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SINGULAR p-BIHARMONIC PROBLEMS INVOLVING THE

HARDY-SOBOLEV EXPONENT

AMOR DRISSI, ABDELJABBAR GHANMI, DUŠAN D. REPOVŠ

Abstract. This article concerns the existence and multiplicity of solutions

for the singular p-biharmonic problem involving the Hardy potential and the
critical Hardy-Sobolev exponent. To this end we use variational methods com-

bined with the Mountain pass theorem and the Ekeland variational principle.

We illustrate the usefulness of our results with and example.

1. Introduction

Recently, a lot of attention has been paid to the study of problems involving
the p-Laplacian operator and the p-biharmonic operator. We refer the reader to
Alsaedi et al. [1], Cung et al. [10], Huang and Liu [15], and Sun and Wu [24, 25]. The
reason for studying these problems is their applications in fields such as quantum
mechanics, flame propagation, and traveling waves in suspension bridges; for more
applications see Bucur and Valdinoci [6], and Lazer and McKenna [16]. Problems
involving Hardy terms have been extensively investigated by several authors, see,
e.g., Bhakta et al. [3, 4], Ghoussoub and Yuan [13], and Guan et al. [14]. Various
problems involving the critical Hardy-Sobolev exponent have been widely studied,
see, e.g., Chaharlang and Razani [7], Chen et al. [9], Perera and Zou [19], Pérez-
Llanos and Primo [20], Wang [26], and Wang and Zhao [27].

In particular, Ghoussoub and Yuan [13] used variational methods to study the
existence of solutions of the problem

−∆pϕ = λ|ϕ|r−2ϕ+ µ
|ϕ|q−2ϕ

|x|α
in Ω,

ϕ = 0 on ∂Ω,

where Ω ⊂ Rn is a regular bounded domain, µ and λ are positive parameters,
min(q, r) ≥ p, q ≤ p∗(α), and r ≤ p∗.
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Perrera and Zou [19] investigated the critical Hardy p-Laplacian problem

−∆pϕ = λ|ϕ|p−2ϕ+
|ϕ|p∗(α)−2ϕ

|x|α
in Ω,

ϕ = 0 on ∂Ω.

(1.1)

More precisely, they used variational methods to establish the multiplicity of solu-
tions of problem (1.1). Recently, Wang [26] considered the problem

∆2
pϕ = h(x, ϕ) + µ

|ϕ|r−2ϕ

|x|s
in Ω,

ϕ = ∆ϕ = 0 on ∂Ω.

(1.2)

He used the Mountain pass theorem to establish the existence of solutions of prob-
lem (1.2). Moreover, the existence of multiple solutions was established by applying
the Fountain Theorem.

Motivated by the above mentioned results, we study in the existence and mul-
tiplicity of solutions of the following singular p-biharmonic problem involving the
Hardy potential and the critical Hardy-Sobolev exponent,

∆2
pϕ− λ

|ϕ|p−2ϕ

|x|2p
+ ∆pϕ = µf(x)h(ϕ) +

|ϕ|p∗(α)−2ϕ

|x|α
in RN , (1.3)

where 0 ≤ α < 2p, 1 < p < N
2 , λ > 0, µ > 0, and p∗(α) := p(N−α)

N−2p . Here, ∆p and

∆2
p are the p-Laplacian and the p-biharmonic operator, respectively, defined by

∆pϕ := div(|∇ϕ|p−2∇ϕ), ∆2
pϕ := ∆(|∆ϕ|p−2∆ϕ),

respectively, f is a positive function, h is a continuous function. We use the following
hypotheses:

(H1) There exists r ∈ (p, p∗) such that f ∈ L∞(RN ) and |h(ϕ)| ≤ c1|ϕ|r−1 for

every ϕ ∈ E and some positive constant c1, where p∗ := pN
N−2p and the

space E := W 2,p(RN ) is defined in Section 2.
(H2) There exists σ > 0 such that for every y ∈ RN , we have 0 < rH(ϕ) ≤ h(ϕ)ϕ,

|ϕ| ≥ σ > 0, where H(t) :=
∫ t

0
h(s)ds.

(H3) There exist c1 > 0, 1 < r < p, and s ∈ ( p∗

p∗−r ,
p
p−r ) such that

0 < f ∈ L
p∗
p∗−r (RN ) ∩ Lsloc(RN ),

and |h(ϕ)| ≤ c1|ϕ|r−1 for for every ϕ ∈ E.

The following are the main results of this article.

Theorem 1.1. Suppose that (H1), (H2) hold. Then for every µ > 0, the singular
p-biharmonic problem (1.3) has at least one nontrivial weak solution, provided that
λ > 0 is small enough.

Theorem 1.2. Suppose that (H2), (H3) hold. Then there exists µ0 > 0 such that
for every µ ∈ (0, µ0), the singular p-biharmonic problem (1.3) has at least two
nontrivial weak solutions, provided that λ > 0 is small enough.

Note that the singular p-biharmonic problem (1.3) is very important since it
contains the p-biharmonic operator, the p-Laplacian operator, the singular nonlin-
earity, and the Hardy potential. Moreover, it appears in many applications, such
as non-Newtonian fluids, viscous fluids, traveling waves in suspension bridges, and
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various other physical phenomena, see, e.g., Chen et al. [8], Lazer and McKenna
[16], and Ružička [22].

The article is organized as follows: In Section 2, we present some variational
framework related to problem (1.3). In Section 3, we prove Theorem 1.1. In Section
4 we combine the Mountain pass theorem with the Ekeland variational principle
to prove the multiplicity of solutions of problem (1.3) (Theorem 1.2). In Section
5 we present an example that illustrate our main results. Finally, in Section 6 we
summarize the main contributions of this article.

2. Preliminaries

We begin by recalling some necessary facts related to the Hardy-Sobolev expo-
nent nonlinearity. We finish this section by presenting the variational framework
related to problem (1.3). For other necessary background material we refer to the
comprehensive monograph by Papageorgiou et al. [18].

It is well-known that the Hardy-Sobolev exponent is closely related to the Rellich
inequality (see Davies and Hinz [11, p. 520])∫

RN

|ϕ(x)|p

|x|2p
dx ≤

( p2

N(p− 1)(N − 2p)

)p ∫
RN
|∆ϕ(x)|p dx, (2.1)

for every ϕ ∈ W 2,p(RN ), where W 2,p(RN ) denotes the Sobolev space which is
defined by

W 2,p(RN ) :=
{
ϕ ∈ Lp(RN ) : ∆ϕ, |∇ϕ| ∈ Lp(RN )

}
.

For more details about this space, see Davies and Hinz [11], Mitidieri [17], and
Rellich [21].

According to the Rellich inequality (2.1), W 2,p(RN ) can be endowed with the
following norm

‖ϕ‖ :=
(∫

RN
|∆ϕ(x)|p − λ |ϕ(x)|p

|x|2p
+ |∇ϕ(x)|p dx

)1/p

,

provided that

0 < λ <
(N(p− 1)(N − 2p)

p2

)p
. (2.2)

The space W 2,p(RN ) is continuously embeddable into Lσ(RN ) for every p ≤ σ ≤ p∗,
and compactly embeddable into Lσloc(RN ), for every p ≤ σ < p∗. Moreover, for
every ϕ ∈W 2,p(RN ), one has

|ϕ|σ ≤ S−1/p
σ ‖ϕ‖, (2.3)

where |ϕ|p denotes the usual Lp(RN )-norm and Sσ is defined by

Sσ := inf
ϕ∈W 2,p(RN ),ϕ6=0

∫
RN |∆ϕ(x)|p − λ |ϕ(x)|p

|x|2p + |∇ϕ(x)|p dx(∫
RN |x−α||ϕ(x)|σ dx

)p/σ . (2.4)

Hereafter, for simplicity, we shall denote E := W 2,p(RN ).
We define the weighted Lebesgue space Lr(RN, f) by

Lr(RN, f) :=
{
ϕ : RN → R : ϕ is measurable and

∫
RN

f(x)|ϕ(x)|r dx <∞
}
,

and endow it with the norm

‖ϕ‖r,f :=
(∫

RN
f(x)|ϕ(x)|r dx

)1/r

.
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Then Lr(RN, f) is a uniformly convex Banach space. Dhifli and Alsaedi [12] proved
that under hypothesis (H3), the embedding E ↪→ Lr(RN , f) is continuous and
compact. Moreover, one has the estimate

‖ϕ‖rr,f ≤ S
−r/p
p∗ |f | p∗

p∗−r
‖ϕ‖r, for every ϕ ∈ E. (2.5)

Now, let us introduce the notion of weak solutions.

Definition 2.1. A function ϕ ∈ E is said to be a weak solution of problem (1.3),
provided that

Λ(ϕ,ψ) = µ

∫
RN

f(x)h(ϕ)ψ dx+

∫
RN
|x|−αϕp

∗(α)−2ϕψ dx, for every ψ ∈ E,

where

Λ(ϕ,ψ) :=

∫
RN
|∆ϕ|p−2∆ϕ∆ψ − λ |ϕ|

p−2ϕψ

|x|2p
+ |∇ϕ|p−2∇ϕ∇ψ dx.

We define the energy functional Jµ : E → R, by

Jµ(ϕ) :=
1

p
‖ϕ‖p − µ

∫
RN

f(x)h(ϕ)ϕdx− 1

p∗(α)

∫
RN
|x|−αϕp

∗(α) dx.

Note that a function ϕ ∈ E is a weak solution of (1.3), if it satisfies J ′µ(ϕ) = 0, i.e.,
ϕ is a critical value for Jµ.

Definition 2.2. We say that a function Φ ∈ C1(F,R), where F is a Banach space,
satisfies the Palais-Smale condition, if every sequence {ϕn} ⊂ F , such that Φ(ϕn)
is bounded and Φ′(ϕn)→ 0 in F ∗, as n→∞, contains a convergent subsequence.

To prove Theorem 1.1, we need the following result which is proved in Ambrosetti
and Rabinowitz [2, Theorem 2.4].

Theorem 2.3 (Mountain pass theorem). Let Φ ∈ C1(F,R), where F is a Ba-
nach space, and suppose that ϕ ∈ F is such that ||ϕ|| > r, for some r > 0, and
inf ||ψ||=r Φ(ψ) > Φ(0) > Φ(ϕ). If in addition, Φ satisfies the Palais-Smale condi-
tion at level c, then c is a critical value of Φ, where c := infγ∈Γ maxs∈[0,1] Φ(γ(s))
and Γ = {γ ∈ C([0, 1], F ) : (γ(0), γ(1)) = (0, ϕ)}.

3. Proof of Theorem 1.1

In this section, we shall prove the first main result of this paper. More precisely,
under suitable conditions, we shall prove that the functional energy associated with
problem (1.3) satisfies the Mountain pass geometry. First, we shall prove several
lemmas.

Lemma 3.1. Under hypotheses (H1) and (H2), there exist ρ > 0 and η > 0 such
that ‖ϕ‖ = ρ implies Jµ(ϕ) ≥ η > 0.

Proof. Let ϕ ∈ E. From (H1), (H2) and (2.3), we obtain

Jµ(ϕ) =
1

p
‖ϕ‖p − µ

∫
RN

f(x)H(ϕ) dx− 1

p∗(α)

∫
RN
|x|−αup

∗(α) dx

≥ 1

p
‖ϕ‖p − µ

r

∫
RN

f(x)h(ϕ) dx− 1

p∗(α)
S
− p

∗(α)
p

p∗(α) ‖ϕ‖
p∗(α)

≥ 1

p
‖ϕ‖p − µ

r
c1‖f‖∞|u|rr −

1

p∗(α)
S
− p

∗(α)
p

p∗(α) ‖ϕ‖
p∗(α)
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≥ 1

p
‖ϕ‖p − µ

r
c1‖f‖∞S−r/pr ‖ϕ‖r − 1

p∗(α)
S
− p

∗(α)
p

p∗(α) ‖ϕ‖
p∗(α)

≥ ‖ϕ‖p
{1

p
− µ

r
c1‖f‖∞S−r/pr ‖ϕ‖r−p − 1

p∗(α)
S
− p

∗(α)
p

p∗(α) ‖ϕ‖
p∗(α)−p

}
,

and since min(r, p∗(α)) > p, we obtain

lim
‖ϕ‖→0

{1

p
− µ

r
c1‖f‖∞S−r/pr ‖ϕ‖r−p − 1

p∗(α)
S
− p

∗(α)
p

p∗(α) ‖ϕ‖
p∗(α)−p

}
=

1

p
> 0,

therefore, for ρ > 0 small enough, if ‖ϕ‖ = ρ, we obtain

η := ρp
(1

p
− µ

r
c1‖f‖∞S−r/pr ρr−p − 1

p∗(α)
S
− p

∗(α)
p

p∗(α) ρp
∗(α)−p

)
> 0,

thus ‖ϕ‖ = ρ =⇒ Jµ(ϕ) ≥ η > 0. This completes the proof. �

Lemma 3.2. Under the hypotheses of Lemma 3.1, there exists e ∈ E such that
‖e‖ > ρ and Jµ(e) < 0.

Proof. Let ϕ be a positive function in C∞c (E). Then for every s > 0 we have

Jµ(sϕ) =
sp

p
‖ϕ‖p − µ

∫
RN

f(x)H(sϕ) dx− sp
∗(α)

p∗(α)

∫
RN
|x|−αϕp

∗(α) dx

≤ sp

p
‖ϕ‖p − sp

∗(α)

p∗(α)

∫
RN
|x|−αϕp

∗(α) dx.

Since p < p∗(α), it follows that Jµ(sϕ) → −∞, as s → ∞. Therefore there exists
s0 >

ρ
‖ϕ‖ large enough, such that Jµ(s0ϕ) < 0. If we now set e = s0ϕ, then ‖e‖ > ρ

and Jµ(e) < 0. This completes the proof. �

Lemma 3.3. Under the hypotheses of Lemma 3.1, Jµ satisfies the Palais-Smale
condition.

Proof. Let {ϕn} be a Palais-Smale sequence, which means that Jµ(ϕn) is bounded
and J ′µ(ϕn) → 0, as n → ∞. Therefore there exist m1 > 0 and m2 > 0 such
that Jµ(ϕn) ≤ m1 and |J ′µ(ϕn)| ≤ m2. Letting θ := min(r, p∗(α)), we obtain by
hypothesis (H1) that

θm1 +m2 ≥ θJµ(ϕn)− 〈J ′µ(ϕn), ϕn〉

≥ θ

p
‖ϕn‖p − µθ

∫
RN

f(x)H(ϕn) dx− θ

p∗(α)

∫
RN
|x|−α|ϕn|p

∗(α) dx

− ‖ϕn‖p + µ

∫
RN

f(x)h(ϕn)ϕn dx+

∫
RN
|x|−αϕp

∗(α)
n dx

≥ (
θ

p
− 1)‖ϕn‖p + µ(r − θ)

∫
RN

f(x)H(ϕn) dx

+ (1− θ

p∗(α)
)

∫
RN
|x|−α|ϕn|p

∗(α) dx

≥ (
θ

p
− 1)‖ϕn‖p,

and since θ = min(r, p∗(α)) > p, it follows that the sequence {ϕn} is bounded in
E. Therefore (up to a subsequence) there exists ϕ ∈ E such that

ϕn ⇀ ϕ weakly in E,
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ϕn → ϕ strongly in Lr(RN ),

ϕn → ϕ a.e. in Rn,

so, by (H1), (H2) and the Dominated convergence theorem,

lim
n→∞

∫
RN

f(x)H(ϕn) dx =

∫
RN

f(x)H(ϕ) dx. (3.1)

One can now show by a standard argument that the weak limit u of {ϕn} is a
critical point of Jµ and thus J ′µ(ϕ) = 0.

Let wn := ϕn − ϕ. Then wn converges weakly to zero. Moreover, by Brezis and
Lieb [5, Lemma 3], we obtain

|wn|p
∗(α)
p∗(α) = |ϕn|p

∗(α)
p∗(α) − |ϕ|

p∗(α)
p∗(α) + o(1),

therefore,

lim
n→∞

∫
RN
|x|−α|ϕn|p

∗(α) − |x|−α|wn|p
∗(α) dx =

∫
RN
|x|−α|ϕ|p

∗(α) dx,

and from (3.1) we have

〈J ′µ(ϕn), ϕn〉 − 〈J ′µ(ϕ), ϕ〉 = ‖wn‖p −
∫
RN
|x|−α|wn|p

∗(α) dx+ o(1),

hence for n large enough,

‖wn‖p =

∫
RN
|x|−α|wn|p

∗(α) dx+ o(1),

thus

lim
n→∞

‖wn‖p = lim
n→∞

∫
RN
|x|−α|wn|p

∗(α) = l ≥ 0. (3.2)

If l > 0, then by combining equation (2.4) with (3.2) we obtain

l ≥ S
p

p∗(α)−p
p∗(α) . (3.3)

On the other hand, one has

Jµ(ϕn)− Jµ(ϕ) =
1

p
‖wn‖p −

1

p∗(α)

∫
RN
|x|−α|wn|p

∗(α) dx+ o(1),

so by letting n tend to infinity, we obtain

c− Jµ(ϕ) = (
1

p
− 1

p∗(α)
)l,

and using the last equation and (3.3) we obtain

Jµ(ϕ) + (
1

p
− 1

p∗(α)
)l = c < (

1

p
− 1

p∗(α)
)S

p
p∗(α)−p
λ ,

which implies that

Jµ(ϕ) < 0. (3.4)

However, we have 〈J ′µ(ϕ), ϕ〉 = 0, for every ϕ ∈ E. So, from (H2) we obtain

‖ϕ‖p = µ

∫
RN

f(x)h(ϕ)ϕdx+

∫
RN
|x|−α|ϕ|p

∗(α) dx

≥ rµ
∫
RN

f(x)H(ϕ) dx+

∫
RN
|x|−α|ϕ|p

∗(α) dx;
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therefore,

Jµ(ϕ) =
1

p
‖ϕ‖p − µ

∫
RN

f(x)H(ϕ) dx− 1

p∗(α)

∫
RN
|x|−α|u|p

∗(α) dx

≥ 1

p

(
rµ

∫
RN

f(x)H(ϕ) dx+

∫
RN
|x|−α|u|p

∗(α) dx
)

− µ
∫
RN

f(x)H(ϕ) dx− 1

p∗(α)

∫
RN
|x|−α|u|p

∗(α) dx

≥ µ(
r

p
− 1)

∫
RN

f(x)H(ϕ) dx+ (
1

p
− 1

p∗(α)
)

∫
RN
|x|−α|u|p

∗(α) dx,

and since r ∈ (p, p∗) and p < p∗(α), it follows that Jµ(ϕ) ≥ 0. This is in contradic-
tion with (3.4). Since l = 0, we see by (3.2) that {ϕn} converges strongly to ϕ in
E. This completes the proof. �

Proof of Theorem 1.1. By Lemma 3.1, there exist ρ ∈ (0,∞) and η ∈ (0,∞) such
that inf‖ϕ‖=ρ Jµ(ϕ) ≥ η > 0. On the other hand, by Lemma 3.2, there exists e ∈ E
such that

ρ ≤ ‖e‖ and Jµ(e) < 0 < inf
‖ϕ‖=ρ

Jµ(ϕ),

hence, combining Lemma 3.3 and Theorem 2.3, we can establish the existence of a
critical point ϕµ. Moreover, ϕµ is characterized by

Jµ(ϕµ) = inf
γ∈Γ

max
t∈[0,1]

Jµ(γ(t)),

where

Γ := {γ ∈ C([0, 1], X) : (γ(0), γ(1)) = (0, e)},

so if we take γ(s) = se, then there exists s0 ∈ [0, 1] such that ‖s0e‖ = ρ, hence
invoking Lemma 3.2, we obtain

Jµ(ϕµ) ≥ η > 0. (3.5)

This completes the proof. �

4. Proof of Theorem 1.2

The proof is divided into several lemmas.

Lemma 4.1. Under hypotheses (H2) and (H3), there exist positive constants µ0,
ρ, and η such that for every µ ∈ (0, µ0), ‖ϕ‖ = ρ implies Jµ(ϕ) ≥ η > 0.
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Proof. Let ϕ ∈ E. Invoking hypotheses (H2), (H3), equations (2.3), (2.5), and the
Hölder inequality, we obtain

Jµ(ϕ) =
1

p
‖ϕ‖p − µ

∫
RN

f(x)H(ϕ) dx− 1

p∗(α)

∫
RN
|x|−αϕp

∗(α) dx

≥ 1

p
‖ϕ‖p − µ

r

∫
RN

f(x)h(ϕ) dx− 1

p∗(α)
S
− p

∗(α)
p

p∗ ‖ϕ‖p
∗(α)

≥ 1

p
‖ϕ‖p − µ

r
c1‖ϕ‖rr,f −

1

p∗(α)
S
− p

∗(α)
p

p∗ ‖ϕ‖p
∗(α)

≥ 1

p
‖ϕ‖p − µ

r
c1‖f‖ p∗

p∗−r
S
−r/p
p∗ ‖ϕ‖r − 1

p∗(α)
S
− p

∗(α)
p

p∗ ‖ϕ‖p
∗(α)

≥ ‖ϕ‖r
(1

p
‖ϕ‖p−r − µ

r
c1‖f‖ p∗

p∗−r
S
−r/p
p∗ − 1

p∗(α)
S
− p

∗(α)
p

p∗ ‖ϕ‖p
∗(α)−r

)
≥ ‖ϕ‖r

(
h
(
‖ϕ‖

)
− µ

r
c1‖f‖ p∗

p∗−r
S
−r/p
p∗

)
,

(4.1)

where

h(s) :=
1

p
sp−r − 1

p∗(α)
S
− p

∗(α)
p

p∗ sp
∗(α)−r.

It is not difficult to prove that h attains its global maximum at

s0 :=
(p∗(α)(p− r)S

p∗(α)
p

p∗

p
(
p∗(α)− r

) ) 1
p∗−p

.

Set

µ0 :=
rf(s0)

c1‖f‖ p∗
p∗−r

S
−r/p
p∗

. (4.2)

Then for every µ ∈ (0, µ0), we have

h(s0)− µ

r
c1‖f‖ p∗

p∗−r
S
−r/p
p∗ > 0,

and since h is continuous, we can find ρ > 0 such that

h(ρ)− µ

r
c1‖f‖ p∗

p∗−r
S
−r/p
p∗ > 0,

thus for every ϕ ∈ E with ‖ϕ‖ = ρ, we have

Jµ(ϕ) ≥ η := ρr
(
h(ρ)− µ

r
c1‖f‖ p∗

p∗−r
S
−r/p
p∗

)
> 0.

This completes the proof. �

Lemma 4.2. There exists e ∈ E such that ‖e‖ > ρ and Jµ(e) < 0.

Since the proof of the above lemma is very similar to that of Lemma 3.2, we
omit it.

Lemma 4.3. Under hypotheses (H2) and (H3), the functional Jµ satisfies the
Palais-Smale condition.

Proof. Let {ϕn} be a Palais-Smale sequence. By the argument from the previous
section, it follows that there exist m1 > 0 and m2 > 0, such that Jµ(ϕn) ≤ m1 and
|J ′µ(ϕn)| ≤ m2.
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Let us prove that {ϕn} is bounded. If not, then up to a subsequence we can
assume that ‖ϕn‖ → ∞, as n→∞. By hypotheses (H2) and (H3), we obtain

p∗(α)m1 +m2 ≥ p∗(α)Jµ(ϕn)− 〈J ′µ(ϕn), ϕn〉

≥ p∗(α)

p
‖ϕn‖p − µp∗(α)

∫
RN

f(x)H(ϕn) dx

− p∗(α)

p∗(α)

∫
RN
|x|−αϕp

∗(α)
n dx− ‖ϕn‖p

+ µ

∫
RN

f(x)h(ϕn)ϕn dx+

∫
RN
|x|−αϕp

∗(α)
n dx

≥
(p∗(α)

p
− 1
)
‖ϕn‖p + µ(r − p∗(α))

∫
RN

f(x)H(ϕn) dx

≥
(p∗(α)

p
− 1
)
‖ϕn‖p − µ(p∗(α)− r)c1‖f‖ p∗

p∗−r
S
−r/p
p∗ ‖ϕn‖r.

Since r < p, a contradiction is obtained by letting n in the last inequality tend to
infinity, therefore {ϕn} is indeed bounded. The rest of the proof is analogous to
the proof of Lemma 3.3. This completes the proof. �

Proof of Theorem 1.2. Let µ ∈ (0, µ0), where µ0 is defined in (4.2). Combining
Lemmas 4.1, 4.2, and 4.3 with Theorem 2.3, we can deduce that problem (1.3) has
a weak solution ψµ as a critical point for Jµ. Moreover, as in the proof of (3.5),
one has

Jµ(ψµ) ≥ η > 0. (4.3)

Now, by Lemma 4.1, we can see that infψ∈∂B(0,ρ) Jµ(ψ) > 0. Moreover, by Lemma
4.2, and equation (4.1), we obtain

−∞ < c := inf
ψ∈B(0,ρ)

(Jµ(ψ)) < 0.

Let ε > 0 be such that

0 < ε < inf
ψ∈∂B(0,ρ)

Jµ(ψ)− inf
ψ∈B(0,ρ)

Jµ(ψ). (4.4)

If we consider the functional Jµ : B(0, ρ) → R, then by the Ekeland variational

principle there exists ψε ∈ B(0, ρ), such that

c ≤ Jµ(ψε) ≤ c+ ε

Jµ(ψε) < Jµ(ψ) + ε||ψ − ψε||, ψ 6= ψε,
(4.5)

so by (4.4), we have

Jµ(ψε) ≤ inf
ψ∈B(0,ρ)

Jµ(ψ) + ε ≤ inf
ψ∈B(0,ρ)

Jµ(ψ) + ε < inf
ψ∈∂B(0,ρ)

Jµ(ψ), (4.6)

which implies that ψε ∈ B(0, ρ).

On the other hand, if we define the functional Φµ : B(0, ρ) → R by Φµ(ψ) :=
Jµ(ψ) + ε‖ψ − ψε‖, then ψε is a global minimum of Φµ. Therefore, for s ∈ (0, 1)
small enough, we have

Φµ(ψε + sψ)− Φµ(ψε)

s
≥ 0, for every ψ ∈ B(0, 1),
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i.e.,
Jµ(ψε + sψ)− Jµ(ψε)

s
+ ε‖ψ‖ ≥ 0.

By letting s tend to zero, we obtain 〈J ′µ(ψε), ψ〉 + ε‖ψ‖ ≥ 0. This implies that
‖J ′µ(ψε)‖ ≤ ε.

If we put wn := ψ 1
n

, we obtain {wn} ⊂ B(0, ρ). Moreover, Jµ(wn)→ c < 0, and

J ′µ(wn) → 0, as n → ∞. Since {wn} ⊂ B(0, ρ), it follows that {wn} is bounded
in E. So, up to a subsequence still denoted by wn, there exists ψµ ∈ E, such that
{wn} converges weakly to ψµ ∈ E. Invoking Lemma 4.3, we see that wn → ψµ
strongly in E.

Now, from the fact that Jµ ∈ C1(E,R) implies t J ′µ(wn)→ Jµ(ψµ), as n→∞,
we have

J ′µ(ψµ) = 0 and Jµ(ψµ) < 0, (4.7)

hence ψµ is a nontrivial weak solution of (1.3). Moreover, by combining (4.3) with
(4.7), we obtain that Jµ(ϕµ) < 0 < Jµ(ψµ), i.e., uµ and ψµ are distinct. This
completes the proof. �

5. An Application

As an application of our results, we shall consider the problem

∆2
pϕ− λ

|ϕ|p−2ϕ

|x|2p
+ ∆pϕ = µf(x)|ϕ|r−2ϕ+

|ϕ|p∗(p)−2ϕ

|x|p
in RN , (5.1)

where 1 < p < N
2 and λ > 0. We note that problems of type (5.1) describe the

deformations of an elastic beam. Also, they give a model for considering traveling
waves in suspension bridges.

It is not difficult to see that 1 < α = p < 2p and h(ϕ) = |ϕ|r−2ϕ satisfies the
second inequality of hypotheses (H1) and (H3), with c1 = 1 > 0. Moreover, a
simple calculation shows that H(ϕ) = 1

r |ϕ|
r which satisfies rH(ϕ) = h(ϕ)ϕ, so

hypothesis (H2) is also satisfied for every σ > 0.
Hence if r ∈ (p, p∗) and f ∈ L∞(RN ), then Theorem 1.1 implies that for every

µ > 0, there exists λ0 > 0 such that for every λ ∈ (0, λ0), problem (5.1) has a
nontrivial solution. Moreover, if 1 < r < p and

0 < f ∈ L
p∗
p∗−r (RN ) ∩ Lsloc(RN ), for some s ∈

( p∗

p∗ − r
,

p

p− r
)
,

then Theorem 1.2 implies the existence of λ0 > 0 and µ0 > 0 such that for every
λ ∈ (0, λ0) and µ ∈ (0, µ0), problem (5.1) has at least two nontrivial solutions.

6. Conclusion

The variational method has a long and rich history, and it has given rise to
the functional energy. The Mountain pass theorem is used in the first part of this
paper to prove the existence of a nontrivial solution for a p-biharmonic problem
involving the Hardy-Sobolev exponent. Our first main result generalizes the paper
of Ghoussoub and Yuan [13].

In the second part of the paper, the Mountain pass theorem is combined with
the Ekeland variational principle to prove the existence of two nontrivial solutions.
Our second main result of this paper generalizes the work of Perrera and Zou [19].
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We note that the manipulation of the critical Hardy nonlinearity is more compli-
cated and the improvement method used here is an application of the Brezis-Lieb
lemma. As the foundation for further improvements, we aim to obtain even stronger
results for problems with discontinuous nonlinearities.

Acknowledgments. Repovš was supported by the Slovenian Research Agency
grants P1-0292, J1-4031, J1-4001, N1-0278, N1-0114, and N1-0083. We thank the
referee for comments and suggestions.

References

[1] R. Alsaedi, A. Dhifli, A. Ghanmi; Low perturbations of p-biharmonic equations with com-

peting nonlinearities, Complex Var. Elliptic Equ. 66 (2021), no. 4, 642–657.
[2] A. Ambrosett, P.H. Rabinowitz; Dual variational methods in critical point theory and appli-

cations, J. Funct. Anal. 14 (1973), 349–381.
[3] M. Bhakta, A. Biswas, D. Ganguly, L. Montoro; Integral representation of solutions using the

Green function for fractional Hardy equations, J. Differ. Equ. 269(2020), no. 7, 5573–5594.

[4] M. Bhakta, S. Chakraborty, P. Pucci; Fractional Hardy-Sobolev equations with nonhomoge-
neous terms, Adv. Nonlinear Anal. 10 (2021), no. 1, 1086–1116.

[5] H. Brezis, E. Lieb; A relation between point convergence of functions and convergence of

functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.
[6] C. Bucur, E. Valdinoci; Nonlocal Diffusion and Applications, Lect. Notes Unione Mat. Ital.,

20, Springer, Cham, 2016.

[7] M. M. Chaharlang, A. Razani; A fourth order singular elliptic problem involving p-biharmonic
operator, Taiwanese J. Math. 23 (2019), 589–599.

[8] Y. Chen, S. Levine, M. Rao; Variable exponent, linear growth functionals in image processing,

SIAM J. Appl. Math. 66 (2006), 1383–1406.
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ods, Springer Monographs in Mathematics, Springer, Cham, 2019.
[19] K. Perera, W. Zou; p-Laplacian problems involving critical Hardy–Sobolev exponents,

NoDEA Nonlinear Differ. Equ. Appl. 25 (2018), no. 25, https://doi.org/10.1007/s00030-
018-0517-7.
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