8.7)

Proof. By Proposition 8.1, u ∈ Lt(Ω) for any t > 1 and therefore V |u|p−2u ∈ Lt(Ω)
for any t ∈

(
N
sp , r

)
∩
(

1
p−1+ 1

r

,+∞
)
. Moreover, by Holder’s inequality,

‖V |u|p−2u‖Lt(Ω) ≤ ‖V ‖Lr(Ω)C (p−1)tr
r−t

.
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Thus, by replacing f by f +V |u|p−2u we can assume that V ≡ 0 in equation (8.1).
Let us assume first that u ≥ 0. For any k > 0 take uk defined as above and define
now for any α > 0,

φα,k :=
(
uk
)αp+1 ∈ W̃ s,p(Ω) ∩ L∞(Ω).

Using φα,k as test function, one obtains

K(1− s)
∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp

(
upα+1
k (x)− upα+1

k (y)
)
dx dy

=

∫
Ω

f(x)upα+1
k dx.

Thanks to Lemma 7.2 one has

K(1− s)(αp+ 1)

(α+ 1)p

∫
R2N

∣∣uα+1
k (x)− uα+1

k (y)
∣∣p

|x− y|N+sp
dx dy ≤

∫
Ω

|f(x)|upα+1
k dx

≤
∫

Ω

|f(x)|upα+1dx.

(8.8)

By Holder’s inequality we have[
uα+1
k

]
W s,p(RN )

≤
( (α+ 1)p

K(1− s)(αp+ 1)

)1/p(
‖f‖Lr(Ω)

(∫
Ω

|u|r
′(αp+1)

)1/r′)1/p

.

(8.9)

Since uα+1
k ∈ W̃ s,p(Ω), by the Sobolev’s embedding theorem there exists C1 > 0

such that

‖uk‖Lp∗s (α+1)(Ω) = ‖uα+1
k ‖

1
α+1

Lp
∗
s (Ω)
≤ C

1
α+1

1

[
uα+1
k

] 1
α+1

W s,p(RN )
.

Then, by (8.9), we obtain

‖uk‖Lp∗s (α+1)(Ω)

≤ C
1

α+1

1

( (α+ 1)p

K(1− s)(αp+ 1)

) 1
p(α+1)

(
‖f‖Lr(Ω)

(∫
Ω

ur
′(αp+1)

)1/r′) 1
p(α+1)

.

So, denoting C2 = ‖f‖Lr(Ω), we have

‖uk‖Lp∗s (α+1)(Ω) ≤ C
1

α+1

1

( C2(α+ 1)p

K(1− s)(αp+ 1)

) 1
p(α+1)

(∫
Ω

ur
′(αp+1)

) 1
pr′(α+1)

.

On the other hand there exists C3 > 0 such that( C2(α+ 1)p

K(1− s)(αp+ 1)

) 1
p
√
α+1 ≤ C3 for all α > 0.

Consequently, we obtain that

‖uk‖Lp∗s (α+1)(Ω) ≤ C
1

α+1

1 C
1√
α+1

3 ‖u‖
αp+1

(α+1)p

L(pα+1)r′ (Ω)

≤ C
1

α+1

1 C
1√
α+1

3 |Ω|
p−1

p2(1+α)2r′ ‖u‖
αp+1

(α+1)p

L(α+1)pr′ (Ω)
.

(8.10)

Choosing α = α1 in (8.10) such that (α1 + 1)pr′ = p∗s we obtain

‖uk‖Lp∗s (α1+1)(Ω) ≤ C
1

α1+1

1 C
1√
α1+1

3 |Ω|
p−1

p2(1+α1)2r′ ‖u‖
α1p+1

(α1+1)p

L(α1+1)pr′ (Ω)
.
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Next we choose α = α2 in (8.10) such that (1 + α2)pr′ = (1 + α1)p∗s and obtain

‖uk‖Lp∗s (1+α2)(Ω) ≤ C
1

1+α2
1 C

1√
1+α2

3 |Ω|
p−1

p2(1+α2)2r′ ‖u‖
α2p+1

(α2+1)p

L(α1+1)p∗s (Ω)
.

By induction, for all m ∈ N∗ we can show that

‖uk‖Lp∗s (1+αm)(Ω) ≤ C
1

1+αm
1 C

1√
1+αm

3 |Ω|
p−1

p2(1+αm)2r′ ‖u‖
1+αmp
p(1+αm)

L(1+αm−1)p∗s (Ω)
, (8.11)

where (αm)m∈N is a sequence of positive numbers defined by

α0 = 0 and (1 + αm)pr′ = (1 + αm−1)p∗s ∀m ≥ 1.

One easily see that for all m ∈ N, 1 + αm =
(
p∗s
pr′

)m
, and then, by hypothesis,

αm → +∞ as m→ +∞ since r > N
ps . Moreover we have

‖uk‖Lσm (Ω) ≤ C
β2
m

1 Cβm3 |Ω|
β4
m(p−1)

p2r′ ‖u‖δm
Lσm−1 (Ω)

,

with σm = p∗s(αm + 1), βm = 1√
αm+1

, and δm = pαm+1
(αm+1)p . Notice that σm → +∞,

βm → 0 and δm ↑ 1 as m → +∞. Letting k → +∞ and using Fatou’s lemma we
obtain

‖u‖Lσm (Ω) ≤ Cβm4 ‖u‖
δm
Lσm−1 (Ω)

, (8.12)

for some constant C4 > 0. A simple computation gives

‖u‖Lσm (Ω) ≤ C

(
βm+

∑m−1
i=1 βm−i

∏i−1
k=0 δm−k

)
4 ‖u‖

∏m
i=1 δi

Lσ0 (Ω) .

Using that δm ↑ 1 and that βm = ( r
′p
p∗s

)m/2 one can find that

m−1∑
i=1

(
βm−i

i−1∏
k=0

δm−k

)
≤

m∑
i=0

βm−i ≤
1

1− ( r
′p
p∗s

)1/2
<∞

so
‖u‖Lσm (Ω) ≤ C max

{
1, ‖u‖Lp∗s (Ω)

}
and the conclusion follows. If u changes sign one can use instead, as in Proposition
8.1, uk = max{|u|, k}. �
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