Electronic Journal of Differential Equations, Vol. 2023 (2023), No. 43, pp. 1-18.
ISSN: 1072-6691. URL: https://ejde.math.txstate.edu, https://ejde.math.unt.edu
DOI: https://doi.org/10.58997 /ejde.2023.43

SOLUTIONS OF COMPLEX NONLINEAR FUNCTIONAL
EQUATIONS INCLUDING SECOND ORDER PARTIAL
DIFFERENTIAL AND DIFFERENCE IN C?

HONG YAN XU, GOUTAM HALDAR

ABSTRACT. This article is devoted to exploring the existence and the form of
finite order transcendental entire solutions of Fermat-type second order partial
differential-difference equations

’f 0% f O2f \2 ,
2.2 1052 — 9(21,22)
<6z% 0923 tngoa—) H e tennte) =
and
’*f 9% f 82f \2 ,
822 922 - — ¢9(2)
<82% * 022 + naz1622) + (f(21 + 1,22 + 2) — f(21, 22)) e9\2),

where 8,7 € C and g(z1,22) is a polynomial in C2. Our results improve the
results of Liu and Dong [23], Liu et al. [24], and Liu and Yang [25]. Several
examples confirm that the form of transcendental entire solutions of finite order
in our results are precise.

1. INTRODUCTION

It is well known that for a positive integer m, the equation
fMm+gm=1 (1.1)
is regarded as Fermat type equation over function fields. With the help of Nevan-
linna theory [1II, [16], Montel [27], Iyer [15], and Gross [5] studied the existence
and form of the solutions of the functional equation and pointed out that for
m = 2, the entire solutions of are f(z) = cos(£(z)) and g(z) = sin(£(z)), where
¢ is an entire function, and for m > 2, there are no non-constant entire solutions
of . In 2004, Yang and Li [42] investigated by replacing g with f’ when
m = 2, and proved that the transcendental entire solution of f(2)?+ f’(z)? = 1 has
the form f(z) = Ae**/2 4+ e~ ** /2A, where A, a are non-zero complex constants.
After the development of difference Nevanlinna theory (see [4] [6]), many re-
searcher began to study the existence and form of entire or meromorphic solutions
of Fermat-type difference and differential-difference equations (see [7l 21 22| 23]
241, 25]). In 2012, Liu et al. [24] proved that the transcendental entire solutions
with finite order of the Fermat-type difference equation f(2)%+ f(z +¢)? = 1 must
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satisfy f(z) = sin(Az+ B), where B is a constant and A = (4k + 1)7/2¢, where k is
an integer. In 2019, Han and Li [I0] investigated the more general complex differ-
ence equation f(z)2 + f(z +¢)? = e¥**8 a, 3 € C, and proved that the nontrivial
meromorphic solutions of this equation are of the form de(®*+#)/2 where d € C
such that d?(1 + e*¢) = 1.

Hereinafter, we denote by z + w = (21 + w1, 22 + we) for any z = (21, 22),w =
(w1, wy) € C%  The study of several characteristics of the solutions to partial
differential equations in several complex variables is an important topic; see [I} 2]
3, [8, @, [12], 14, 18] 26, 34) [35], 36 37, [38]). It was Saleebly, who in 1999, first studied
the existence and form of entire and meromorphic solutions of Fermat-type partial
differential equations (see [30} B1L[32]). Most noticeably, Khavinson [14] proved that
any entire solution of the partial differential equation 221 + 32 = 1 must be linear,
i.e., f(21,22) = az; +bza+c, where a,b, c € C, and a?+b? = 1. Here f., and f,, are
the partial derivatives of f with respect to z; and z3, respectively. Later, Li [19] 20]
investigated on the partial differential equations with more general forms such as

31 + 22 =p, 221 + 222 = ¢, etc, where p, g are polynomials in C2. Recently, Xu
and Cao [40] extended several results from one complex variable to several complex
variables. We recall some of them here.

Theorem 1.1 ([40]). Let ¢ = (c1,¢2,...,¢,) € C*\ {(0,0,...,0)}. Then, any
non-constant entire solution f : C* — PY(C) with finite order of the Fermat-type
difference equation

fEP+flz+e)?=1 (1.2)
has the form of f(z) = cos(L(z) + B), where L is a linear function of the form
L(z) =a121 + -+ + anzy on C" such that L(c) = —n/2 — 2kw (k € Z), and B is a
constant on C.
Theorem 1.2 ([40]). Let ¢ = (c1,c2) be a constant in C2. Then any transcendental
entire solution with finite order of the Fermat-type partial differential-difference
equation

(Loe2) s plaran e =1 (1.3)

has the form f(z1,22) = sin(Az; + Bzs + H(z2)), Where A, B are constant on C
satisfying A? = 1 and Ae"A+B¢) = 1 and H(z) is a polynomial in one variable
zo such that H(z2) = H(z9 + c2). In the special case whenever co # 0, we have
f(z1,22) = sin(Az; + Bz + Constant).

In 2021, Zheng and Xu [43] obtained the following result.

Theorem 1.3 ([43]). Let c = (c1,co) € C2\{(0,0)}. Then there are no finite order
transcendental entire solutions of
FEP+[fz+e) = f(2)) =1 (1.4)
In 2022, Xu et al. [41] extended Theoremsand.by replacing 1 with e9(#1:%2)
in the right-hand side of equatlons and (L.3), and 8f(z1’z2) with a%zll’zz) +
153 %;2’22) in equation . We list some of the results here.

Theorem 1.4 ([41]). Let ¢ = (c1,c2) € C?, and let a, B be constants in C that are
not zero at the same time. If the partial differential-difference equation

af(zlvzl) 8f(21721)
(a 621 + B 622

2
) + f(21 +e1, 22 + c2)? = 912D (1.5)
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admits a transcendental entire solution of finite order, then f and g must satisfy
one of the following cases:

(i) f(z1,22) = £e29G=9) where g(z) = ¢(Bz1 — azs) and ¢ is a polynomial in
C;

(ii) g(z) must be of the form g(z) = L(z) + H(s1) + B, where L(z) is a linear
function of the form L(z) = Ai1z1 + Asze, H(s1) is a polynomial in s1 :=
Co21 — €129, A1,A2, B € C and

_ £+1 L(L(z)+H(s1)+B)
T2 = o v oA |
where £(#£ 0), A1, Aa, B € C satisfying

1 &2 1
(aco = fer)H' =0, o EQ — @Ay + B4z) = ez(Arertiaca),
(iii)
el1(2)+Hi(s1)+B1  oLa(2)+Ha(s1)+B2
21, 29) = + 7
fer, 22) 2(aAi1 + A1) 2(ada + BA2)
where Ly1(z) = A1121 + A1222 + By and La(2) = As121 + Aaozs + B, with
Aj1,Aja, Bj € C(j =1, 2), satisfy
9(2) = L1(2) + La(2) + Hi(s1) + Ha(s1) + B1 + B,
Ly(2) + Hi(s1) # La(2) + Ha(s1), (acy — Ber)H; =0

—i(aAy; + BA1)e P10 = j(ady 4 BAyp)e F2() =1,

where H;(s1) for j = 1,2 are polynomials in s1 = caz1 — ¢122.

In the same paper [41], they also explored the existence and the forms of entire
and meromorphic solutions of the partial differential difference equation

of  ,0f 2 _ _g()
(a5 +B52) + (a0 - () = e, (1.6)
where g(z) is a polynomial in C? and «, 3 are constants in C and obtained the

following result.

Theorem 1.5. [41] Let ¢ = (c1,¢2) € C%, a(#£ 0), B constants in C, and aca—Bey #
0. Let f be a finite order transcendental entire solution of the partial differential-
difference equation (1.6|), then f must satisfy one of the following cases:

(i) f(z1,22) = ¢1(Bz1 — aza), where ¢y is a finite order transcendental entire
function such that

+e39() = 61(Bz1 — azg + fer — acs) — ¢1(Bz1 — aza),
(11) g(Z) = Alzl + AQZQ + H(Sl) + B and

f(z> — Zl:* /Zl/a (A121+A222+H(51 +B dZ + G(QZQ le)
a Jo «

where e3(Arci+Azes) — 1, H(s1) is a polynomial in s1 = caz1 — 122, G is a
finite order period entire function with period (acg — fer)/a, and Ay, Ay €
C;
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(ili) g(z) = A121 + Aszo + B and

1 6%(A121+A222+B) azy — Bz
fR) =€+ ) —F—a— ——)
§ adi+fAr
where A1, Ay, B € C, G is a finite order entire period function with period

(acg — Ber)/a and £(#£ 0), A1, Aa, B € C satisfying
1621

i

—> - _ o3(Aici+Azcs).
2i§2+1(aA1+ﬂA2)+1 e N
(iv) g(z) = A1z1 + Aoz and
Li(2)+B1 L2(2)+B2 _
f(er,z2) = 5 T Ny
2(aAi + BA12)  2(aAa + SA2) e

where A1, As, B € C, G is a finite order entire period function with period
(0462—661)/01 and Ll(z) = A1121+A1920+B1 and LQ(Z) = Ag12z1+Agoz0+
By, with Aj1,Ajq, B € C(j =1, 2), satisfy

Li(z) # La(z), g(2) = L1(2) + La(2) + B1 + B,
[1—i(aAr; 4 BA)]e 1) = [1 4 i(Ag + BAg)]e 529 = 1.

r For the second-order partial differential-difference equations of Fermat type in
C?, Xu et al. [39] obtained the following important results.

Theorem 1.6. [39] Let ¢ = (c1,c2) € C? and ¢y # 0. If the difference equation
(32f (21,22)

2
922 ) +flz1+ 1,22+ ea)t = e9(z1:72) (1.7)
21

admits a finite order transcendental entire solution, then g(z) must be of the form
g(z) = L(z) + H(s1) + B, where L(z) = A1z + Aszz, H(s1) is a polynomial in
S1 1= Co21 — C122, and Ay, Ay € C. Further, f(z) must satisfy one of the following
cases:
(i)
42 +1
f(z1,22) = %e%[A121+A2Z2+B]7
where & is a non-zero complex number in C and e(A161+42¢2)/2 — A3(&? -
1)/4i(&2 +1).
(i)
A2 eLi(2)+B1 4 A2 eL2(2)+B:2
o, 20) = 22 A ,
where Ll(Z) = A1121 + A1229 + By and LQ(Z) = Ao121 + Asszo + Bs, with
Aj1,Aj2,B; € C(j =1, 2), satisfy

9(2) = L1(2) + L2(2) + By + By,
Ly(2) # La(2), —iA3eh () = iAj el = 1.

Theorems [1.3H1.6| suggest the following questions as open problems.

(1) What can be said about the existence and forms of solutions of the equation
(1.4) when the constant 1 is replaced by a function e?(*1:?2) in Theorem |1.3]’
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(2) What can be said about the existence and forms of solutions of the equation
2
(1.7) when % is replaced by more general operator % + 522;’20 +
1 1 2
n 32826!‘2 in Theorem
(3) What can be said about the existence and forms of solutions of ( and

when az:- Zf + 5 is replace by second order homogeneous hnear
partlal differential operator & f + 5 —|— n 32 82 in Theorems and

2. RESULTS

Motivated by the above questions and utilizing difference analogues of Nevan-
linna theory of several complex variables [I} [2, [3], we obtain Theorems
and [2.10] Theorem [2.1]is an extension and generalization of Theorems [T.4] and
Theorem is an extension of Theorem And Theorem is the extension
of Theorem Now we consider the second-order partial differential difference
equations

*f  0f Pf \? 2 g(z1,22)
— 21,22 1
(322 +6622+n821622) + flz1+e, 22+ c2)" =e ; (2.1)
9f  9%f DPf N2 > 9
(8 5 +6822 + 321822) + Big(f(z1 +C1722+02)—f(21722)) =9 (2.2)
and the difference equation

FEP+[f(z40) = f(2))? = 702, (2.3)
where 8,7 € C, ¢ = (c1,¢2) € C? and g(z1, 22) is a polynomial in C2.
Before we state our main results, let us first set the following.
1 1 9 9
Ay =a1 + 57](12, Ay = bas + 577(11, Az = c5 + 6ci — neics,

1
Ay = i(a% + 5&% +naraz), Ajs =2a;1 +naje, Aje=20aj2+ naji, (2.4)

Aj7 = a?l —+ 5&?2 —+ najlaﬂ, ] = ]., 2
Now we state our results as follows.
Theorem 2.1. Let ¢ = (c1,c2) € C? and g(z1, 22) be a polynomial in C2. If f(2)

be a finite order transcendental entire solution of (2.1)), then one of the following
cases occurs.

(i) f(z1,22) = ¢1(22 — az1) + P2(22 — Bz1), where ¢1, P2 are finite order tran-
scendental entire functions in C? such that

$1(2z2 — az1 + g — acy) + o222 — Bzr + c2 — fer) = tezd(1m),

a,Be€Cwitha+ 8=n, af =4.

(i1) g(z1,22) is of the form g(z1,22) = L(z) + H(s1) + B, where L(z) = a1z1 +
asze, H(s1) is a polynomial in s := coz1 — ¢129, a1,a2, B € C, and the
form of the solution is

F(1,20) = € =1 i)+ -L(e)+B)
b 2Z§ b
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where £ # 0,41, i and L(z) satisfies the relation

e%[alcl+a2c2] — 52 —1
2i(&2 4+ 1)
where ag is the coefficient of linear term of the polynomial H(s1) and A;’s
are defined in . In particular, if Aico — Ascy # 0 or Az # 0, then
H(s1) becomes linear in s.

(iii) g(z1,22) is of the form g(z1,22) = L(2)+ H(s1) + B, where L(z) = L1(2) +
LQ(Z), H(Sl) = Hl(sl) + HQ(Sl) with Ll(Z) + Hl(Sl) 75 LQ(Z) + HQ(Sl),
Li(z) = ajiz1 + ajozo, B = By + By, Hj(s1) is a polynomial in s; =
c221 —c129 for j = 1,2, By, Bo,aj; are constants in C, and the form of the
solution is

1
[A4 + (A102 — Agcl)ao + §A3ag],

flz1,20) = l[A2e(L1(Z)+H1(81)*L1(C)+Bl) + Ale(L2(Z)+H2(51)*L2(C)+B2)]
) 2i )

where L1(z) and La(z), respectively satisfy the relations

(
Ll(c) _ - 2 LQ(C) 1 2
e = —’L[A17—|—(A15CQ—A1661)CL0—|—A3GO]€ = Z[A27+(A2562—Agscl)aoo+A3a00],

ag and agg, respectively the coefficients of the linear term of the polynomials
Hi(s1) and Ha(s1), and A;;’s are defined in In particular, if A15co —
Ajgcr #£ 0 or Az # 0, then Hy becomes linear in s1. Similarly, if Assco —
Agscy # 0 or Az # 0, then Hy becomes linear in sq.

Next, we exhibit some examples in support of the Theorem

Example 2.2. Let « = 3 =1, ¢; = 2,c3 = 3 and g(2) = 4(22 — 21 + 1)%. Then, in
view of Theorem i), it can be easily seen that f(z1,292) = e(=2=2)” i5 a solution
of (2.1).

Example 2.3. Let ¢y =co =1,£ =3, =1, =2 and g(21,22) = 21 + 22 + (21 —
29)" 4+ 10, n € N. Then in view of of Theorem ii), one can easily verify that
f(z) = Selrtzat(z1=22)"+101/2 5 4 solution of (2.1)).

Example 2.4. Let  =n =4, =5,¢1 =2,c0 =3,a9 =1, L(2) = 21 — 22 and
g(z1,22) = 421 — 329. Then in view of Theorem ii)7 we can easily verify that
f(z1,20) = _%6%(421—3@) is a solution of ([2.1)).

Example 2.5. Let ¢ = (¢1,¢2) € Csuch that ¢; £ co, d =1, =2, L1(2) = 21+ 29,
Lo(z) = z1 + 229, H1(s1) = Ha(s2) = 0 and By = By = 1, and ¢(z1,22) =
221 + 329 + 2. Then in view of Theorem iii), it can be easily verified that
f(z1,22) = A[FemrT=2 T 4 Le1F222H1] g a solution of (2.1)).

Theorem 2.6. Let ¢ = (c1,c0) € C?, 6,n € C and g(z) is a polynomial in C2.
Let f(z) be a finite order transcendental entire solution of (2.2)). Then, one of the
following cases must occur.

(i) f(z1,22) = d1(22 — az1) + ¢2(22 — B21), where ¢1, ¢o are finite order tran-
scendental entire functions in C? satisfying

¢1(22 — az1 + c2 — ac1) + ¢2(z2 — Bz1 + 2 — Ber)
— ¢1(z2 — az1) — P2z — Bz1) = £e9H/2,
with o, B € C such that o+ f =n and af = 4.
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(i)

(iii)

9(21,22) = a121 + agzo + H(caz1 — ¢122) + B, where H is a polynomial in
C221 — C129 and ajcy + ascy = 4k7m', ke Z,

zZ1 zZ1
f(z1,20) = i/ / eplmzitazzatH(eami—crzo)+Bl g, )
o Jo

21/042
+ / Go(z2 — Bz1)dz1 + Gi(z2 — az1),
0

where Gg, G1 are finite order transcendental entire functions in C? satisfy-
mg

/ 1[GO(Z2 — Bz1 4 c2 — Ber) — Go(z2 — Bz1)]dz
0

+Gi(z2 —az1 + o —acy) — Gi(za — az) =0.
If yc3 + 8c3 # neica, then g(z) must be of the form g(z) = a1z +agza + B,

a1, az, B € C, and the solution has the form
f(21,22) = dp1(22 — @z1) + P2 (22 — B21)

2(§ + 571) 6%[a1z1+a222+3]
a3 + da3 + naias ’

where £(# 0) € C, a? + a2 +najas # 0, a, B are same as in (i), ¢1, b2 are
finite order transcendental entire functions in C? such that

¢1(22 — az1 + c2 — acy) + ¢a(ze — Bz1 + c2 — Ber)

= ¢1(22 — az1) + Ppa(22 — B21)

and
e%[alcl—&-azcz] — (€ — 5_1)(0’% + 60’% + 77@1@2)
4i(€+&7h)
If ye3 + 6¢2 # neyica, then g(z) must be of the form g(z) = Ly(z) + La(2) +
By + By, where Lj(z) = aj121 + ajeze with L1(z) # La(2), a;;, Bj € C and
the form of the solution is

+ 1

eLl(Z)+Bl

2(a3, + daiy + naniaiz)

f(z1,22) = d1(22 — az1) + ¢2(22 — B21) +
eL2(2)+B2

+ )
2(a3, + dazy + nagagz)

where a3, + 6a3y + nagiaze # 0, a2 + daly + najias # 0, a, B are same
as in (i), ¢1, P2 are finite order transcendental entire functions in C? such
that

$1(2z2 — az1 + ca — acy) + 222 — Bz1 + c2 — Per)
= ¢1(22 — az1) + ¢2(22 — B21)
and L1(z), La(z) satisfy the relations
el1(©) = —i(a2, 4 da2y + najarz) + 1,

el = i(a2, + a2, + nagiags) + 1.

The following examples show that the forms of solutions are precise.
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Example 2.7. Let a = 3 = —1. Choose ¢ = (c1, c2) € C? such that ¢ +co = 2kmi,
k € C. Then in view of Theorem [2.6(1), we can easily deduce that f(z1,z9) = e*11?2
is a solution of with g(z1, 22) = 2(21 + 22).

Example 2.8. Let « = 3 = 1 and £ = 2. Choose ¢ = (c1,¢c2) € C? such that
c1 # cgand co—cy = 2kmi, k € Z. Let p(20—21) = ¢1(22—21)+da(20—21) = e*27 %2
and g(z) = L(z)+1 = 21 + 222+ 1. Then, in view of Theorem [2.6[iii), we can easily
verify that f(z1,29) = e*17%2 + %e(“*z?“)/Q is a solution of (2.2)).

Example 2.9. Let 6 = 1,7 =2, ¢; = log(10—8i)/4, and ¢y = [log(1—9%) —log(1+
)]/2. Let L1(z) = 21 + 222, La(z) = —21 + 225. Then in view of Theorem iv),
we can easily deduce that f(z1, 2zp) = el ()1 /18 4 L2(:)+2 /2 i5 a solution of
with g(z1,22) = L1(2) + La(2) + 2.

Theorem 2.10. Let ¢ = (c1,¢2) € C? and g(z1, 22) be a polynomial in C2. If f
be a finite order transcendental entire solution of (2.3), then one of the following
cases must occur.

(i) g(z1,22) must be of the form g(z1,22) = L(z) + H(s) + B, where L(z) =
a1z1 + asza, H(s) is a polynomial in s := ¢a21 — €129, a1,a2, B € C and
flz1,20) = 22 FEHHETB]L - where e35() = 1,
(ii) g(z1,22) must be of the form g(z1,22) = L(z) + H(s) + B, L(z), H(s) and

B are same as (i) and

2
1
f(zh Z2) - %e%[L(Z)J’_H(S)J’_B]a
where € # 0,+¢,£1 and L(z) satisfies the relation
iz _ (1= D& +1+1i
£+1
(iii)
eL1(2)+H1(81)+Bl + eL2(2)+H2(81)+Bz
f(z1,22) = 5 ;
where L1(z) = a1121 + a1222 + By and La(2) = a2121 + ageze + Be, with
ajl,an,Bj S (C(J =1, 2), satisfy
g(zh 2’2) = Ll(Z) + LQ(Z) + Hl(Sl) + HQ(Sl) + Bl + BQ,
Li(2) + Hy(s1) # La(2) + Ha(s1), e =1—i, e =1+i

Example 2.11. Let L(z) = 21 + 229, H(s) = —7%(21 — 222)%, B =1, ¢; = 2mi
and ¢o = mi. Then in view of Theorem i), it can be shown that f(z1,22) =
o lz1+220 -7 (:1=222)*+1] ig 4 solution of [2.3), where g(2) = 21 +220 — 72 (21 —222)% +
1.

Example 2.12. Let L(z) = 21 — 23 and ¢ = (¢1,¢2) € C such that ¢; — ¢y =
(5—3i)/5. Let H(s) = (caz1 — c122)", n € N. Then in view of Theorem [2.10(ii), it
can be shown that f(z1, z0) = eilz—z2H(2z1-c122)"+2] ig 4 solution of ([2:3), where
g(z) =21 — 29+ (221 — c122)™ + 2.
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3. PROOFS OF MAIN RESULTS

Before we starting, we present some necessary lemmas which will play key role
to prove the main results.

Lemma 3.1 ([13]). Let f; #0 (j = 1,2,3) be meromorphic functions on C" such
that f1 are not constant, fi + fo + f3 =1, and such that

Z{Nz ) +2N(r, f;)} < AT(r, f;) + O(log™ T(r, ;)

holds for all r outside possibly a set with finite logarithmic measure, where A <1 is
a positive number. Then, either fo =1 or f3 =1.

Lemma 3.2 ([I7, 29, B3]). For an entire function F on C", F(0) # 0 and put
p(np) = p < oco. Then there ewist a canonical function fr and a function gp € C™
such that F(z) = fr(z)e9"*). For the special case n = 1, fr is the canonical
product of Weierstrass.

Lemma 3.3 ([28]). If g and h are entire functions on the complex plane C and
g(h) is an entire function of finite order, then there are only two possible cases:
either

(i) the internal function h is a polynomial and the external function g is of
finite order; or else

(ii) the internal function h is not a polynomial but a function of finite order,
and the external function g is of zero order.

Lemma 3.4 ([I3]). Let ap(2),a1(2),...,an(z) (n > 1) be meromorphic functions
on C™ and go(2),91(2), ..., gn(2) are entire functions on C™ such that g;(z) —gx(2)
are not constants for 0 < j < k < n. If Z?:o a;(2)e%®) =0, and ||T(r,a;) =
o(T'(r)), where T(r) = ming<jck<n T(r,e%79%) for j = 0,1,...,n, then a;(z) =0
for each j=0,1,....n

Proof of Theorem[2.1 Let f(z) be a transcendental entire solution of (2.1)). First
rewrite (2.1]) as

P(f) f(z1+c1,22 + c2) P(f) flz1r+cer, 22+ o)\
(eg(z)/Q ! e9(2)/2 ) (eg(z)/z - 09(2)/2 ) =1 (31
where P(f) = 24 4 694 4 2t

Since f is a tranbcendental entire function of finite order, in view of , we
conclude that (P(f) 4+ if(z1 + 1,20 + ¢2))/e9%)/2 and (P(f) — if(z1 + c1,22 +
¢2))/e9*)/2 have no zeros and poles. Thus, by Lemmas and there exists a
non-constant polynomial h(z) in C? such that

9% f 8% f 8% f
o2 T 5azg T Naz05 f(z1+e1, 20 + ) h(z)

69(2)/2 T eg(z)/2 =¢ ’ (3 2)
82f 82f 9%f :
922 T 682% + 0210z2 Zf(21 + 1,22 + 62) — o h(®
eg(z)/2 eg(Z)/Q - ’
We set
g\z 9g\z
1@ =2 L he), ()= L2 ) (33



10 H.Y. XU, G. HALDAR EJDE-2023/43

Therefore, in view of (3.2]) and (3.3]), we obtain that
0% f 0% f 0% f en(z) o en2(2)
5.2 T05,2 TN = ;
821 82’2 821622 2
e’Yl(Z) — e"/z(z)
21
After simple computations, it follows from the two equations of ([3.4) that
_ in(z)e'Yl(Z)_'Yl(z+c)) + Z’Q2(Z)672(Z)—’Yl(z+0) — er2(zte)—m(z+e) — 1, (3.5)

(3.4)
flz1+ci, 224+ ¢2) =

where

0;\? , 9 97;\? , 9
= (32 a2+ )
@) (321) T2 T\\es,) Tz
8’)/]' Ehj 82")/j ) .
—_— =1,2.
+ 77(82’1 82’2 62182’2 » ’
Now, we discuss two possible cases.
Case 1. Let y2(z + ¢) — y1(z + ¢) be a constant, say k € C. In view of (3.3)), we
conclude that h(z) is constant. Let & = ¢"(*) € C. Then, ([3.4) yields that
0? 0? 0?
N
23 023 021029
where D, = (§ + 5_1) /2, Dy = —i (5 — §_1) /2. Note that Dy # 0 and D? + D3 =
1

(3.6)

= D192 f(z4c) = Dy, (3.7)

If D; =0, in view of (3.7)), it follows that
02 0? 0?
SC) | g | PIC)
073 075 021029 (3.8)
f(Zl +c1,22 + 62) = ieg(z)/Q.
From the first equation of (3.8)), we obtain f(z1,22) = ¢1(22 — @z1) + Pa(22 — B21),
where ¢1, ¢o are finite order transcendental entire functions in C2, and «, 3 € C

such that o + 8 =1, a8 = §. Hence, from the second equation of (3.8]), it follows
that

$1(z2 — az1 + c2 — act) + ¢a(z2 — Bor + cz — Pey) = £e29E172),
This is the conclusion (i).
If Dy # 0, then from (3.7)), we obtain that

3(55) + 53+ (55) + 58) +(a5s 55+ 5ag)

2 821 (972% 5 82’2 TZ% " 2621 82’2 821822 (3 9)
_ D1 _1ig(a40)-g(=)
Dy

Since g(z) is a polynomial in C2, it follows from that g(z + ¢) — g(2)
must be constant. Then, ¢g(z) can be written as g(z) = L(z) + H(s1) + B, where
L(z) = a121+agz9, H(s1) is a polynomial in s; = ¢p21 —c¢129, a1, ag, B are constants
in C. Hence, it follows from that

2(5—"_571)6%[/(6) _ A4

(Alcg — AQCl)Hl + Az }HIQ +H") = (310)
2

where A;’s are defined in (2.4)).
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If A102 — AgCl =0= Ag, then from " we obtain that

-1
L@ — S=& 4

26 +¢7Y)

If Ajca — Aze; # 0 or Az # 0, then it follows from (3.10) that H' must be
constant, say ag, which is the coefficient of s; in the polynomial H(sy).
Therefore, from (3.10)), we obtain that

e%L(C) = 762 —1
2i(&241)

Hence, in either case L(z) satisfies the relation (3.11)).
Therefore, in view of the second equation of (3.7)), we obtain the form of the

solution as

1
[A4 + (A1CQ - Agcl)ao + §A3a(2)] (3.11)

f(z) = & - 16%[L(z)+H(S1)fL(c)+BL
2i

This is conclusion (ii).
Case 2 Let v2(z + ¢) — 71(2 + ¢) be non-constant. Then in view of (3.5]), it follows
that Q1(z) and Q2(z) both can not be zero at the same time.

If Q1(2) =0 and Q2(z) #Z 0, then (3.5) yields that

Z'QQ(Z)BW(Z)_’“(Z""C) _ e’Yz(z+c)—'yl(z+c) —1

In view of the above equation, it follows that

1 1
— — ¥2(2) =11 (z+¢)
N(Ty er2(z+c)—y1(z+c) + 1) - N(T, Q2(Z)e'y2(z)—’y1(z+c)) - S(ﬂ € )

Also, notice that
N(r, 672(2+C)—71(Z+0)) — 5'(7«7 672(2+C)—71(2+c))’

1
_ y2(2+e)—71(2+c)
N(r, 672(2_’_6)_71(2_’_6)) = S(r,e 2 1 )

By the second main theorem of Nevanlinna for several complex variables, we obtain

— _ 1
2 (2+¢) = () 2 (2+¢) = ()
T(r’e ) =N (T’e ) +N (’"’ 6’72(2+C)—’Y1(2+C)>
1

T er2(zte)=yi(zt+e) 4 ]
< S(n e”/z(erc)*”/l(erc)) + S(T7 e'y2(z)—71(z+c)> ’

+ N(r ) +S (r, e”z(z“)*”l(”c))

This implies that v5(z 4+ ¢) — v1(z 4 ¢) is constant, which is a contradiction.
Similarly, we can get a contradiction for the case Q1(z) Z 0 and Q1(z)
Hence, Q1(z) # 0 and Q2(z) # 0.
Since 71(z) and v(z) are polynomials in C? and (2 + ¢) — 1 (2 + ¢) is non-
constant, applying Lemmato the equation , we obtain that either —iQ), (z)e”l(z)’“(z*‘:) =
1, or iQq(z)er()—n(zte) =1,
If

If
e

—iQy (2)en )t — 1 (3.12)
then from ({3.5)), it follows that
iQq(z)er2(F) 712 Fe) — 1, (3.13)
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As 71(z) and 7»(z) are polynomials, in view of and (3.13)), we conclude that
7 (2) — 71(z + ¢) and ¥2(z) — y2(z + ¢) both are constants in C, and hence we
obtain that v1(z) = L1(z) + H1(s1) + B1 and va2(z) = La(z) + Ha(s1) + Ba, where
L;j(z) = aj1z1 + ajoza, Hj(s1) is a polynomial in s; = cp21 — ¢122, aj1, a2, B1, Bo
are constants in C for j = 1,2. Note that Lq(z) + Hi(s1) # La(z) + Ha(s1).
Otherwise, v2(z + ¢) — 71(z + ¢) would become constant, a contradiction to our
assumption. Hence, the form of the polynomial g(z) is g(z) = L(z) + H(s1) + B,
where L(z) = L1(2) + La(2), H(s1) = H1(s1) + Ha(s1) and B = B; + Bs.
Therefore, in view of and , we obtain that

(Aises — Areer) Hi + A3(H? + HY) = ie"1 () — Ay,

) . (3.14)
(A25C2 — AQﬁCl)Hé + Ag(Hé + Hél) = —ie 2(e) _ A27,
where A;;’s are defined in (2.4).
Then, by similar arguments as in Case 1, we obtain from ([3.14)) that
Ll(c) — A _ 2
e = —i |A17 + (Aisc2 — Areer)ao + Azag|
[ ) 0] (3.15)

el2(®) = i[Agy + (Assca — Agger)ago + Azaly),

where ag and agg, respectively the coefficients of the linear term of the polynomials
Hl(Sl) and HQ(Sl).
Therefore, in view of the second equation of (3.4), we obtain

1

1) =5 (€L1<z)+H1(s1)—L1(c>+Bl _ 6L2(2)+H2(81)—L2(0)+Bz)7

where L;(c) and Ls(c) can be found from . This is conclusion (iii).
If iQy(2)e?(*) =711 (#+¢) = 1  then it follows from equation ([3.5)) that

—iQ1(z )e”l —7v2(z+e) —q

Since 71 (z) and ~2(2) are both polynomials in C2, it follows that y2(2) —y1(z+¢) =
m and v1(z) —y2(z+c¢) = 12, where 71,12 € C. ThlS implies that v, (2) —y1(2+¢) =
v2(2) = y2(z + ¢) = m1 + 12. Therefore, we can write v;(z) = L(2) + H(s1) + ¢ and
v2(2z) = L(2) + H(s1) 4+ (2. But, then we obtain ya(z+¢) —n(z+¢) =G — (1, a
constants, which is a contradiction. ([

Proof of Theorem[2.6. Let f(z) be a transcendental entire solution of the equation

(2.2). First rewrite (2.2)) as

P(f)  flz+¢)—f(2)\/s P(f)  flz+¢)— f(2)
(eg<2>/2 ETEYE )(eg<z>/2_’ o022 ):1, (3.16)
where
82
Py = af+5a£+ azlng'

Since f is a transcendental entire function of finite order, in view of (3.16), we

conclude that (P(f)+i(f(z+¢)~f(2)))/e?)/? and (P(f)=i(f(z+c) = f(2))) /eI

have no zeros and poles. Thus, by Lemmas [3.2] and there exists a non-constant
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polynomial A(z) in C? such that

d*f *f 3*f
az% + 5az§ + nazlazz + Zf(Z + C) — f(Z) - eh(Z)
e9(2)/2 e9(2)/2 - ’ (3.17)
O°f 4 §Of 4 O°f '
6z§ Bz§ nazlazz o f(Z + C) - f(Z) o —h(Z)
ca(2)/2 ez ¢
We set » )
g\z g\z
v1(2) = — + Rh(z), 7(z)= R h(z). (3.18)
Then, in view of (3.17)) and (3.18]), we obtain that
2 2 2
aif + 5ﬂ n 8 f — 1[671(2) + 672(2)]
022 072 021029 2 (3.19)

1
Fle+ )= f(2) = ool — )
i
After simple computations, it follows from the two equations of (3.19)) that

[1_Z'Ql(z)]e’Yl(Z)—’Yl(Z'FC))+[1_|_Z'Q2(Z)]e’72(2)—’>’1(2+0)_e’Y2(Z+C)—’Yl(Z+C) =1, (3.20)

where Q1(z) and Q2(z) are defined in (3.6)). Now we consider two possible cases.
Case 1. Let y2(z +¢) —v1(z+¢) = k € C. In view of (3.18), we conclude that

h(z) is constant. Set e® = ¢ € C. Then (3.19) yields that

f(z4¢) = f(z) = Dae3)/2 (3.21)

2 2 2
where Dy = $(£+&71), Dy = 5 (€ — £7't). Note that D + D3 = 1.
Subcase 1.1. Let D; = 0. Therefore, it follows from that
) )

(3.22)

82% 821 822 o

2
2
J(z+0) = () = et
Now, in view of the first equation of , we obtain that
[(z1,22) = d1(22 — az1) + d2(22 — B21),

where ¢1, ¢y are finite order transcendental entire functions in C?, and «, 3 are
constants in C such that o + 5 =7 and af = 4.
In view of the second equation of ([3.22), we obtain that
¢1(22 — az1 + o — acy) + ¢a(z2 — Bzy +c2 — Per) — ¢1(z2 — az1) — ¢a(22 — f21)
_ ebataa),

This is conclusion (i).
Subcase 1.2. Let Dy = 0. Therefore, it follows from (3.21)) that
aZf(Z) 82f(2) — ie%g(z)

023 021029 ' (3.23)
flz+¢) = f(z) =0.

Clearly, the second equation of (3.23)) shows that f is a periodic function of period
c. In view of the two equations in (3.23)), it follows that e2(@(=+©)=9(2)) = 1. This

IO

2
0z3
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implies that g(z1,22) = a121 + asza + H(caz1 — ¢122) + B, where H is a polynomial
in caz1 — c129 and aicy + asco = 4kmi, k € Z.

Now, in view of the results in [41], page 2178, Line 21], the first equation of
can be written as

(D +aD')(D+ BD')f(z) = +e29(), (3.24)
where D = 8Z1 D' = 072 a,ﬂe(Csuch that o + 8 =n and af = 9.
Let (D + 8D")f(z) = u(z). Then (3.24) yields that
0 0
6—“ + 82“2 = tebolanz), (3.25)
The characteristic equations of (3.25) are
dzy dzg _ du 1g(21,22)
a =0 g = '

Using the initial conditions: ¢ = 0, 21 =0, 20 = 5, and u = u(0, s) := Gy(s), with
a parameter s, we obtain the following parametric representation for the solutions
of the characteristic equations: z; = t, zo = [t + s,

zZ1 N
u(z1, 22) = :t/ e293) 2 + Go(za — B21),
0

where G is a finite order transcendental entire function in C2.
Since, we have assumed that (D + 5D’) f(z) = u(z), in view of (3.24)), it follows

that
8f7(z) 8f( ) /Zl %g(z) B
0z T 079 == 0 ¢ dz1 + Go(z2 — fz1). (3.26)

By similar arguments as above, we obtain from (3.26)) that

f(Z1,2’2 / / 82 [a1z1+azz2+H (c2z1— 0122)+B]dzldzl

+/ Go(z2 — Bz1)dz + G1(2z2 — az1),
0

where G is a finite order transcendental entire function in C2.
In view of the fact that aicy + asco = 4kni, k € 7Z, it follows from the second

equation of (3.23)) that

/ [Go(ZQ — Bz + o — 501) - GO(Z2 - ﬂzl)]d'zl
0
+ Gi(z2 —az + 2 —acy) — Gi(z2 — az) = 0.

This is the conclusion (ii).

Subcase 1.3. Let D; # 0 and Dy # 0. Then after simple calculations, (3.21)
yields that

(@Jrl(@g) )+5(322+1(8g) )+n( 0%g +1@@)

82% 0% 025 0zs 0210z 202z 0z (3.27)
_ @[e%[g(ﬁc)—g(z)] —1.
Dy

Since g(z) is a polynomial in C?, in view of (3.27) we conclude that g(z+c)—g(z) =
&, £ € C. This implies that g(z) = L1(2)+ H(s1)+ B1, where L1 (2) = a1121 +a1222,
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H(s1) is a polynomial in $1 := co21 — €122, a11,a12, B1 € C. Hence, we obtain from

B-27) that

1 1
[(a11 + 577G12)C2 — (6ar2 + Qﬁau)ﬁ]H/
(3.28)

1 2D
+ (3 + 8¢ —meiea) (§H’2 +H") = Dil[eéh(c) —1].
2

Since 3 + 6¢? # neics, in view of (3.28), we conclude that H’ is constant. This
implies that H(s1) = ags1 + bo. Hence, g(z) reduces to the form

9(z) = L(z) + B = a121 + azz2 + B, (3.29)

where a1 = ay1 + agce, az = a12 — apcy and B = By + bg.

Therefore, in view of (3.27)) and (3.29)) we obtain that

D
e%[a1c1+a202] - 471)2 (af + (Sa% + na1a2) + 1. (3.30)
1

Now, in view of the results in [41] page 2178, Line 21], the first equation of (3.21))
can be written as

(D?+06D™ +nDD')f(z) = Dyezlm=tazzth] (3.31)
where D = 8%1 and D' = 8%2. Therefore, complementary function of (3.31) is

CF. = ¢1(22 — az1) + ¢2(21 — Bz1), where ¢1, ¢o are finite order transcendental
entire functions in C?, a, 8 € C such that a4+ = n and a3 = 6. Particular integral

of (3.31) is
4D1€B/2 4D1

Pl = Y dody = %[alzlJrazzerB]
a%—i—éa%—i—nalag//e vav a%—i—éa%—i—nalage ’

where v = a121 + asz2. Hence, from (3.21)), we obtain
f(z1,22) = ¢1(22 — az1) + Pa(z2 — B21)

2(€+€_1) e%[a121+a222+3]
a? + 6a3 + nayaz '
Substituting f(z1, z2) into the second equation of (3.21)) and combining with (3.30)),
we obtain that
$1(22 — @z1 + c2 — act) + ¢2(z2 — Bz1 + c2 — Ber) = d1(22 — az1) + d2(22 — Bz1).

This is the conclusion (iii).

Case 2. Let y2(z 4 ¢) —y1(z + ¢) be non-constant. Then, obviously 1 —iQ1(z) and
1+iQ2(2) can not be identically zero at the same time. Otherwise, in view of (3.20)),
it follows that ¢72(*T¢)=71(2%¢) {5 a constant, which implies that v (z +¢) —v1 (2 +¢)
is a constant. This is a contradiction to our assumption.
If 1 —iQ1(2z) =0 and 1 +iQ2(z) £ 0, the it yields that
(14 iQo(2))e2?) — r2(zHe) _ gmlzte) = g, (3.32)

Note that v2(2) — v2(z + ¢) is non-constant. Otherwise, if y5(2) — y2(z + ¢) =
¢ € C, then yields that [(1 +iQa(2))eS — 1]en(z+e)=72(+¢) = 1. But, then
7 (z 4+ ¢) — 72(+¢) becomes a constant, which is a contradiction. Also, note that
Y2(2) — 71 (2 + ¢) is non-constant. Otherwise, in view of (3.32)), we obtain that
v1(z + ¢) — y2(+¢) is constant, which is a contradiction. Hence, in view of
and the Lemma [3.4] we can easily get a contradiction. Similarly, we can get a
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contradiction for the case 1 —iQ1(z) #Z 0 and 1 + iQ2(z) = 0. Therefore, we must
have 1 —iQ1(z) #0 and 1 +iQ2(z) # 0.
Now, in view of Lemma, we obtain from (3.20) that either

[1—iQ1(2)]e )™ mE+e) = 1 or [1 4 iQy(z)]e? )G+ =

If [1 + iQ(2)]e2*) =G+ = 1) then in view of (3:20), it follows that [1 —
iQ1(2)]en(*)=12(2+¢) = 1. Therefore, we must obtain that v5(z) — y1(z 4+ ¢) = &
and y1(z) — y2(z + ¢) = &, &1,& € C. Thus, it follows that v1(z) — y1(z + 2¢) =
v2(2) — v2(z + 2¢) = & + &. This implies that y1(z) = L(z) + H(s1) + By
and y2(z) = L(z) + H(s1) + Ba, where L(2) = ajz1 + az2e and H(sy) is a
polynomial in s; := cg21 — ¢129, a1,a9,B1, By € C. Hence, we must have that
v2(z 4+ ¢) — 71 (2 + ¢) = By — By, a constant in C, which is a contradiction to the
assumption. Therefore, we must have

[1—iQ(2)]en ) =mlFe) =1, (3.33)
In view of (3.20) and (3.33]), we obtain that
[14iQa(2)]er2)=720e4e) = 1, (3.34)

Since 1 (2) and y2(2) are polynomials in C?, from and (3:34), we can conclude
that 1 (z) — v1(z + ¢) = m1 and y2(z) — y2(z + ¢) = 12, m,n2 € C. Thus, we have
v1(z) = Li(2) + Hi(s1) + By and v2(2) = La(2) + Ha(s1) + Bz, where L;(z) =
a;121 + ajo22 and H;(s1) is a polynomial in sy := ca21 — 122, aj1,a52, B; € C for
j =1,2. Therefore, in view of , , we obtain that

[(2a11 + naia)ca — (20a12 + nayr)er|H) + (3 + 6¢2 — nerey) (H2 + HY)
= i[eLl(c) —-1] - (a%l + 5a§2 + nai1ai2).
Since ¢2 + dc¢? —ncies # 0, in view of the above equation, we conclude that Hi(sy)

is a linear polynomial in s, and thus L;(z) + Hy(s1) becomes linear in C. For the
sake of convenience, we still denote that v;(z) = L1(z) + B;. In a similar manner,

from (3.5) and (3.34), we can conclude that y2(z) = La(2) + Bs. Therefore, in view
of (3.5, it follows from ([3.33)) and (3.34)) that

ef1() = —i(a?, + 6a2, + narai) + 1,

(3.35)
el2(0) — i(agl + 6a§2 + nagiaz) + 1.

Now, in view of the results in [4I] page 2178, Line 21}, and the form of 1 (z) and
v2(2), the first equation of (3.19)) can be written as

1
(D 46D +qDD)f(2) = Gleh G754 B2OFB], - (3.36)

where D = 6%1 and D’ = 8%2.
The complementary function of (3.36) is ¢1(z2 — az1) + ¢2(21 — B21), where
¢1, ¢ are finite order transcendental entire functions in C2, o, 8 € C such that

a+ B =mnand aff = J, and the particular integral is
eLl1(z)+B1 eL2(2)+Ba

+ .
2(af; +0a3y +nanraiz)  2(a3; + daz, + nagiags)

PI =
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Hence, the form of the solution of (3.36]) is
el1(2)+B1

2(a3, + daiy +naniaz)

f(z1,22) = d1(22 — az1) + d2(22 — Bz1) +

a4 B: (3.37)

+ .
2(a3, + da3y + nagiasz)

Substituting (3.37)) into the second equation of (3.19) and combining with (3.35)),

we obtain that

$1(22 — az1 + co — acy) + ¢a(z2 — Bz1 + 2 — Ber) = ¢1(22 — az1) + Pa(z0 — B21).

This is conclusion (iv). O

Theorem [2.10| can be proved by similar arguments as in Theorem Therefore,
we omit its proof.
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