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GLOBAL EXISTENCE AND ASYMPTOTIC PROFILE FOR A
DAMPED WAVE EQUATION WITH VARIABLE-COEFFICIENT
DIFFUSION

YUEQUN LI, HUI LIU, FEI GUO

ABSTRACT. We considered a Cauchy problem of a one-dimensional semilin-
ear wave equation with variable-coefficient diffusion, time-dependent damping,
and perturbations. The global well-posedness and the asymptotic profile are
given by employing scaling variables and the energy method. The lower bound
estimate of the lifespan to the solution is obtained as a byproduct.

1. INTRODUCTION

We investigate the asymptotic profile and lifespan estimate of solutions to a
one-dimensional semilinear wave equation with variable-coefficient diffusion, time-
dependent damping, and perturbations

O2u — 0y (a(z)0,u) + b(t)Opu = c(t)dpu + d(t)u + N (u, Opu, Opu),
fort >0, z € R, (1.1)
w(0,2) = eug(z), Owu(0,z) =cui(x), x€R,

where € is a small parameter describing the smallness of the initial data, the diffusion
coefficient a(zx) is Lipshitz continuous and possesses a positive lower bound, the
coefficients b(t), c(t), d(t) are smooth, b(t) ~ (1 +t)~8, B € [-1,1), c(t)Dpu, d(t)u
can be regarded as small perturbations and the nonlinear term

|N(ua azu7 atu)| < Ct|u|p1 ‘afﬂu|p2 |atu|p3v

and the precise assumptions regarding these terms and the initial data will be
provided in Section 2.

The primary objective is to establish the global well-posedness and asymptotic
profile of the solutions to under the following conditions

2p

2 3———
p1+ P2+( 1+ 5

)p3s >3, p2+p3 <L (1.2)
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The second objective is to determine the lower bound estimate of the lifespan of
the solutions when

_ 2
1+5

Equation typically arises from gene and population dynamics models in
Biology, where 0, (a(x)0,) is called the diffusion operator, c.f. [4]. The spatial
distribution of individuals is described by Brownian motion, so the population
densities are solutions to the corresponding reaction diffusion equations. However,
when n = 1, the process is often substituted with damped wave equations, and
the disturbance terms in stem from the non-uniformity of the medium. The
derivation of and its physical background can be found in [2],[6],[I0],[14],[20].

Todorova and Yordanov [I5] demonstrated the existence of a critical exponent,
denoted as pp(n) = 1+ %, which plays a pivotal role in distinguishing between
global existence and non-existence of solutions to the equation

p1+2p2 + (3 Jps <3, p2+p3 <l (1.3)

02— Au+ Opu = |[ulP, t>0, x € R",

u(0,x) = eup(z), Owu(0,2) =cui(z), = eR™ (14)

More precisely, when pr(n) < p < -25,n >3 or prp(n) <p < oo, n = 1,2, (L4)
has a global solution, however when 1 < p < pr(n), for all n € N, the solution blows
up in finite time even for small initial values. Subsequently, Zhang [2I] proved that
the case of p = ppr(n) belongs to the blow-up scenario. It should be noted that
pr(n) is known as the Fujita exponent, and it serves as the critical index for the
corresponding Cauchy problems of the heat equation (see [3]). Furthermore, the
lifespan of the solution to can be estimated as follows

CeCmTTHT 1 < p < pp(n),
Lifespan(u) ~ § =", p=pr(n), (1.5)
0, p > pr(n).

More details can be found in Ikeda-Ogawa [7], Ikeda-Wakasugi [9], Lai-Zhou [II],
Li [12], Li-Zhou [13].

Wirth [I7, [I8] 19] studied systematically the influence of the index v on the
behavior of the solutions to the linear wave equations with time-dependent damping

02— Au+T'(t)0u = 0,

where I'(t) = (1+¢)77, v € R. He classified the behavior as follows: when v < —1,
the damping term is referred to as “over-damping”, in which case the solution does
not decay to zero as t — oo; for —1 <« < 1, the damping term is called “effective”
because the solution behaves similarly to the corresponding heat equation, and
the asymptotic profile of the solution is described by the scaled Gaussian; when
v > 1, the damping term is labeled “non-effective”, indicating that the solution
behaves similarly to the corresponding wave equation. From this perspective, the
assumption regarding the index § in is reasonable.

Gallay and Raugel [] conducted a comprehensive study on the asymptotic ex-
pansions for the damped wave equation

02u — 0y (a(x)0pu) + uy = N(u,uz,us), = €R, t>0. (1.6)
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Among their notable findings, they successfully obtained the first-order asymptotic
profile by employing scaling variables
4
y - ma
and the methodology primarily relied on energy-based approaches. Subsequently,
Wakasugi [16] explored a similar problem of the equation

02— Au+b(t)0u = c(t) - Vu + d(t)u + N(u, Vu,u), t>0, z€R™ (1.8)

s =log(t +tg), to >0 is fixed, (1.7)

where the scaling variables (|1.7)) were replaced with the following new variables

- todr
V=g s- B0+, BO- [

When the motion occurs within an inhomogeneous medium, the diffusion coeffi-
cients in depend on the space variable x, as highlighted in [4]. This naturally
prompts the question: how will the solution behave when considering variable dif-
fusion coefficients in ? In this article, we focus our attention on this intriguing
problem. By employing the scaling variables given in 7 the equation can
be transformed into a first-order differential system, and the abstract theory of op-
erator semigroup can be used to obtain the local well-posedness. Building upon the
foundational work of [4] and [16], we employ spectral decomposition and the energy
method to investigate global existence and asymptotic behavior. However, as the
diffusion coefficient of is no longer constant, the energy functional utilized
by Wakasugi in [I6] becomes inapplicable. To overcome this issue, some modifi-
cations on the energy functionals have to be made such that an a prior estimate
on the blowup quantity can be obtained, and as a result, the global existence and
asymptotic behavior can be achieved.

This article is organized as follows. In Section 2, we present a set of assumptions
on the coefficients and the nonlinear term, and outline our main results. Section
3 is dedicated to establishing local well-posedness using the semigroup method. In
Section 4, we prove the global well-poesdness and the asymptotic profile. The lower
bound estimate of the lifespan for is derived in Section 5.

Notation. f < g (f 2 g) means there exists a constant C' > 0 such that f < Cyg
(f > Cg), and f ~ g when g < f < g. H®™(R) is the weighted Sobolev space
equipped with the norm || f[|gr.m @) = 3|0 )<s, (€)™ D fllz2(r), where k € Z, m >

(1.9)

0, (x) = (1 + |=|>)'/2, and in situations where no ambiguity arises, we sometimes
omit R in the norm H*™(R). C*(I; X) denotes the space of k-times continuously
differentiable mapping from I to X with respect to the topology in X. Moreover,
the positive constant C' varies from line to line in this paper.

2. MAIN RESULTS

We use the following assumptions:
(A1) The initial data (ug,u;) € HY1(R) x HO(R).
(A2) The coefficient of the damping term b(t) satisfies

CrHa4+t) P <bt)y <CA+1)77, y%% < C(+t) 7 (1), (2.1)

where 8 € [-1,1).
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(A3) The coefficient functions c¢(t), d(t) satisfy
e <CA+8)77, [dt)] <C(A+1)7" (2.2)
for some v >1+4+3/2, v >1+44.
(A4) The nonlinear term N satisfies
IN(2)] < Cla1|P* 222|255, pi>1orpi=0, p1 > 1, pa+p3 <1,

2.3
p1+2p2 + (3 — (2:3)

148

In addition, to ensure the existence of local-in-time solutions, we assume
IN(z) = N(w)| < Clz1 —wi|(z1] + [wr [} 7 (2.4)

where z = (21, 22, 23), w = (w1, wq,w3), z;,w; € R (i =1,2,3), and 7%
is regarded as a sufficiently large number when § = —1.

(A5) a: R — R is Lipschitz continuous and a(z) > a > 0. Set a(z) = a(z) +
ag(z), where a(x) = lim,_, 4 a(z) satifies

)p3 > 3.

_ ay, ifx>0,
= 2.5
a(x) {a, if x < 0. (25)

Moreover, for each p > —1/2, we assume that
(1 + |z))*ao(z) € L*(R) N L= (R). (2.6)
Remark 2.1. Assumption (2.6) is reasonable. Indeed, if a(x) = W +1,
w > f%, and wvarepsilon > 0, then ay = a_ = 1 and it is easy to verify that
aog(x)(1 + |z|)* € L?(R) N L (R).
Let
JArC & 27)
B(t) = —dr, t,x) = e Ha@) .
=), % Vvt v

Equation (2.1)) shows that B(¢) is strictly increasing and lim; ., B(t) = +00.

Definition 2.2. u is a mild solution to on the interval [0,T) if holds in
the sense of distributions and u € C([0,T); HYY(R)) N C1([0,T); H>1(R)). More-
over, if u € C([0,T); H*Y(R)) N C*([0,T); HY-L(R)) N C?([0,T); H**(R)), then u is
called a strong solution.

Definition 2.3. For a fixed ¢ > 0, the lifespan of the mild solution to (1.1) is
defined as

T(e) := sup{T € (0,00) : there exists a unique mild solution to (1.1)) on [0,7")}.
Our main results are the following three theorems.

Theorem 2.4 (Local well-posedness). Under assumptions (A1)—(A5), there ezists
aT =T(e|(ug,ur)||gr1xgo1) > 0, such that has a unique mild solution u on
[0,T). Furthermore, if (ug,u1) € H>1(R) x HYY(R), u becomes a strong solution.
In addition, if T = T(e) < oo, then

t_ljjf}gs) Il (w, we) || v (my x 101 () = 00 (2.8)

In particular, for each Ty > 0, there exists a 9 > 0, such that for each € € (0, &9,
we have Ty < T'(g) (which is the lifespan of (1.1))), i.e., the solution u will exist on
[07 TO] .
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By introducing scaling variables, can be transformed into an abstract evolu-
tion equation, and the abstract semigroup theory on semilinear evolution equations
can be applied to prove Theorem Utilizing a standard a priori energy estimate,
we can demonstrate the existence of a solution at any given time for sufficiently
small initial data. This is achieved through the application of Banach’s fixed point
theorem.

Theorem 2.5 (Global well-posedness and asymptotic profile). Under assumptions
(A1)-(A5), there exists a €1 > 0, such that for each € € (0,e1], has a unique
mild solution u € C([0,00); HVYH(R)) N CL([0,00); HY1(R)). In addition, the limit
o =limy oo [p ult, x)de exists and

lu(t, ) = a*G(B(t) +1,-) | 2wy S €2(B(E)+1) 75| (uo, w) | 12y aro 2y (2.9)
where A = min{i + &2, X, A1}, po = min{0, p},

1-8 1 v
148148 2'1+p
in which if = —1, ps # 0, then ﬁ and _ffgS are regarded as sufficiently large
numbers.

1 2
1}, A= 5{191 +2p2 + (3 — %)pzz -3},

Ao = min{

We will make the spectral decomposition on the unknown functions, namely
decompose these functions into the leading terms and the remainder terms, respec-
tively. By employing an a priori estimate (Proposition [4.3)) based on the energy
argument, we can establish the proof of Theorem [2.5] Instead of (2.3]), we require
that

p1+2p +(3——25 Jps <3, Be(-1,1)
1 2 1 +ﬂ 3 ) s L)
p1>1,pi>lorp;=0(=23), pptps <1,

which is equivalent to
ge(-1,1), 1<p; <3, pp=p3=0. (2.10)
Theorem 2.6 (Lower bound estimate of lifespan). Under the assumptions (Al)—

(A5), there exist o > 0, C' > 0, such that for each ¢ € (0,¢e2],

2(p1—1)

B(T(e))+1>Ce 37m | (2.11)
where B(t) is given by (2.7).

This theorem will be proved by employing a similar argument as those in The-
orem [2.5] Here we remark that the lower bound on the lifespan is sharp in some
situations. However, as indicated in Remark we are currently unable to estab-
lished an upper bound of the lifespan.

3. ProOF oF THEOREM 2.4
3.1. Preliminaries. Let
s=log(B(t)+1), y=(B(t)+1) "% (3.1)

and
v(s,y) = eS/QU(t(S% es/2y)’ w(s,y) = b(t(S))€38/2ut(t(s),es/2y),
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Then
u(t,z) = (B(t) + 1)_1/2v(10g(3(t) + 1), (B(t) + 1)71/233)’
wg(t, ) = b1 (t) (B(t) + 1)_3/2w(log(B(t) 1), (B(t) + 1) V24),

where t(s) = B~!(e®* — 1) (B~! denotes the inverse function of B). Equation (1.1)
is transformed into

(3.2)

1
vs—%vy—iv:m s>0, y eR,
e *® Yy 3 s/2
b(t(S)) (’UJS - iwy - iw) +w= ((1(6 y)”y)y + 7'(8, y)7 5> Oa Y€ Ra (33)

U(Oa y) = EUO(y) = 8UO(CC), y €R,
w(0,y) = ewo(y) = eb(0)ur(z), y€ER,

where

) = g (i))z db(:lis))w + e 2e(t(s))vy + € d(t(s))v o

+ 635/2]\[(6_5/2@7 e vy, b1 (t(s))e_Bs/Qw).
Lemma 3.1 ([16]). We have
db(t(s))  db(t(s)) s d 1 B 2 db(t(s))
s~ ar e ey T Traey a ¢ @)
Lemma 3.2 ([I6]). Under assumption (A2), the following estimates hold

(i) when B € (—1,1),

-5 e e 1 db(t(s)) o— U
b)) ~ e ) =Ty el :
(ii) when 8= -1,
b(t(s)) ~ exp(e®), #7(;) ~ exp(—2e® — s), bQ(tl(s)) |db(§§5)) | < Cexp(—2¢°).

Lemma 3.3 (Gagliardo-Nirenberg inequality, [16]). Let 1 < p < oo (n = 1,2),
then for each f € HMO(R™),
1£llzee < CIV AT N7
where o =n(p —1)/(2p).
For completeness, we recall the following results on the existence of solutions

to semilinear evolution equations in abstract Banach spaces, see Proposition 4.3.3,
Theorem 4.3.4 and Proposition 4.3.9 in [I] for details.

Lemma 3.4 ([1]). Let T > 0, X be a Banach space, A be a m-dissipative operator
in X with dense domain D(A). For any x € X and a local Lipschitz mapping
f: X — X, consider the semilinear problem

u'(t) = Au(t) + f(u(t)), t € 0,77,
w(0) = , (3.6)
u e C([0,T]; D(A)) nC([0,T]; X)
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and the associated integral equation

u(t) = T()z + /0 T(t — 5)f(u(s))ds, (3.7)

where (T'(t))i>0 is the contraction semigroup generated by A, then the following
results hold:

(i) Let M > 0 and let © € X be such that |z|| < M, then there exits a unique
solution u € C([0, Ta]; X) to (B.7).

(ii) Assume that X is reflezive. Let T >0, x € X, and let uw € C([0,T]; X) be
a solution to (3.7). Then, if x € D(A), u is the solution to problem (3.6)).

(iii) There exits a function T : X — (0, 00] with the following properties: for all
x € X, there exists u € C([0,T(x)); X) such that for all0 < T < T(z), u is
the unique solution to (3.7). In addition, we have the following alternatives:
(a) T(x) = o0;
(b) T(x) < oo and limypy) [|u(t)]| = oco.

3.2. Proof of Theorem For using Lemma [3:4] we introduce

Ut,z) = {x)u, Up(x)= {(x)uo, Ui(z)= (z)u;. (3.8)

Then
U, = (@) tou + (x)u,,
(a(2)Us)z = (2)(a(x)us)s + 2a(z){x) U,
+a(z)(z) "z + a(z)(z) 7 ((2)* — |2[*)u,
Uy + b(t)Up = (a(2)Uy )y + &(t, 2)Uy + d(t, x)U + N (U, Uy, Uy),
fort >0, v € R, (3.9)
U0,z) =eUp(z), U 0,2)=clUi(z), z€R,

where

é(t,r) = c(t) — 2a(x)(x) 2z,
d(t,x) = d(t) — c(t)(z)"*x — az){x) "z — a(e)(z)"*((2)? - 3Jz),
N(U,U,,U;) = (x)N((z) " U, (2) " U, — (z) 32U, (z)71U).
Let U = (U, U)T, Uy = (Uy,U1)T. Then is equivalent to
U = AU+ N(U), 510
U(0) = eldy,

where

1= (osatonn o) 0= (Lo vav, a0+ w00):

Set X = H'O(R) x L*(R), D(A) = H2O(R) x H'%(R). Note that

A= (—ax<a0<x>aw> _ol> =4
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ie., A is skew-adjoint, so A is an m-dissipative operator and D(A) is dense in

X (c.f. [I, Corollary 2.4.9]). Therefore, A generates a contraction semigroup e*4.

Consider the integral form of (3.10),
¢
U(t) = ee' Uy + / AN (U(s))ds. (3.11)
0

By Lemma [3.4] it suffices to verify that N(U) is local Lipschitz. Indeed,
NU) = N(V)

0
- (—b(t)(Ut ~ Vi) + Uy = V2) +d(U = V) + N(U, U, Uy) = N(V, Vs, Vt)>
for M >0and U = (U, U;)", V = (V,V;)" in B(0, M) C X, we have
INU) = NW)llroxre
= || = b()(Us = Vi) + &Us = Vi) +d(U = V) + N(U, Uy, Up) = N(V, Vi, Vi) 2.

From —, it follows that
| = b(t)(Up = Vi) + &(Uy = Vi) +d(U — V)| 2
<C(|U = Varo + U = Vil 2) (3.12)
=CU = Vligroxre
and
1N Vs, U) = NV, Vo Vi)lzz < CINU = VIQUT+ VI e g
S CM)U = Vimroxr,

S0
IN@U) = NW)llaroxez < (C(M) + C)U = V|| groxre-

By (i) of Lemma has a unique solution Y € HYO(R) x L?(R), which
means has a unique mild solution u. Furthermore, if Uy € H*>°(R) x H-Y(R),
then U € C([0,T]; D(A)) N CL([0,T]); X) is a strong solution to by Lemma
(i), i.e., U € C([0,T]; H**(R)) n C1([0,T]; HY°(R)) N C%([0,T); L*(R)) is a
solution to , and u is a strong solution to . In addition, if the lifespan
T(e) < o0, by Lemma [3.4] (iii),

t_ljjf}ge) Il (e, ut)(t)HHLl(R)xHOJ(R) = 00.

We now prove that the solution u exists at any given time Ty > 0. Indeed,

consider the non-homogeneous linear equation of (3.9))
U + b(t)Uy = (a(x)Uy)y + é(t, 2)U, + d(t,z)U + N(t,z), t>0, z €R, (3.14)
U0,z) =elUp(x), U(0,z)=clUi(z), x€R. '

For N € L'((0,Tp]; L*(R)), there exists a unique distribution solution which has
the standard energy estimate [5]

T() -
sup (V.00 oz < CO (U0 U)o + [ 1N (Ot

0<t<Typ ( )
3.15
Let

K ={U € C([0, To}; H**(R)) N C*([0, To]; L*(R)) :
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sup (U, Up)(t) || grroxr> < 20(To)loe}
0<t<Tp

and define £ : V' — U, where Iy = |[(Uo, U1)| 10xr2, V € K and U is the solution
to (3.14) with N = N(V, V., V;)(t,x) = () N((z) "1V, (2) "1V, — (x) 32V, (z) 71 V}).

(i) L(K) C K. There are three cases according to (2.3)).
Case 1: If p; > 1, po =0, p3 =1, then

IN@)| < Cl{a)l[(@) VP [(2) " Vil < CIV Vi),
and by Sobolev’s embedding theorem,
IN@) 2 < CIVIZ<Villzz < CIVIEL Va2 < C2C(T0)Ioe)™ . (3.16)
Case 2: If p; > 1, po =1, and p3 = 0, then
IN@)| < Cla)| o)~ VP )~ Ve — (@) P2V S C(IVIPH + (VP V)
7 1+1
IN@lzz < CUVIZ=IV 22 + VI Vallz2) < C(20(To)Toe)™

Case 3: If p; > 1,py = p3 = 0 and |N(t)| < C|(z)| |(z) "1V [P < C|V|P1, then the
Gagliardo-Nirenberg inequality yields

IN @)= < CIIIVI“IIL2 CIIIVIHLM

< CIIVzHHio HVIIH%O
S C(2C(Tg)[g€)p1.

It follows from (3.16[)-(3.17)) that
IN(®)]z2 < C2C(To)Loe)""
if e < 1 is sufficiently small. Substituting this estimate in (3.15|), we have

sup ||(V V;g)(t)HHl,oxLz < C(To)]oé‘ + C(To)(QC(TQ)IQE)plTO
0<t<To (3.18)
S QC(T())EIO

when ¢ is sufficiently small.
(ii) £ is contractive. For any V1, V? € K, U! — U? = L(V!) — L(V?) is a solution
to
Ust + b()U; = (a(2)Uy) g + &(t, ) U, + d(t,x)U + F(VL,V?), t>0, z€R,
U(0,z) =0, 0,U(0,z)=0, z€eR,

where F(V1,V?) = N(V', V), V') = N(V2,V2,V?2). Obviously, F is an element of
LY((0, Ty); L*(R)), so

To
sup (U 08) = O30 moxsn < CO)( [ 1FO]edr). (319
0<t<Typ 0

Then by [2.4), F(V1,V?) < C|V! = V2|([V| 4 [V3|)r L.
Applying Sobolev S embeddlng theorem, we have
IFVE VA2 < CIVE = V22|V + V)P 7 g
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< IV = V3o (IV IG5+ V2 )
< CROMT) )" IV = V2 mroxe,

SO

sup (UM U}) — (U, U)o
0<t<Ty

3.20)
1 (
< C(To) 2C(To) loe)" ' To ||V = V|| groxrz < §||V1 — V|| 1oy

when ¢ is sufficiently small.

It is easy to see that there exits a small g > 0, such that for each 0 < ¢ < ¢y,
and are valid. Therefore by Banach’s fixed point theorem, there exists
a U € K such that LU = U, i.e., U is the unique solution to . Moreover, if
To > T(e), (iii) of Lem shows that supg, g, (U, U}) —(U?, U2)||grroxr2 =

3.18

oo, which contradicts (3.18)), so Tp < T'(e).

4. PROOF OF THEOREM
We begin with the definition of solutions to system (3.3)).

Definition 4.1. (i) (v,w) € C([0,8); HY'(R) x H%'(R)) is a mild solution to
B.3) ifu e C([0,T(S)); H-(R))NC ([0, (S)) H%(R)) is a mild solution
to (L), where T'(S) = B~!(e® — 1), see (2.7) and (3.1).

(i) (v,w) € C([0,8); H*'(R) x H*'(R)) ﬂC [0,5); HVL(R) x H01 (R)) is a
strong solution to (3.3)) if u € C([0,T(9)); H2’1( ))ﬁC’1 (o, T HY“(R))N
C2([0,7(S)); H*(R)) is a strong solution to (L.I]).

(iii) The lifespan of the mild solution to (3.3) is deﬁned as

S(e) :=sup{S € (0, 00) : there is a unique mild solution (v, w) to (3.3) on [0,5)}.
From Definition [£.1] and Theorem we have the following result.

Corollary 4.2. Under assumptions (A1)—(Ab), there exists a S = S(e||(vo, wo)|) >
0, such that has a unique mild solution (v,w) on [0,S). Furthermore, if
(ug,u1) € H*(R) x HYY(R), then (v,w) becomes a strong solution. Moreover, if
the lifespan T = T (&) of the mild solution to is finite, then

siiggs) ”(va)”Hl'l(R)XHO’l(R) =

In particular, for each given Sy > 0, there exists a €5 > 0, such that for each
e €10,e5), the solution to (3.3)) will exist on [0, Sp], i.e., So < S(e).

In the sequel, to simplify calculations, applying a simple density argument and
using the continuous dependence on initial data guaranteed by Theorem [2.4] we can
assume that the initial data (v, wg) € H*'x H%! and (v,w) is the strong solution
to . We can establish the following crucial priori estimate for the unique mild
solution to , which plays a fundamental role in the proof of Theorem

Proposition 4.3. Under assumptions (A1)—(A5), there exist s > 0, &y > 0, and
C. > 0 such that for each e € [0,&y), if (v,w) is the unique mild solution to (3.3)
on [0, 8], where S > sq, then

—S

e
lv(s) [ + WIIUJ(S)II%M < Cug?||(vo, wo) i1 o Vs € [50,8]. (4.1)
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To prove Proposition [1.3] we will decompose v and w into the leading terms and
the remainder terms. Subsequently, we will employ the energy argument to derive
the decay estimates for the remainder terms.

4.1. Proof of Proposition Let
. da(s
a(s) :/v(&y)dy7 a(s) = d( ), (4.2)
R s

since v(s) € HYH(R), for all s € [0,5), a(s) is well defined by Sobolev’s embedding
theorem.

Lemma 4.4. We have

d(jl(;) - /R“’(S’y)dyv (4.3)
e~ s d2a(s) B e '
b(t(s)) ds* b2(t(s))0‘(s)_O‘(S)JF/RT(&y)dy, (4.4)

where 7(s,y) is given by (3.4)).
Proof. Note v(s) € C*([0,5); H-1(R)) and w(s) € C([0,5); H*X(R)), (4.3) follows
from (3.3) and integration by parts
da(s) [y v _ / y _ /
T /]R (21)9 +3 +w)dy = 5 ((zv)y +w)dy = Rw(s,y)dy.

Differentiating (4.3]) and using (3.3)), we have
e d*a(s)
b2(t(s)) ds?

—Ss

= m/ﬂ{ws(s,y)d(y
e’ 3 y s
N Iﬂ(t(s))/R(2w+ §wy)dy*/R(w* (alye /Q)Uy)y)der/r(s,y)dy

R
= #_(s)) /Rw(&y)dy - /Rwdy + /]R(a(yes/Q)vy)ydy + /Rr(s,y)dy
5 d d
- Fa e ® o+ [, 0
We set
poly) = . : exp(— i )
Viam Jag +\/az 4d(iv) ’ (4.5)
Yo(y) = (@(y)eo(y)y = —%%(y) — 5%0,
where ay and a(z) are given by and it is easy to verify that
/@o(y)dy =1 and /wo(y)dy =0. (4.6)
R R

We decompose (v, w) as

v(s,y) = a(s)eo(y) + f(s,9),
w(s,y) = &(s)po(y) + a(s)vo(y) + g(s, ).
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By Definition L1}
(f.9) € C([0,9); H*'(R) x H"'(R)) nC'([0,5); H''(R) x H*'(R)),  (4.8)
and from and it follows that

/ f(s,9)dy = / (0(s,9) — a(s)p0(y))dy = a(s) — als) =0,
R R

(4.9)
[ ats.ndy = [ (wls9) = 6l)ps) = ale)ialo) = (s) = () =0,
Substituting into gives
fs_%fy_%f:,_(]? S>07y€Rv
e 3.y
(i) (9s = 59— 59) +9 (410

= (a(ye*’?) fy)y + als)(ao(ye**) 4 (y))y + his,y), s >0,y €R,
f(0,9) = v(0,9) —a(O)po(y), yeR,
g(oay) = w(07y) - a(0)¢0(y) - a(o)l/fo(y), /S ]Ra

where

—S

h(s9) = g (~26(6)0(y) + ) L) + S90(»)))

P(U(s)) o
+r(5,) — o) / (s, y)dy,

here we have used (4.5) and a(x) = a(z) + ag(x). From (4.6) and (4.9) we deduce
that [ h(s,y)dy = 0.
To obtain decay estimates for f and g, we define

F(s,y) = /io f(s,2)dz, G(s,y) = /io g(s, z)dz.

Lemma 4.5 (Hardy-type inequality, [16]). If f € H*'(R) satisfies [, f(y)dy =0,
then for F(y) = [Y_ f(z)dz, it holds

/RF2(y)dy < 4/Ry2f2(y)dy- (4.12)
From - and Lemma
(F,G) € C(0,5); H*°(R) x H**(R)) N C'([0,5); H*°(R) x H"°(R))  (4.13)
satisfies
1
Fs — in =G,

675

M(Gs - %yGy — @) + G = a(s)ao(ye™ )y (y) + alye®)Fyy + H, (4.14)

where s > 0, y € R, and
Y
H(s,y) :/ h(s, z)dz. (4.15)
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We define the following energies
1 e’ G? 1
Eo(s)== | (F? 4+ —————)dy F? F d
o) =5 (B iy ageem) / e P g PO
1 £\ g2 e’ e*/2)
El(s) - 2 /]R(a(ye )fy REECYZYIRNY bg(t( ) y+a Aao @Ofydy
e~
+ Zyo— dy,
[+ 2y o)
1 2 s/2ve2 , €0 99 / 2 s/24, 1
EQ(S) - 2 /]R<y a(ye )fy + bZ(t(s))y g )dy+a(3) ]Ry ao(ye )“Pofydy

+/R(%y2f2+ bgitlz))nyg)dy?

E4(S) = C()Eo(s) + ClEl(S) + EQ(S) + E3(S),

where
1 e™® /da(s)\2 _
Fals) — — ( ) Coe= 2502 (s),
38 = s mae\Tas ) Tl
1« 0 < Cy, Cy >0 and A > 0 are given by Lemma and Lemma [£.11
respectively. We have the following identities which will be used in the proof of

Proposition

Lemma 4.6. (1)
d

L Bo(s) + 5 Fo(s) + Lo(s) = Rofs), (4.16)

where

Lols) = /R<%F5 * a(yib‘/?)Gz)dy’
3 e® o, 1 db(t(s)) 1 9
Bols) =3 <>>/ <yeé/2>Gdy ) g7} (C° +2FC)dy

b2
/ ooy ((0(o)anlue )¢+ H)(F + G ).
(2)
LB(s) + L Br(s) + Las) = ), (4.17)
where
Ly(s) = / (a(yesﬂ)fz > )y,
R1(8)=3#_&))/9 dy + 2 /fg Yy
1 dHs) [, | o
e / (6" + 4fa)dy -+ (6(s) — a(s)) [ anlue )b f, dy
~a9) [ Lebm oty )y + [ (ha+ 20y
(3) ) 1
%EQ(S) + EEQ(S) + LQ(S) = RQ(S), (418)



14 Y. LI, H. LIU, F. GUO EJDE—2024/04
where
1
La(s) = [ (3alve™ s} + 470 )y +2 [ walye)£,(f + g)dy,
R R
. e * 3
&@%4M®—a@)/f%@@%%@MMHuy——/fff@
. B2(t(s)) Jp 2

3
=) [ Gaalue () du—20(5) [ aolue)eb(0)(f + o)y

)
1 db(t(s))
B2(t(s)) dt

/ v (g° +2fg)dy + / v (fh+ gh)dy.
R R

(4)
%Eg,(s) F20Es(s) + (dfi(;))Q = Ry(s), (4.19)
where
1 e ®  rda(s)\? 1 db(t(s)) rda(s)\2
Ra(s) = 522+ 1)b2(t(s))< ) - R((s)  dt (%)
+ d%is) /Rr(s,y)dy—F 202672)\8(1(8)61627((95)
(5)
d%@@) + ONEx(s) + La(s) = Ra(s), (4.20)
where

1
Ly(s) = (5 —2X)(CoEo + C1Ey + E9) + CoLg + C1Ly + Lo + (

R4(S) = C()R()(S) + C1 Ry (S) + RQ(S) + R3(8).

Proof. Clearly, (4.20) is the sum of (4.16)-(4.19)), (4.19) can be derived by differen-
tiating E3(s) directly, and (4.17)), (4.18)) are similar to (4.16]), so it suffices to prove

(4.16). Differentiating Eq(s) gives

wioy:

~ s (%/ (yijmdy) (4.21)

4 1 lpo e 1 2 /
+ds(4a(yes/2)(2F +b2(t(s))FG)dy) +4/RFydy+ | FyGydy,

1
/FysFydy—/(ZFF + 2FyQ+FG )dy
R

:/((4F;) +LFR 4 RG,)dy

1
7/4 ydy"‘/FyGydy

has been used. For convenience, we define

Fls,2) = F(s,9) = Fls,ze™/%),  Gls,2) = G(s,y) = Gls, v
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Note dy = e~*/2dx,

ﬁs(s,x) =F, — ng, és(s,x) =G5 — %Gy.

Therefore,
d 1 1
~(Z N 7
ds (2 /R a(yes/2) dy)

=55 [ )

1/ 1 o~y 1 B

=—— [ —F~¢ S/de—k/insF T,8 /24y

1)z a(@) g (o)’ o s)e

= 1/LFCZ +/LF( Yp,+ F)d

e ) VT Jpater) 2t T Y
Y 1. o
—ZFF,— -F
/Rayes/2 27 7Y 4 )y

|

/Rayes/Q iF )dy7

2b2 5) /Ra( o72) G2dy)
: (zbzftu»/RcmGz i)
= Zerts )/R% Gre _S/Zd“b%?))l«ﬁééseﬂdm
- B v /. a<1x> G
= 7] [, apes (66 - 566, - S6a)
b2(t1(8)dbd ))/ (yels/z)GQdy
= ) o s 16~ e @+ [ FwGi

o 1 db 1,
+ RW(H+Q( s)ao(ye’?)¢ )G y— Wdt(t( ))/a(yes/z)G dy,

and

e—S

i (ay Jy agermy )

-2 (m / %@ﬁéeﬂ/zdm)

= ) o s~ 2ty O~ [, e P
O e LT s ) R R

15



16 Y. LI, H. LIU, F. GUO EJDE-2024/04

—S

) ! # als)a 65/2 /
(t(s)) /]R a(ye“"/Q)FGdy+/]R a(yes/?) (HF + a(s)ao(ye?)po F) dy.

Substituting the three identities above into (4.21]), we have
d 1 1 1
L By(s) = —=Eo(s) — <7F2 7G2>d
< Eo(s) = —5 Bols) /R 3E s )

1 db(t(s)) o
TR dt /Ra(yes/z)(G +2FG)dy

1 3/2 S
Jr/JRCl(yes/Q)((l*ﬁJrG)(Oéao(ye )b +H))dy+ 252(t(8))/RG2dy

= f%EO(s) — Lo(s) + Ro(s). -

+b2

We define 1o = min(0, u),
A= a7 [z aol| 2wyl Yl @017 0 r) »
B = g*1|||x\“°a0||%2(m)” ‘y|17”0@6||i&(ﬂ§) .

Lemma 4.7. [f0 < A < i—i— £, Cy > 2(C1A+ B), then there exists a sy > 0 such

that for each s > s1,
e * e rda(s)\2 & _

E ~ 2 - 2 ( ) 2As 2 . 4.292

4(5) ||fHH1’1 + bz(t(s)) ||g||H0,1 + b2(t(8)) ds +e o (8) ( )

Proof. In view of the definition of FEy, it suffices to estimate Ey, E; and Es. By

Lemma, (3.2 there exists a s; > 0 such that for each s > s, #(;) < é. As for

the terms containing F'G and fg in Ey, E7 and FEs, for s > s1, Young’s inequality

shows that

e * 1 e—5 1 1 , ,
|b2(t(5))/Ra(y65/2)FGdy| < bQ(t(S))/Ra(yeS/Q)(SG + 2F )dy

e’ e’ 9 1 4
|2b2(t(s))/ngdy| §2b2(t(s))/R(2f +§9 )dy

1 1 e %
< Z 2 z 2
< 2/Rf W IR () /Rg W

and

e e 1
iy Lol < gy [0 08+ o)

—S

1 2,2 1 e /22
- dy + = —— dy.
4/Ryf y+8b2(t(5)) Ryg y

IN

Hence
1 1 1 1 e* 1
[ N T O B SR | / GPdy.  (4.23
0(8) =9 /]R Yy Y + 4 /R a(yes/Q) y + 4 b2(t(5)) R a(yeS/z) Y ( )

To obtain the lower bound estimates for E; and F», it suffices to estimate

a(s) / aolye?)ohfydy and  a(s) / V2ao(ye*’?)oh fody.
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It is easy to see that |z|*0ag(z) € L*(R) and |y| ¢} (y) € L°°(R) by assumption
(A5), so

1 5/2Y £2 2 1 /2 2
1 [ e gy 02(s) [ s fan(we )t

IN

la(s) / ao(ye*’?) gy

1 _
<5 [ oler’) f2dy + a7 a5 lao(we” 2 et s

R

and
llao(ye’?) el 2y = llao(ye®’?) (ye*?) 7+ (ye*/ )0 h || Lz )
_ (10
< Ny 0 0h | oo ) llao (@) 20| L2 ry e~ G2,

then

1 _o(ly B0y,
|a(s) /R%(yesﬂ)%fydﬂ <3 Aa(yes/2>f5dy+z4e 2H502(s). (4.24)

Similarly, we have

|(s) / y2ao(ye*/?)gh fydy|
R

1 2
< = 2 s/2 2d 2 / s/2\, d
<3 [ratoe ) fy+ o2s) [ s uaolue )y
1 _
< 1 [ Palve sy + a0 ) lyaolye b e
R
and
lyao(ye*) el 2@y = Ilyao(ye®’ ) (ye* ) (ye**) 7 || L2 my
< Nyl b ey lao(ye™/) (ye /20 (/%) 70 | o ey
) 1/2
< Ny gl ( [ antaatioe bt )
R
< Iyl = 0 oo ) llao (@) [ || L2ye 5,
then

1 _o(l B0y,
|as) / yPao(ye”*)ep fydy| < / yPalye*?) fydy + Bo®(s)e 2080 (4.25)
R R

So

1 s/ e 1
Bi(5)> 5 [ o)+ oo dtdu+ [ Pay—g [ fay
1 e )
- Zm/Rg2dy+a(5)‘/RCLO(yesm)SDofydy
1 y 1 1 e
> 5 [ater sy 5 [ Py s | s

- Aaz(s)e_Q(%+u§)s

(4.26)
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and

Bas) = 5 [ oPlale’) +

1
3

62?&8))92)dy+ i /Ryzfzdy

e’ 9.9 2 $/2Y, ./
ygdy+a8/ya ye® ) o fydy
| #wm ) J ¥ aolve)eoly
3 e *®

1
> 2 s/2 2d e / 2 2d
/Ry a(ye*’=) fy y+87b2(t(5)) Vo

— 4
+1/y2f2dy—Ba2(s)e_2(%+%)s.
R

(4.27)

4
Note Cy > 2(C1A+ B) and ) < i + K2, it is easy to see that
1 K 1 K ].
Che=22a?(s) — AC1e 2130502 (5) — Be 23+3)502(5) > 56’26*2)‘80[2(5),
then by combining (4.23)), (4.26) and (4.27)), we obtain the lower bound
1 e® 1 e® (da(s))2

1 . 2 2
Ba(s) 2 gmin(L )|l + gy ol + g\ Tas

1
+ 5026_2)\5042(5)

> C(If 70 +

€

b2(t(s))

2 e rda(s)\2 | _oxs o
Il + gy (Tas ) +e a6,

where C' = 1 min(1, a).
The upper bound for Ey(s), E1(s) and Es(s) are obtained similarly:

1 3 e *
< = 2 2 2
Fo(s) < 2/RFydy+4@/R(F +b2(t(s))G )dy,

3 s 3 3 —s .
Bi(s) <5 /R alye’) fdy + 2 /R Py + 3o /R 2y (4.28)

+ Aa2(s)e_2(%+%)s

and

3 3 5 e *
E <2 s/2y,,2 2d 7/ 2 2d 77/ 2 2d
2(5)_4/}}{@@6 v 1y y+4 Ryf y+8b2 Ryg Y

(t(s)) (4.29)

+ Ba?(s)e 2at3)s,
Therefore the upper bound for E4(s) can be formulated by Lemma as
E4(S) = C()EQ + C]_El + EQ + E3

gCo(%/RF;(y)dy+%/R(F2+ bzz:(;)GQ)dy)

+Cl(i/Ra(yeg)f§dy+i/Rth(Z))g?der2/Rf2dy)

3 . 3
+Z/y2a(ye /2)f§dy+1/y2f2dy
R R

5 e 5 5 1 e rsda(s)\2 54 o
+§/Rb2(t(s))y gy + §b2(t(s))( ) ea)

+ C’1Aa2(s)e_2(%+%)s + Baz(s)e_Q(iJr%)s
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et rda(s)\2 | _ox o
< 1,1 0,1 To /.7 N\ s 9
C (11 + argylollios + gy (S )+ %)
WhereC’:C’(A B Oo,cl,CQ,HClHLoo,Q). ([l
Lemma 4.8. If0 <A< 1+ £ then

2a(9) 2 O (I B + gl + (50) e a2(s)) (430

holds for s > s1, where Ly(s) and s are given by Lemmas and respectively.
Proof. shows Fy(s) > 0. From and (£.27), we have

C1Fy + By > —C1Ad?(s)e™ 2(4+30) — Ba®(s)e” 2G+5)s
—(C1A + B)a?(s)e 2,

here we have used 0 < A\ < % + % Note the definition of Ly(s), it suffices to
estimate CoLg + C1L1 + Lo. In fact,

2
2

2

_ 1o G s/2yp2 | 2 g2
COLO+CIL1+L2_CO‘/R(2Fy+CL(yes/2)>dy+Cl/R<a(ye )fy +yg f )dy

1
+/(§y2a(yes/2)fy2 +y292)dy+2/ya(yes/Q)fy(erg)dy
R R
C
> D [ Paysca | gavec [ a-c [ fay
R R R R

a
+g/nyﬁdy+/y292dy+2@/yfy(f+g)dy
R R R
Young’s inequality implies
a
2@\/ yfy(f + 9)dy| < :/yszderSQ/(fz + 9%)dy,
R 4 Jr R
then
C
CoLo +C1Ly + La > (70 — C1 — 8a) / [Py + Cl@/ fody + % / y? fody
R R R

+(Cy — 8a) / g*dy + / y2gdy
R R

> C(If Iz + gl Fon)- O
Let

o) = Bio) + 50%6) + o

Lemma 4.9. Under the conditions of Lemma@ there exists a sy > s1 such that
for each s > sq,

Es(s) ~ [IfF +

—9 —S

e da(s)\2
b2 (i (s ))HQHHM +a’(s) + W(T) - (4.31)

Proof. In view of the definition of Fs5(s), by Lemma we only need to estimate
da(s)

#(;))a(s) . Indeed, by Young’s inequality, for each n >0,

e $ da
)l <o

e 9 e  rda(s)\2
ey (SH”b?(t(s))( )
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Choose 7 sufficiently small such that

e ® rda(s)\2 1
— (/) <ZE
T2 (1(s)) ( ds ) < g Fals)
for each s > s;. In view of Lemma there exists a sy > s; such that for each

—s

5> S, C(n)moﬂ(s) < 1a2(s). Then

This and (4.22)) show that

2 e’ 2 2 e *  (do(s)?
191+ gagegapylolios +0%6) + gy (Fge) < OBss).

The upper bound estimate for F5(s) can be similarly derived. 0

Lemma 4.10. We have
d
£E5(s) + 2X\E4(s) + La(s) = Rs(s), (4.32)

where

R5(8) = R4(S) +

e sda(s)\2 2 db(t(s)) da(s)
b2(t(s)))< ds ) _bz(t(s)) at a(s)

+0¢(8)/R?"(s,y)dy7

r(s,y) and Ry(s) are given by (3.4]) and (4.20)), respectively.
Proof. (4.32)) follows from Lemma (4.20]), and the direct calculation:

d _d . e~ * da(s)\2 e’ d*a(s)
%E“S)*%E‘*(S)”‘(S)O‘(S”b2<t(s)))( ) o)) ) as
2 db(t(s)) da(s) e ® da(s)

ey @ O T e s

o d e * da(s)\2 2 db(t(s)) da(s)
= P ey (%) - ) at s
+afs) /Rr(s,y)dy- O
Lemma 4.11. Let A\ = min{i + B2, Xo, A1}, where
=8y I v
)‘O_mm{1+571+ﬂ_§’1+ﬂ_ b (4.33)
A = %(pl +2p2 + (3 — %)Ps _3)7

then there exists a so > so (as defined in Lemma , such that for each s > sg,
we have the following estimates

|Ra(s)| < n(La(s) + e 2**a?(s)) + Cn)e > Es(s)
+ (e M By (s 72 (Bs(s)P + (La(s) + e 2*a?(5))"),
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[Rs(s)] < n(La(s) + €= 2%a2(s)) + Cln)e Es(s)

+ C(n)672A15E5(5)p1+p2 (E5(s)p3 + (L4(s) + 672)\5052(5))1)3)

+ Clne ™ By (s) T

Here, ﬁ and 712@?3 are regarded as sufficiently large numbers when 8 = —1 and

ps # 0, n is any positive constants, Ry(s) and Rs(s) are given in Lemmas[4.6 and
respectively.

We postpone the proof of Lemma[f.11]and now complete the proof of Proposition
4.3l The combination of Lemmas and gives

L B (5) + La(s) = Rs(s) — 20Ea(s)

ds
< n(La(s) + e 2a(s)) + C(n)e *Es(s)
+ C(n)e M5 Es (s)P 172 (E5 ()7 +(La(s) + e **a?(s))"™)
+ C(n p1+p22+pg+1

Note that from Lemma we know a?(s) can be controlled by Ej5(s), so choose
n =1/2, for each s > sg, when ps = 0, we have

- =

e M Ex(s)

d ; ; ; p1tpotl
- B5(s) < Ce M Ey(s) + Cln)e™ "B (5) 7 + Cln)e™ " By(s) 5

and when p3 = 1, we have

%Es(S) < Ce ™ E5(s) + Cn)e 1 By (s)P 472 (E5(s) + La(s) (4.35)

+ e_D‘SaQ(s)) + C(r])e_)‘lsE5(s) pLEp2E

(4.34)

We set ,
A(s) = exp(—C/ e dr).

kas
Obviously, P < A(s) <1 for each s > sp and A(sg) = 1, where sq is given
in Lemma Multiplying A(s) on both sides of (4.34) and integrating on the

interval [sg, s|, we obtain

p1tpa+1
Jdr.

(4.36)

A(S)E5(8) < E5(80) + C/q A(T) [e—Qz\lTEs(T)Pl-‘rpz + e—)qTES(T)

Let

M(s) = sup Es(7).
so<1<s

As A\ > 0, (4.36]) implies that, for each s > sq,
M(s) < CM(S()) + C(M(S)P1+P2 + M(S)%m“)

From the proof of Theorem [2:4] there exists a small &y > 0, such that for each
e € (0,&0], [[(v(s0),w(s0))||gr1xmo1 < 2C(sg)loe, then by Lemma we obtain

M (s0) < Cls0) (I(f(50), 9(s0) 711y + *(s0) + ét(s0)?)

) 5 o (4.37)
< C(s0)[[(v(s0), wlso)) 7.1 x roa < Cls0)e™ g,
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then

p1+p2+ )
)

M(s) < C3eI§ + C5 (M (s)P P2 4+ M(s) Vs> sg. (4.38)
Multiplying by A(s) on both sides of (4.35]), similar to (4.36)), we have

A(s)E5(s) < Es(so) + /8 A(T)e M7 B (1)Pr P2 (Ly (1) + e a?(7))dr

e / [A(r)e N7 By ()Pt 4 A(r)e N7 By (r) 2
then, for each s > sg,

M(s) < M(so) +C ) M(1)PrP2 L, (7)dr + C(M(s)PrTP2F!
o (4.39)

p1+po+2

+M(s) =),
SO s
M(s) < C3e’I2 + C3M (s)Pr P2 / Ly(7)dr
s0 (4.40)

p1+po+2
3 )

+ Cy(M(s)P P4 4 M ()
We take &g sufficiently small such that
2036212 > C3e®I2 + Cs[(4C32I2)P1HP2 4 (4C5e2[2)PrHP2t1)/2)
and
2056% 12 > C3e®IZ + C3(4C3e% I3)P1 P2 / ) Ly(1)dr

S0
P1+p2+2

+ C3((4C3e®I2)Pr P2l 1 (405 17) )

hold for each ¢ € (0,&p]. By the continuous induction method, from (4.37)), (4.38)
and (4.40), for each s > s¢ and € € (0, &p), it follows that

M(s) < 2C3€2||(vo, wo)| %11 5 o1 (4.41)
by Lemma ie.,

110 + 55y gl o + a®(s) +

e ®  rda(s)\2 9 5
< .
bg( ( )) bQ(t(S))( ds ) <Ce H(UO,'LUO)||H171><H°>1
Consequently, by (4.7 , for each s > s¢ and € € (0,£p), we have

lo()lFa + 55y lw($) s < Ce?[[(vo, wo)ll3r o
b ( (s))
which completes the proof of Proposition

Proof of Theorem [2.5] For the proof we use Corollary [£.2] and Proposmon

Step 1: Global well—posedness. For sp > 0, as given in Lemma[£.11] it follows from
Corollary that there exists a €fj > 0 such that for each € € [0, &), the mild solu-
tion (v, w) uniquely exists on [0, so] and S(g) > so. Let &1 = min(ef, £y), where & is
given by Proposition Tt is claimed that for each € € (0,e1], S(g) = oo. Indeed,
if there exists a e, € (0,¢1] such that S(e,) < o0, let (v, w) be the corresponding
mild solution to (3.3), then by Proposition for each s € [sg, S(e4)),

—S

(&
[o(s)][Fr2a + WHW(S)H%M < Cue?||(vo, wo)[| 1.1 x rro.s- (4.42)
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However, it follows from Corollary that lim,_, ()
00, which contradicts (4.42]).

Step 2: Asymptotic profile. Taking n = 1/4 in Lemma and using ([4.20]), we
have

1
< 1L4(5) + Ce 22 By (s) + Ce 28 By (5)P1P21Ps L O™ 228 By (5)P1HP2 [, (5)P2

1
< 1L4(8) + Ce 22 By (s) + Ce 28 By (5)PrHP2HPs - 0(2056% I2)PL P2 Ly (s)P2.
We provide the proof only for the case when ps = 1 because the case of p3 = 0
can be handled similarly. Take a small ; such that % + C(2C3e21y)P11P2 < % for

each € € (0,e1], then

d 1
—FE4(8) + 2MAE4(s) + §L4(s) < Ce 2 Ey(s) + Ce 2N By (s)Pr T2l

‘('Uaw)(s)”Hlvl(R)xHOvl(R) =

ds
< Ce™ 2| (uo, w1) | B o
multiplying by e?** gives
d  9x e 2 2
75\€ 7 Ea(s)) + ——Lals) < Cc|(uo, un) [ o
ie.,
i 2)s e —2Xs 2
(e**Eq(s))+ (La(s) +e o’ (s))

ds
< 062”(“0, U1)||2HlTlXHo,1 + (12(8)
< O (uo, ur) | B o

where Lemma has been used. Integrating (4.43)) on [so, s], multiplying by e~2*¢
and using Lemma [{.8] we have

1 ° —2A(s—T .
E4(8)+§/ e P + llgllFron + 62(s))dr

50

(4.43)

< Ce™2e2(5 — 50| (w0, w1)|| 311 o o -

Note that when s < 5§ < s,

a(s) —a(@) = ([ Grinar)’

s s d

< (/ 672)\Td7') (/ ezAT(—a(T))sz)
< s dr

< Ce™ 2 (uo, un) 31 o

so @ = lim, 4o as) exists and |a(s) — a*|> < Ce™22€%(|(uo, u1) || %11y o -
Therefore,

lo(s) = a*@oll3s < 20 ()7 + 2lals) — o *ol3r.a
< Ce™ 2| (uo, un) | Frar o
By and G(B(t) + 1,z) = (B(t) + 1)~ 2 ((B(t) + 1)~/2z), we infer that
lu(t,-) = a*G(B() + 1) 72 < C>(B(8) + 1) 2| (uo, w1 )| x g0,
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Proof of Lemma To obtain the upper bound of |R4(s)| and |R5(s)|, in
view of their definitions, we need to estimate the H%! norms of r(s),h(s) and
H(s). Recall that r(s) is defined by (3.4).

Lemma 4.12. Under assumptions (2.1)) and (2.3), we have

He3s/2N(e—S/%, e vy, b_l(f(s))e_?’s/gw) ||i10,1

< Cm (s +a29)" 7 (gl + %) + (1))

holds for each s > 0, where \1 is defined by (4.33)).
Proof. There are two cases according to the value of 3.
Case 1: 8 € (—1,1). By Lemma[3.2and (2.3)), we have
(14 y%)e** N? (6_3/21), e vy, b_l(t(s))e_gs/zw)
< C(l + y2)e3se—pls|,U|2p16—2pgs|Uy|2p267(37%1’3)s|w‘2p3
= O+ )2 o2 o, 272 w22,
obolev’s inequality shows that |[v(s)||L~ < V(S)|| g0, then
Sobolev’s i lity sh h <C h
(L+y2)e 220w v, |22 |w[?Pe
= 66*2/\18(1 + y2)1fpzfp3(1 + y2)p2(1 + y2)p3|U2‘p1+pz+p371‘v2|17p27p3|U§|p2‘w2‘ps
< Oe—Q)qSH,U(S)||§}117,10+P2+p3*1)((1 + y2)v2)1_p2—P3 ((1 + y2)U§)P2 ((1 + yZ)wZ)PS.
So by Holder’s inequality,
He?’S/QN(e_S/Qv, e vy, bt (t(s))e‘3s/2w) HZU,I
—2\1s 2(p1+p2+p3—1 2(1—p2— 2 2
< O™ o) [0 7 Vo) 557 7 o) 1372l (s) 1352,
oAys 2(p1+pa—1 2
< Ce™ 7 lu(s) |50V o) 3w (s) 1722
< Ce 2 (I f [l + ()P (gl oa + als) + éls)) ™

< e (1 + 029" (oo + 0%(s) + (L))

Case 2: f=—1, ps #0. By Lemma and (2.3]), we obtain
(1+y?)e>* N? (6_5/2’0, e vy, b_l(t(s))e_?’s/Qw)
<O+ y2)6(3*pr2pr3p3)sb*p3 (t(s))|v|2p1 |vy|2p2|w|2p3
< C(L+y?)e M oPr]u, |22 w|
< C(L+y?)e 2% [uf*Pr oy P2 |w] P2,
here we have used b=1(t(s)) ~ exp(—e®) by Lemma and A\, = 2% ps + (p1 +

2p2 + 3ps — 3) > 2); is regarded as a sufficiently large number. Then (4.44) can be
derived similarly to Case 1. (]
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Lemma 4.13. Under assumptions (Al)—(A4), for each s > 0, we have
I7(3)l[77o.1
< 0o (| 3+ lglfon +a%(s) + (2220)7)
0P ([l + a2(6)"™ 7 (Jalos +%(9) + (%),
where 1(s) is given by [B.4), Ao and A1 are given by (4.33).
Proof. By the definition of r(s), it suffices to estimate

b2(t1(s)) db(fzis)) +e*/2e(t(s))vy + e*d(t(s))v-
Combining with
1 db(t(s)

2(t(s))  dt Wl

2(1—8)s

da(s) 2 e 1A Be(-1,1)
< C(llgll3ron +a?(s) + x ’ T
< (HQHHO a (3) ( ds ) ) eXp(—4es), B=-1,

s/2 2 2 2
[e*/2e(t(5))w s < C IS s +a%(s)) X {exp(—2763+8)7 51

e—(%%)s’ ge (-1
exp(—2ve® +2s). f=-1,
we obtain, where Lemma and have been used.
Lemma 4.14. Under assumptions (Al)—(A4),

()10

< e (171 + gl +a2(s) + (“52)7)

?
) S . da(s 3
FCE (|l + %) P (ol + 02() + (227

holds for each s > 0, where h(s), Ao, A1 are given by (4.11) and (4.33)).
Proof. Clearly,

le*d(t(s))vllFron < C(I1f 71 + a®(s)) x {

2da(s) 2

Hbga;) (2% o) + ats) (B ) + 390»)) )|

HO,1

< (22 ) + as) (L) + 200)) [
X eATFS B (~1,1),
exp(—2e® —s), B=-1

< Ce 2062 (s) o () IFon + a®(9) %o (y) 1 F01)
< Ce %43 (s) + a?(s)).

e_(%_l)s, ge (-1

25

(4.45)

1)

1)

(4.46)
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Holder’s inequality gives

|/ s,)dy| < /1+y2dy)1/2(/R(1+y2)7“2(579)dy>1/2 (4.47)
< Cfr(s,)llmor.

Then in view of the definition of h(s), (4.46) follows from Lemma O

Lemma 4.15. Under assumptions (Al)f( 4), for each s > 0, we have
da(s)

=)
+ O™ (|| +a%(5)" 7 (llglhoa +a(s) + (
where H(s), Ao, A1 are given by and .
Proof. By Lemma [£.5]
[y <4 [ sy < A1)

A direct calculation and Young’s inequality show that

/yZHQ(&y)dy:/ yQHZ(syy)dyﬂL/ y*H>(s,y)dy
R ly|<1

1 (s)[1F01 < Ce™ 2 (ILf 1 + lglFron +a?(s) + (

W)

ly|>1
< H2(S,y)dy+/ y>H?(s,y)dy
ly|<1 ly|>1
< 4(s) s 6 [ PG Dy
y|>1

y2H?dy + 72 / y2h2dy,
ly|>1

1
< 4|\h(s) |50 + 5/

ly|>1
SO

/Ry2H2(8,y)dy < C/Ryth(s,y)dy < [[A(s) 101
Then Lemma [4.15| can be deduced by Lemma [4.14] (Il

Proof of Lemma[4. 11 Recall that R4(s) = CoRo(s) + C1R1(s) + Ra(s) + Rs(s),
where R;(s) (i = 0,1,2,3) are defined by (4.16))-(4.19). Lemmas and

Young’s inequality show that there exists a s3 > s2 such that the terms that do not
include 7(s,y), h(s,y) and H(s,y) can be controlled by n(L4(s) + e~ 2**a?(s)) +
C(n)e 2 *E5(s). For example

| / a7 @(an(ue ) (F + G|

(1F 1 22 + 1G]l =) (| llao (ye* ) g 22)
(4.48)

< = (s + lgllmon) + Cln)e2C+ #1202 (5))

(n(Las) + € 2%a%(s) + Cln)e ™ Es(s)).

The other terms can be estimated similarly. The remainder terms consist of

/]R (F +G)Hdy, /R (14 [y*)(f + g)hdy, di;is) /R r(s,y)dy.

IA
Q \@\H\@\P—‘
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Using Lemmas [£.5] [£:8] [£:9] [£:14] [4.15] and Young’s inequality, the first two terms
can be controlled by

(La+e™*a(s)) + Cn)e”* Es(s)
+ Clnye 2 By ()" 172 (B (s)" + (La + e~V (5)) ).

For example,

| /R (F+ G)Hdy|
< C(|F[lzz + IGllp2) [ H] L2
< COI I + lgl00) + ClIAlIZ0.) (4.49)
< n(La + €722 a%(s)) + C(n)e > Bs(s)
+ C(n)e >N B (s)P1 172 (B5(s)P + (La + €0’ (s))P*).
In addition, Young’s inequality implies

|(/RT(S,y)dy> dc;<:> | < n(d(zlf)f + C(n)(/RT(s,y)dy)z,

then the third term can be estimated by using Lemmas and (4.47).

So far, the estimate for Ry(s) has been obtained. )
Note that Rs(s) defined in Lemma can be rewritten as R5(s) = Rs(s) +
R4(s), where

~ e ®  rda(s)\2 2 db(t(s)) da(s
Ra) = s (Y0 = @ g L als) [ r(s.ai

so it suffices to estimate R5(S). Obviously, there exists a s4 > s9 such that for each
S Z S4,

e~ rda(s)\?2 2 db(t(s)) da(s)
bz(t(s))< ds ) e Y T e ds

< n(La+ 0’ (s)) + Cn)e” " Es(s).
Using Lemma (E47) and |a(s)| < CEs(s)"/? (by Lemma[4.9), there exists a

S5 > 89, such that for each s > ss,

la(s) / (5, 9)dy] < |a(s)][I7(5)]] o
< CE5(S)1/2[(L4(S) +e—2>\sa2(8))1/2 +6—A0sE5(S)1/2]

p1+po+1

+ Ce—)\lsES(s) 2 (E5(8)p3/2 + (La(s) + 672)\8012(3))173/2)
§ ﬁ(L4($) + 6_2)\5042(8)) + CG_ASE5(S)

p1+po+1

O By () S (B ()12 4 (La(s) + =P 0%(5))72).

If p3 =1 and

p1+po+1

*AISE5(S) 5 (L4+672Asa2(8))1/2
< n(Lg + e 2402 (s)) 4+ C(n)e 28 By (s)Prretl

@
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then
|a(s) /Rr(s, y)dy| < n(La(s) + e 2*a%(s)) + Ce **Fs(s)

p1+pot+p3+1
2

+C€7)‘18E5(S) + C(n)672)\18E5(S)P1+P2+p3.

The case of p3 = 0 can be estimated similarly. Setting sy = max{ss, s4, 55}, the
estimate for Rs5(s) can be obtained. O

5. PROOF OF THEOREM
For each s, > 0, let M (s) = sup,, <, <, E5(7), A(s) = exp(~C f:* e~ dr), where
Es5(s) is defined in Lemma Then (4.31) implies that

M)~ sup (ol + gl ) o)

Lemma 5.1. Under assumptions (A1)—(A5), where (2.3) is replaced by (2.10),
there exist s, > 0, C' > 0 such that for each s > s, and each solution (v,w) to

(13.3), we have
M(s) < M(s,) + CeBPUs M ()P + Ce 35 M (s)2 (5.1)

Proof. As in the proof of Proposition by Lemmas and we have

L Ey(s) + Lals) < n(Lals) + ¢ %02(3)) + Cloje > Ei(s)

p1+1

+C(n)e M By (s)P + Cln)e M Bs(s) =,
letting n = 1/2 and using Lemma we deduce that

d
— E5(s) < Ce M E5(s) + Ce M5 e (s)P
9 (o) (s) S 5

+ Ce_Q’\13E5(s)p1 + Ce_)‘lsE5(s) P

In the following, it suffices to estimate the upper bound for L4(s). Indeed, note
that

L4(S) = (% - 2)\)(00E0(8) + ClEl(S) + EQ(S)) + CoLo(S) + ClLl(S)

+ Lo(s) + a2 (s).
From (4.28), (4.29), and (4.31)), it follows that
C()E()(S) + ClEl(S) + CQEQ(S) < CE5(S)

Lemma [£.5] gives
CQLQ(S) =+ ClLl(S) + LQ(S) =+ d2(8)

1 1 .
= CO/R(iFyQ + WGQ)dy + Cl /R(a(e‘ /Zy)fg + 92 - fQ)dy

+/(%3/261(65/23/)]?+y292)dy+2/ya(@S/Qy)fy(f+g>dy+d2(s)
R R

< C(IfIZ2 + IGIZ2 + N fullze + 1gllie + lyfulle + llygllze + ¢2(s))
< C(llgllzon + () + CEs(s),
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while from Lemma it follows that
. € .
llgl|30.1 + &2(s) = eb?(t(s)) (W(Ilglli]m + 0‘2(5))>

< Ce*VP(t(s)) Es () < Ceto7° By(s);

—S

therefore,
La(s) < CeT#5° B5(s). (5.3)
Substituting (5.3)) into (5.2) gives
d
£E5(s) < Ce M E5(s) + Ce 228 By (s)P1

p1+1

+ C’e*2’\lsE5(s)p1 + 067A15E5(8)T.
By (2.10), it is easy to see that —2A;1 =3 —p; > 0, so

%EB(S) S 067A8E5(5) + 0672)\15E5(S)p1

p1+1

+ CeBPUS By (s)P1 + Ce Mo Es(s) 2 .
Then

dii (Es(s)A(s)) < Ce 2212 E5(s)P1 A(s) + Ce® P13 By (5)P A(s)

+ Ce 1 By ()™ A(s) (5-4)
< CeB=PIS B ()P A(s) + Ce 2B (s) ™ A(s).

As the indexes satisfy 3 —p; > 0, after integrating, there exists a s, > 0 sufficiently
large such that (5.1) holds for each s > s.. O

Proof of Theorem[2.6. By Corollary the lifespan S(e) of the solution (v, w) to
(3.3) satisfies S(e) > s, provided ¢ is sufficiently small, where s, is given by Lemma
Moreover, in view of ([A.37), M(s.) < Ce?I3. If M(s) cannot reach 2Ce2I3 at
any time, then lim,_, gy M(s) < 2Ce? 12, which contradicts . So let S > s,
be the first time such that M (S) = 2Ce%I2. By Lemma [5.1] we have

p1+1

20213 < CEI3 + Ce®PIS (O 1) + Ce 2" S(ce’p) 2,

SO
Ce? < Ce 7St
Then
S < 08 < 05 < O(B(T(e)) + 1),
namely,
B(T(e) +1> C= 571 )

Remark 5.2. We aim to establish an upper bound for (1.1)), analogous to the lower
bound found in (2.11)). For simplicity, let us consider the equation

O2u — 0y (a(x)0pu) + b(t)Opu = |ufP, t>0, z €R,

uw(0,2) = eug(x), Owu(0,z) =eui(z), = €eR. (5:5)
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If a(x) = 1, we note that the lower bound (2.11)) for (5.5)) coincides with [8, Theorem
1.2], which suggests that (2.11) is sharp for (5.5). By employing a test function
argument, we can establish the following upper bound for (5.5))

_2(=1)

e” 3 1< p<3/2,
. p=3/2.

However, because of the variable-coefficient diffusion, we still lack information about
the sharpness of estimate (5.6). We have not yet established an upper bound

estimate for (1.1)).
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