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OPTIMAL MASS OF STRUCTURE WITH MOTION DESCRIBED

BY STURM-LIOUVILLE OPERATOR: DESIGN AND

PREDESIGN

BORIS P. BELINSKIY, TANNER A. SMITH

Abstract. We find an optimal design of a structure described by a Sturm-

Liouville (S-L) problem with a spectral parameter in the boundary conditions.
Using an approach from calculus of variations, we determine a set of critical

points of a corresponding mass functional. However, these critical points -

which we call predesigns - do not necessarily themselves represent meaningful
solutions: it is of course natural to expect a mass to be real and positive. This

represents a generalization of previous work on the topic in several ways. First,
previous work considered only boundary conditions and S-L coefficients under

certain simplifying assumptions. Principally, we do not assume that one of

the coefficients vanishes as in the previous work. Finally, we introduce a set
of solvability conditions on the S-L problem data, confirming that the corre-

sponding critical points represent meaningful solutions we refer to as designs.

Additionally, we present a natural schematic for testing these conditions, as
well as suggesting a code and several numerical examples.

1. Introduction

This paper represents a continuation of the work done in [7]. Historically, the
first study in this direction was performed by Turner [20], who used techniques from
the calculus of variations to determine an optimal cross-sectional mass distribution
for a rod of a given principal eigenfrequency ω with the least possible mass. The
construction he found allows for greater economy in a design that meets a require-
ment for this given natural frequency. The longitudinal oscillations u(x, t) of the
rod are modeled by the wave equation

mutt =
E

ρ
(mux)x = 0, 0 < x < L. (1.1)

Here E is Young’s modulus, ρ is density of the material, and m(x) is mass per unit
length. The rod is considered fixed at the left end and attached to a mass M1 at
the right end. After separating variables and removing the harmonic term eiωt, the
following optimization problem appears.
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Problem 1.1. Consider the Sturm-Liouville (S-L) problem

E(mux)x + ω2ρu = 0, 0 < x < L, (1.2)

u(0) = 0, E(mux)(L) = ω2ρM1u(L). (1.3)

Find the mass distribution m(x) such that the total mass functional

M [m] :=

∫ L

0

m(x)dx

attains its minimum value.

Note that the boundary condition contains the spectral parameter ω2 linearly.
It is easy to show that the spectral parameter ω2 > 0. Indeed,

ω2 =

∫ L
0
Emu2x dx∫ L

0
ρu2 dx+ ρM1u2(L)

. (1.4)

To solve this optimization problem, Turner reformulates it to optimize the func-
tional

F [m,u] := M [m] +

∫ L

0

Λ(x)[E(mux)x + ω2ρu] dx

+ λ1[E(mux)(L)− ω2ρM1u(L)],

(1.5)

where Λ and λ1 are Lagrange multipliers. Using the techniques of calculus of
variations [11] Turner found the optimal mass distribution

mopt(x) = m(L) cosh2(γL)/ cosh2(γx) (1.6)

where
m(L) = M1 tanh γL, γ := ω2ρ/E.

Of course, Turner’s technique may also be, in a sense, reversed to determine the
optimal cross-sectional mass distribution such that a rod of a given total mass is
made with the largest principle eigenfrequency. The applications of such techniques
are complementary: a mass can be optimized to meet a certain given natural fre-
quency, or a rod of a given mass may be optimized to yield the greatest resistance
to resonance. Taylor [19] considered this problem and articulated the duality of
these complementary optimization problems employed in [20] in a form that assists
in generalizing the method.

The next step was made in [7], where the authors considered the linear second-
order S-L problem

(py′)′ − qy + λ1pry = 0, x ∈ (0, 1), (1.7)

cos(α)y(0) + sin(α)p(0)y′(0) = 0, (1.8)

−β1y(1) + β2p(1)y′(1) = λ1[β′1y(1)− β′2p(1)y′(1)]. (1.9)

The original problem (1.2)-(1.3) appears if we let

p(x) = Em(x), q ≡ 0, r(x) =
ρ

Em(x)
, λ = ω2 .

A significant generalization in [7] is made in the boundary conditions as compared
to [19] and [20], but it is assumed that q ≡ 0.

For the general theory on problem (1.7)-(1.9) with arbitrary q see [1, 22]. Our
notations are adopted from [3, 9, 10, 12, 17, 21]. Additionally, we follow the re-
strictions on the coefficients p, q, r, as outlined in these works, to guarantee our



EJDE-2024/08 OPTIMAL DESIGN OF MINIMUM MASS STRUCTURES 3

S-L problem is self-adjoint - and thus that all eigenvalues are real. To that end,
we proceed under the following assumptions on the functions p, r, q and constants
α, βj , β

′
j (j = 1, 2).

Assumptions. We use the following assumptions on the parameters of our S-L
problem

(1) p ∈ C1[0, 1], q, r ∈ C[0, 1];
(2) p, r > 0 for all x ∈ [0, 1];
(3) The parameters βj , β

′
j ∈ R satisfy δ := β′1β2 − β1β′2 > 0;

(4) α ∈ [0, π).

We will refer to the set {α, β1, β2, β′1, β′2, λ1, q, r} as our data set D . The mass
functional to be minimized is

M [p] :=

∫ 1

0

prdx. (1.10)

The authors of [7] formulated an isoperimetric problem in terms of a functional
similar to (1.5),

F [y, p] := M [p] +

∫ 1

0

Λ1(x)[((py′)′ + λ1pry)] dx

+ Λ2[cos(α)y(0) + sin(α)p(0)y′(0)]

+ Λ3([−β1y(1) + β2p(1)y′(1)]− λ1[β′1y(1)− β′2p(1)y′(1)])

(1.11)

with Lagrange multipliers Λ1(x), Λ2, Λ3. This functional accumulates the mass
functional (1.10) - the object to be minimized - with the constraints given by the S-
L problem (1.7)-(1.9). Using the methods of the calculus of variations, the authors
of [7] derived the expressions for two critical points of the functional F [y, p] in terms
of the elementary functions. They also studied a similar optimization problem for
a complete bipartite graph (a star).

There are a few mechanical models described by the S-L problem with the spec-
tral parameter in the boundary conditions. Among those are oscillations of a rotat-
ing string, a Timoshenko–Mindlin beam with a tip mass, and a rotating beam with
a tip mass that models a propeller (see, e.g., [4, 2]). The current study was also
motivated by the work of [13] where the authors consider oscillations of a string
fixed at one end with a mass connected to a spring at the other end and minimize
the first eigenvalue subject to a fixed total mass constraint. The inverse problem for
the S-L operator with a spectral parameter in the boundary conditions is actively
studied for different models (see, e.g., [16, 14]).

Our work is a continuation of [7] - and thereby [20, 19] - that adds upon the
earlier work by the inclusion of several factors. First, the authors of [7] claim that
“the calculations of the optimal form for q 6≡ 0 seem to be intractable in the frame of
an analytic approach” and hypothesize that “the complete analysis here is possible
only at the numerical level,” e.g., based on the discretization as in [5, 6, 8]. We
instead have found analytical solutions with no such restrictions on q. In fact, we
find additional designs dependent on q 6≡ 0. Second, earlier work did not necessarily
guarantee the positivity of the function p (and thus the self-adjointness of the S-L
operator). To address this issue we introduce the following definition.

Definition 1.2. For a given critical pair (y, p) with a given data set D ,
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(1) Our solvability conditions are the set of conditions on D that ensure p > 0
on the entire domain.

(2) A predesign is a critical point with no consideration given to solvability
conditions.

(3) Once a critical pair has passed our solvability conditions, we refer to it as
a design.

In short, we refer to critical points of our isoperimetric problem as predesigns
while we refer to physically reasonable solutions as designs. With these additions
in mind, we arrive at the following problem.

Problem 1.3. Consider the S-L problem as described in (1.7)-(1.9) allowing for
nonzero q. Find the critical points - potential minimizers - of the mass functional
(1.10).

Remark 1.4. For what follows, the sign of the eigenvalue λ1 is important. Some
of these eigenvalues may be negative. It is known that for the S-L problem (1.7)-
(1.9), the number of negative eigenvalues is at most finite. In the main part of the
text, we assume that λ1 > 0 and make a short remark at the end on the results for
λ1 ≤ 0.

After the use of the methods of the calculus of variations to find critical points
of the “mass” functional, i.e., functions p(x) and y(x), we find the following critical
points as potential minimizers.

Theorem 1.5. For a given data set D , the mass functional (1.11) has critical
points

y1(x) =
1√
λ1

sinh(
√
λ1g(x) + C1),

p1(x) =

∫ x
0
q(s) sinh(2

√
λ1g(s) + 2C1)ds

2
√
λ1r(x) cosh2(

√
λ1g(x) + C1)

+ C3

√
r(0) cosh2(C1)√

r(x) cosh2(
√
λ1g(x) + C1)

,

y2(x) =
1√
λ1

cosh(
√
λ1g(x) + C2),

p2(x) =

∫ x
0
q(s) sinh(2

√
λ1g(s) + 2C2)ds

2
√
λ1r(x) sinh2(

√
λ1g(x) + C2)

+ C4

√
r(0) sinh2(C2)√

r(x) sinh2(
√
λ1g(x) + C2)

.

where the constants Cj are uniquely determined by (1.8) and (1.9); and we define

g(x) :=

∫ x

0

√
r(s)ds.

We devote subsection 2.1 to the proof of this theorem while the derivation of
the constants Cj is found in subsection 2.2. It is also natural to expect that even
though we have an analytical form for p, our criterion p > 0 for all x will only be
met for certain data set D as we will show in subsection 2.3.

Definition 1.6. We introduce the complementary sets of functions

P := {p ∈ C1[0, 1] : p(x) > 0 ∀x ∈ [0, 1]},
Pc := {p ∈ C1[0, 1] : p(x) 6≥ 0 ∀x ∈ [0, 1]}.

That is to say, sets of p that do and do not meet our criteria for solvability.



EJDE-2024/08 OPTIMAL DESIGN OF MINIMUM MASS STRUCTURES 5

Remark 1.7. The preceding two sets of functions are nonempty. Further, we will
show that we may construct data sets D1 and D2 which contain arbitrarily close
elements - yet generate p1 ∈P and p2 ∈Pc, respectively.

Actually, [20] and then [7] substitute the classical statement of the problem
based on the solution of the S-L by a variational problem. The last may produce
p 6> 0, which contradicts the original assumption on p for the regularity of the S-L
problem - the singular case is beyond the scope of this work. It may even be in
this case that M [p] 6> 0, which makes no physical sense in the model used by [20].
Hence, the set Pc is only of interest in as much as it must be understood to be
avoided. To that end, we devote subsection 2.3 to a description of the conditions
on D so that a function p may indeed be a design - and therefore belongs to P.
Once we have constructed our critical points and attendant solvability conditions,
we explore some numerical examples and special cases in Section 3. This includes
an exploration of Remark 1.7.

2. Critical points and solvability conditions of problem 1.1: proof
of Theorem 1.5

To construct our solutions, we use the path set out by [7]. However, we in-
clude the added term qy which introduces additional complications not previously
discussed as well as formulate our solvability conditions. Note that we skip some
simple but cumbersome calculations; for all details, see [18].

2.1. Proof of Theorem 1.5. We formulate an isoperimetric problem in terms of
the following functional that represents a generalization of (1.5), (1.11).

F [y, p] := M [p] +

∫ 1

0

Λ1((py′)′ − qy + λ1pry)dx+ Λ2(cos(α)y(0)

+ sin(α)p(0)y′(0)) + Λ3([−β1y(1) + β2p(1)y′(1)]

− λ1[β′1y(1)− β′2p(1)y′(1)])

(2.1)

with Lagrange multipliers Λ1(x),Λ2,Λ3. We compute the first variation, δF , of our
functional

δF =

∫ 1

0

δp(r + Λ1λ1ry − Λ′1y
′)dx+

∫ 1

0

δy(−Λ1q + Λ1λ1rp+ (Λ′1p)
′)dx

+ (Λ1y
′δp)|10 + (Λ1pδy

′)|10 − (Λ′1pδy)
∣∣1
0

+ Λ2(cos(α)δy(0)

+ sin(α)(y′(0)δp(0) + p(0)δy′(0)))

+ Λ3([−β1δy(1) + β2(y′(0)δp(1) + p(1)δy′(1))]

− λ1[β′1δy(1)− β′2(y′(1)δp(1) + p(1)δy′(1))]).

(2.2)

Here we employ the fundamental lemma of the calculus of variations which guar-
antees that if δF = 0 then

δp : r + Λ1λ1ry − Λ′1y
′ = 0, (2.3)

δy : Λ1q − Λ1λ1rp− (Λ′1p)
′ = 0. (2.4)
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If we isolate incidents of independent variations δy(l), δy′(l), and δp(l) (l ∈ {0, 1})
in (2.2) we find that

δy(0) : Λ2 cosα− Λ′1(0)p(0) = 0,

δy′(0) : p(0)(Λ2 sinα+ Λ1(0)) = 0,

δp(0) : y′(0)(Λ2 sinα+ Λ1(0)) = 0.

(2.5)


δy(1) : Λ′1p(1)− Λ3(β1 + λ1β

′
1) = 0,

δy′(1) : Λ1p(1)− Λ3p(1)(β2 + λ1β
′
2) = 0,

δp(1) : Λ1(1)y′(1)− Λ3y
′(1)(β2 + λ1β

′
2) = 0.

(2.6)

From (2.5) we derive

Λ′1(0)p(0)/ cosα = Λ2 = −Λ1(0)/ sinα.

Similarly from (2.6) we have

Λ′1(1)p(1)/(β1 + λ1β
′
1) = Λ3 = Λ1(1)/(β2 + λ1β

′
2).

Thus we have conditions independent of Λ2 and Λ3,

Λ′1(0)p(0) sinα+ Λ1(0) cosα = 0, (2.7)

−Λ′1(1)p(1)β2 + Λ1(1)β1 = λ1[β′2Λ′1(1)p(1)− Λ1(1)β′1]. (2.8)

Note that the boundary value problem from (2.4), (2.7), and (2.8) matches the
boundary value problem from (1.7)-(1.9). The eigenspace for this type of problem
is well-known to be 1-dimensional with a principal eigenvalue of multiplicity 1.
Hence, Λ1 = ±κy where κ is some arbitrary nontrivial positive constant - we in
fact assume without loss of generality that κ = 1. We see that if we use Λ1 = y
in (2.4), (2.7), (2.8), y satisfies the original S-L problem (1.7)-(1.9). If we make a
similar substitution into (2.3), we have

(y′)2 − λ1ry2 = r. (2.9)

This nonhomogeneous first-order ODE has two solutions

y1(x) =
1√
λ1

sinh(
√
λ1g(x) + C1), (2.10)

y2(x) =
1√
λ1

cosh(
√
λ1g(x) + C2), (2.11)

where g is as defined in theorem 1.5 and Cj , j = 1, 2 are arbitrary constants. With
the known yk, k = 1, 2 we return to the S-L problem with boundary conditions given
by (1.8)-(1.9) to solve for corresponding pk. Upon rearranging (1.7) accordingly,
we find that in the situation with unknown p and all other known parameters, we
have first-order nonhomogeneous ODE given by

p′(x) +
y′′(x) + λ1r(x)y(x)

y′(x)
p(x) = q(x)

y(x)

y′(x)
. (2.12)

We find using y1 and y2, respectively, the solutions to (2.12),

p1(x) =

∫ x
0
q(s) sinh(2

√
λ1g(s) + 2C1)ds

2
√
λ1r(x) cosh2(

√
λ1g(x) + C1)

+C3

√
r(0) cosh2(C1)√

r(x) cosh2(
√
λ1g(x) + C1)

, (2.13)

p2(x) =

∫ x
0
q(s) sinh(2

√
λ1g(s) + 2C2)ds

2
√
λ1r(x) sinh2(

√
λ1g(x) + C2)

+C4

√
r(0) sinh2(C2)√

r(x) sinh2(
√
λ1g(x) + C2)

. (2.14)
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Here Cj , j = 1, 2, 3, 4 are constants determined by (1.8) and (1.9). Thus we have
determined the pairs (y1, p1) and (y2, p2) which represent the critical points of our
functional (2.1) - concluding our proof of Theorem 1.5. �

Remark 2.1. (a) We note that if q(x) ≡ 0, we recover the critical points from
[7]. (b) Finding the constants Cj appears to be quite a nontrivial procedure. We
devote the following subsection to their calculation.

2.2. Determining constants Cj in Theorem 1.5. The following objects appear
naturally in our determination of constants Cj , and we find it useful to highlight
them especially.

φ := −p(0)y′(0)

y(0)
= cotα, (2.15)

ψ :=
p(1)y′(1)

y(1)
=
β1 + λ1β

′
1

β2 + λ1β′2
, (2.16)

ζ := −
φ+ ψ cosh(2

√
λ1g(1))−

∫ 1

0
q(s) cosh(2

√
λ1g(s))ds

ψ sinh(2
√
λ1g(1))−

∫ 1

0
q(s) sinh(2

√
λ1g(s))ds

, (2.17)

z =:
1

2
coth−1(ζ). (2.18)

Further, we use the boundary condition (1.8) of our problem to create three cases
for each critical function p, for a total of six cases explained in Table 1 below.

Table 1. Summary of predesigns by case

Case yj(x), pj(x) α Predesign M [pj ]

1 y1(x), p1(x) α = 0 (2.19) (2.33)

2 y1(x), p1(x) α = π/2 (2.20) (2.34)

3 y1(x), p1(x) α ∈ (0, π)\{π/2} (2.25) (2.35)

4 y2(x), p2(x) α = 0 (2.19) (2.33)

5 y2(x), p2(x) α = π/2 (2.20) (2.34)

6 y2(x), p2(x) α ∈ (0, π)\{π/2} (2.25) (2.35)

Once we determine the constants Cj for p in a particular case, we will refer to
our function p by Pk where k is the case number as outlined in Table 1. We begin
with our first critical point (y1, p1).

Case 1: Let α = 0. It is immediately apparent upon examining (1.2) that C1 = 0.
After algebraic manipulation where we substitute in the formulas for y, p given by
(2.10) and (2.13), respectively, and isolate for C3, boundary condition (1.9) gives
us

C3 =
1

2
√
λ1r(0)

[
ψ sinh(2

√
λ1g(1))−

∫ 1

0

q(s) sinh(2
√
λ1g(s))ds

]
.

Hence, the predesign for an arbitrary (continuous) q is given by

P1(x) =
ψ sinh(2

√
λ1g(1))−

∫ 1

x
q(s) sinh(2

√
λ1g(s))ds

2
√
λ1r(x) cosh2(

√
λ1g(x))

. (2.19)
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Case 2: Let α = π/2. Boundary condition (1.8) gives us

C3

√
r(0)

k
cosh(C1) = 0.

We begin by assuming cosh(C1) = 0, which implies that C1,n = 2n−1
2 πi where

n ∈ Z. If we examine this C1,n in context of our p1 we find that

p1(x) =

∫ x
0
q(s) sinh(2

√
λ1g(s) + (2n− 1)πi)ds

2
√
λ1r(x) cosh2(

√
λ1g(x) + (n− 1/2)πi)

= −
∫ x
0
q(s) sinh(2

√
λ1g(s))ds

2
√
λ1r(x)(i2) sinh2(

√
λ1g(x))

=

∫ x
0
q(s) sinh(2

√
λ1g(s))ds

2
√
λ1r(x) sinh2(

√
λ1g(x))

.

If alternately, we assume that C3 = 0, then

p1(x) =

∫ x
0
q(s) sinh(2

√
λ1g(s) + 2C1)ds

2
√
λ1r(x) cosh2(

√
λ1g(x) + C1)

,

which attains zero at x = 0. This can be circumvented if cosh(C1) = 0. In any
event, we conclude that our predesign P2 takes the form

P2(x) =

∫ x
0
q(s) sinh(2

√
λ1g(s))ds

2
√
λ1r(x) sinh2(

√
λ1g(x))

. (2.20)

Case 3: Let α 6∈ {0, π/2}. Boundary condition (1.8) implies that

C3 = − 1√
λ1r(0)

φ tanh(C1). (2.21)

Consider boundary condition (1.9) formulated as in (2.16) and substitute the pair
of critical functions {y1, p1}, then

ψ =

∫ 1

0
q(s) sinh(2

√
λ1g(s) + 2C1)ds

sinh(2
√
λ1g(1) + 2C1))

+ C3
2
√
λ1r(0) cosh2(C1)

sinh(2
√
λ1g(1) + 2C1))

. (2.22)

Here we have essentially a system of two equations with two unknowns: our constant
terms C1 and C3. If we isolate the term C3 in (2.22), then we may equate (2.21)
and (2.22) to eliminate the term C3 entirely and arrive at an equality which we
may solve for C1. Indeed, Trigonometry shows that the next equation is a linear
algebraic equation for tanh(C1).

−φ tanh(C1) =
1

2 cosh2(C1)

[
ψ sinh(2

√
λ1g(1) + 2C1)

−
∫ 1

0

q(s) sinh(2
√
λ1g(s) + 2C1)ds

]
=⇒ C1 = z.

(2.23)

Here z is as defined in (2.18). This in turn means for C3 that

C3 = − 1√
λ1r(0)

φ tanh(z). (2.24)
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Then for predesign P3 we have

P3(x) =

∫ x
0
q(s) sinh(2

√
λ1g(s) + 2z)ds

2
√
λ1r(x) cosh2(

√
λ1g(x) + z)

− φ sinh(2z)

2
√
λ1r(x) cosh2(

√
λ1g(x) + z)

.

(2.25)

We now consider our second critical point (y2, p2).

Case 4: Let α = 0. Then condition (1.8) implies that

1√
λ1k

cosh(C2) = 0.

We begin with the assumption that cosh(C2) = 0, which implies that C2,n = 2n−1
2 πi

where n ∈ Z. If we examine this C2,n in context of p2(x) we find that

p2(x) =

∫ x
0
q(s) sinh(2

√
λ1g(s))ds

2
√
λ1r(x) cosh2(

√
λ1g(x))

+ C4

√
r(0)√

r(x) cosh2(
√
λ1g(x))

.

Condition (1.9) gives us

ψ =

∫ 1

0
q(s) sinh(2

√
λ1g(s))ds

sinh(2
√
λ1g(1))

+ C4

√
λ1r(0)

sinh(2
√
λ1g(1))

which implies

C4 =
1

2
√
λ1r(0)

[
ψ sinh(2

√
λ1g(1))−

∫ 1

0

q(s) sinh(2
√
λ1g(s))ds

]
.

Thus we find the predesign

P4(x) =
1

2
√
λ1r(x) cosh2(

√
λ1g(x))

[ψ sinh(2
√
λ1g(1))

−
∫ 1

x

q(s) sinh(2
√
λ1g(s))ds] = P1(x).

Since P4(x) ≡ P1(x), our two points of optimality resolve into one critical point,
and we refer instead to P1 only at α = 0 (see Table 1).

Case 5: Let α = π
2 . Condition (1.8) implies

C4

√
r(0)

k
sinh(C2) = 0.

In the case C2,n = πin, where n ∈ Z, p2 becomes

p2 =

∫ x
0
q(s) sinh(2

√
λ1g(s))ds

2
√
λ1r(x) sinh2(

√
λ1g(x))

.

In the case C4 = 0, we see that

p2 =

∫ x
0
q(s) sinh(2

√
λ1g(s) + 2C2)ds

2
√
λ1r(x) sinh2(

√
λ1g(x) + C2)

.

This function is zero at x = 0, and therefore, unsuitable as a design unless we
require that C2 = 0. Since P5(x) ≡ P2(x), similar to the immediately preceding
case we note that the two points of optimality resolve themselves into one and we
refer to P2 only at α = π/2 (see Table 1).
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Case 6: Let α 6∈ {0, π/2}. Isolation of the term C4 in (1.8) yields

C4 = − 1√
λ1r(0)

φ coth(C2). (2.26)

If we consider boundary condition (1.9) formulated as in (2.16) and substitute the
pair of critical functions {y2, p2}, then

ψ =

∫ 1

0
q(s) sinh(2

√
λ1g(s) + 2C2)ds

sinh(2
√
λ1g(1) + 2C2))

+ C4
2
√
λ1r(0) sinh2(C2)

sinh(2
√
λ1g(1) + 2C2))

. (2.27)

After algebraic manipulations, we may combine (2.26) and (2.27) to solve for C2.
We find

−φ coth(C2) =
1

2 sinh2(C2)

[
ψ sinh(2

√
λ1g(1) + 2C2)

−
∫ 1

0

q(s) sinh(2
√
λ1g(s) + 2C2)ds

]
,

which implies

C2 = z. (2.28)

Here z is as defined in (2.18). This in turn means for C4 that

C4 = − 1√
λ1r(0)

φ coth(z). (2.29)

Therefore, we have a predesign at α 6∈ {0, π2 } given by

P6(x) =

∫ x
0
q(s) sinh(2

√
λ1g(s) + 2z)ds

2
√
λ1r(x) sinh2(

√
λ1g(x) + z)

− φ sinh(2z)

2
√
λ1r(x) sinh2(

√
λ1g(x) + z)

.

(2.30)

However, we now have two critical points at this α. Since the numerators in P3 and
P6 are identical, we only need to compare the denominators of the two P3 and P6,
which are always positive. Thus there is no place where P6 could be positive and
P3 negative. If we examine the ratio of P3 and P6, we see that

P3

P6
=

sinh2(
√
λ1g(x) + z)

cosh2(
√
λ1g(x) + z)

< 1.

We conclude that the mass generated by P3 will be inferior to the mass generated
by P6 - and thus P6 is a superfluous solution. Of our two points of optimality, we
will refer only to P3 at α 6∈ {0, π/2}.

2.3. Determining attendant solvability conditions and optimal masses.
This subsection is devoted to the derivation of conditions on the given data set D
such that a positive design p exists as well as to the determination of the mass M [p]
if these conditions are met.

Case 1: Let P1 be as in (2.19). The denominator, 2
√
λ1r(x) cosh2(

√
λ1g(x)), is

positive everywhere on the domain, so we focus solely on the numerator to determine
the sign. We find that

ψ sinh(2
√
λ1g(1))−

∫ 1

x

q(s) sinh(2
√
λ1g(s))ds > 0
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which implies∫ 1

x

q(s) sinh(2
√
λ1g(s))ds < ψ sinh(2

√
λ1g(1)), ∀x ∈ [0, 1]. (2.31)

Also, at the boundary x = 1, our term containing the integral vanishes. Thus to
guarantee the positivity of the design, we have to require

ψ > 0. (2.32)

If both of these conditions are met, we refer to our P1 as a design rather than a
predesign, and we have the optimal mass

M [P1] =

∫ 1

0

r(x)
1

2
√
λ1r(x) cosh2(

√
λ1g(x))

[
ψ sinh(2

√
λ1g(1))

−
∫ 1

x

q(s) sinh(2
√
λ1g(s))ds

]
dx

=
1

λ1

[
ψ sinh2(

√
λ1g(1))−

∫ 1

0

q(s) sinh2(
√
λ1g(s))ds

]
.

(2.33)

Case 2: Let P2 be as in (2.20). Here we have a potential discontinuity at x = 0.
We proceed via L’Hopital’s Rule.

lim
x→0

p2 = lim
x→0

∫ x
0
q(s) sinh(2

√
λ1g(s))ds

2
√
λ1r(x) sinh2(

√
λ1g(x))

=
q(0)

2λ1r(0)
.

Thus we have a positive design that is continuous at x = 0 if q(x) > 0 along [0, 1].
If this condition is met we have a mass given by

M [P2] =

∫ 1

0

r(x)

∫ x
0
q(s) sinh(2

√
λ1g(s))ds

2
√
λ1r(x) sinh2(

√
λ1g(x))

dx

=
1

2λ1

[
2

∫ 1

0

q(s) cosh2(
√
λ1g(s))ds

− coth(
√
λ1g(1))

∫ 1

0

q(s) sinh(2
√
λ1g(s))ds

]
.

(2.34)

Case 3: Let P3 be as in (2.25). The denominator is positive everywhere in the
domain, so we may focus on the numerator. We formulate the condition∫ x

0

q(s) sinh(2
√
λ1g(s) + coth−1(ζ))ds− φ sinh(coth−1(ζ)) > 0, ∀x ∈ [0, 1].

At x = 0, this implies φ sinh(coth−1(ζ)) < 0. For α ∈ (0, π2 ), φ > 0 so we must
require

sinh(coth−1(ζ)) < 0 =⇒ ζ < −1
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The above inequalities imply ζ > 1 for α ∈ (π2 , π). If these conditions are met, we
refer to P3 as a design and we have mass

M [P3] =

∫ 1

0

r(x)
[ ∫ x

0
q(s) sinh(2

√
λ1g(s) + coth−1(ζ))ds

2
√
λ1r(x) cosh2(

√
λ1g(x) + 1

2 coth−1(ζ))

− φ sinh(coth−1(ζ))

2
√
λ1r(x) cosh2(

√
λ1g(x) + 1

2 coth−1(ζ))

]
dx

=
1

2λ1

[
tanh(

√
λ1g(1) + z)(

∫ 1

0

q(x) sinh(2
√
λ1g(x) + 2z)dx

− φ sinh(2z))− 2(

∫ 1

0

q(x) sinh2(
√
λ1g(x) + z)dx− φ sinh2(z))

]
.

(2.35)

Now that we have our solvability conditions on our data sets D , we devote the next
section to an exploration of the character of our sets P and Pc as well as Remark
1.7.

3. Numerical examples and exceptional cases

3.1. Characteristics of sets P and Pc. By way of illustration, we introduce
the following pair of numerical examples using the data set

D =
{
q(x) = −x2, r(x) = 1, α = 0, β1 = β′2 = 0, β′1 = β2 = 1, λ1 = 2

}
.

Here we introduce a nonzero q to Turner’s [20] work and return a design and mass.
Retaining the same data set, we vary ψ slightly to illustrate how we may radically
alter p andM [p] by breaking our solvability conditions (2.31) and (2.32). We include
two complementary illustrations (Figures 1 and 2). In both figures, we multiply
the ψ given in the data set by a small scalar c. To generate these figures, we use
the algorithm in the form of a Python script detailed in [23]. This script takes the
array D , uses the data to determine the case according to Table 1, generates the
constants φ, ψ, and then checks the relevant solvability conditions.

• In Figure 1, we take small variations of positive ψ with c ∈ [0.5, 1.5], while
not breaking the solvability conditions on our p(x). We consequently ob-
serve very little deformation of the curve p(x) and a narrow range of vari-
ance in our calculated masses M [P1]. In other words, the distance between
the mass generated by the topmost function p and bottommost p graphed
in Figure 1 is relatively narrow.

• However, in Figure 2, we vary between c ∈ [−1, 1]. The negative cψ does
violate our solvability conditions and, consequently, shows a dramatic de-
formation of the graph as well as a much wider spread in our range of
variance in calculated masses - here the distance between the mass gen-
erated by the topmost p and bottommost p graphed in Figure 2 is much
broader than in Figure 1. For the purpose of comparison, we have calcu-
lated all of the masses implied by the data sets used in Figure 2 even if
they fail our solvability conditions and return negative values for M [p].
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Figure 1. Illus. 1 Figure 2. Illus. 2

We return to Remark 1.7 for a brief explanation of the closeness of our two sets
P,Pc as it pertains specifically to P1(x). Say that we have two data sets D1 and
D2 which are identical except for the terms ψ and q. We let 0 < |ψj | << 1, j = 1, 2
but ψ1 positive and ψ2 negative; while we define q1 and q2 as

q1 = 2ψ1

√
λ1r, q2 = 2ψ2

√
λ1r.

Note that while both data sets satisfy (2.31), D2 fails to satisfy (2.32). We observe
that ‖q1− q2‖C[0,1] ≤ 2

√
λ1 max[0,1]

√
r|ψ1−ψ2|, which is small enough if |ψ1−ψ2|

is small enough. This explicitly demonstrates that while the sets P and Pc do
not overlap, they do contain elements p whose generating data sets are arbitrarily
close.

3.2. General Numerical Examples. To further illustrate the nature of our crit-
ical functions p(x), we present several numerical examples of potential designs that
do (do not) meet the solvability conditions we have described. The Python script
used to algorithmically generate these figures is detailed in [23].

Figure 3. Example 1 Figure 4. Example 2

(1) D := {q = 0, r = 1, α = 0, β1 = 0, β′1 = 1, β2 = 1, β′2 = 0, λ1 = λ}. This
was the system that Turner studied in [20] where λ is left as an arbitrary positive
constant. It may be shown that our formula (2.19) for p and (2.33) for mass return
the same results. Namely, for our critical p(x) and mass M [p] we find

p(x) =

√
λ1 sinh(2

√
λ1)

2 cosh2(
√
λ1x)

, M [p(x)] =
√
λ1 sinh2(

√
λ1).
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If we go further and assign a numerical value to λ1, say λ1 = 2, we can present a
numerical value for M [p] and the graph of p(x) (Figure 3).

(2) D := {q = −x2, r = 1, α = 0, β1 = 0, β′1 = 1, β2 = 1, β′2 = 0, λ1 = 2}. Here
we introduce a nonzero q(x) to Turner’s work and return a design and mass (Figure
4).

Figure 5. Example 3 Figure 6. Example 4

(3) D := {q = r = x2 + x + 1, α = π
2 , β1 = 1, β′1 = 5, β2 = 1, β′2 = 2, λ1 =

2}. Notably, this example would not return a nonzero result under the earlier
assumption (see [7]) that q ≡ 0. Here, however, we meet the solvability condition
and return a positive mass (Figure 5).

(4) D := {q = −x, r = 1 + 2x, α = π
4 , β1 = 1, β′1 = 10, β2 = 5, β′2 = 10, λ1 = 2}.

At α 6∈ {0, π2 }, our optimal p is P3. This data set meets our solvability conditions,
and our algorithm returns a positive mass (Figure 6). We note that, unlike the
optimal designs in Figure 3 and Figure 4, the designs in Figure 5 and Figure 6) are
not monotonic.

3.3. Exceptional cases for λ1 and ψ. As we mentioned in Remark 1.4, the num-
ber of negative eigenvalues λ1 is at most finite, and we assume λ1 > 0 everywhere
above. We now briefly discuss the opposite case, λ1 ≤ 0. We omit technicalities
here and only show the results. The full details may be found in [18].

For λ1 < 0, the predesigns have the form

P1 =
ψ sin(2

√
|λ1|g(1))−

∫ 1

x
q(s) sin(2

√
|λ1|g(s))ds

2
√
|λ1|r(x) cos2(

√
|λ1|g(x))

, (3.1)

P2 = −
∫ x
0
q(s) sin(2

√
|λ1|g(s))ds

2
√
|λ1|r(x) sin2(

√
|λ1|g(x))

, (3.2)

P3 =

∫ x
0
q(s) sin(2

√
|λ1|g(s) + z′)ds− φ sin(2z′)

2
√
|λ1|r(x) cos2(

√
|λ1|g(x) + z′)

, (3.3)

with corresponding masses given by

M [P1] =
1

|λ1|

[
ψ sin2(

√
|λ1|g(1))−

∫ 1

0

q(s) sin2(
√
|λ1|g(s))ds

]
, (3.4)

M [P2] =
1

2|λ1|

[
cot(

√
|λ1|g(1))

∫ 1

0

q(x) sin(2
√
|λ1|g(x))dx
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−
∫ 1

0

q(x) sin(2
√
|λ1|g(x)) cot(

√
|λ1|g(x))dx

]
, (3.5)

M [P3] =
1

2|λ1|

[
tan(

√
|λ1|g(1) + z′)

(∫ 1

0

q(x) sin(2
√
|λ1|g(x) + 2z′)dx

− φ sin(2z′)
)
− 2
(∫ 1

0

q(x) sin2(
√
|λ1|g(x) + z′)dx− φ sin2(z′)

)]
, (3.6)

subject to solvability conditions which we omit here.
For λ1 = 0, interestingly, we do not show the same behavior, i.e., we do not

observe predesigns for all cases. We find that only

lim
λ1→0

P1(x) =
1√
r(x)

[ψg(1)−
∫ 1

x

q(s)g(s)ds], (3.7)

is defined and has mass

M [P1] = ψg2(1)−
∫ 1

0

q(x)g2(x)dx, (3.8)

subject to solvability conditions, while the other two predesigns - P2 and P3 - do
not return any valid designs. We also investigate other exceptional cases in regards
to the boundary conditions such as ψ → ∞ or ψ → 0 in the limiting sense. We
summarize them only briefly. The full, rigorous discussion of these predesigns may
be found in [18]. To begin, we consider the case where ψ → ∞. If we take P1

(2.19), then clearly
lim

ψ→±∞
P1 =∞ =⇒ P1 6∈P.

That is to say, we have no hope of returning a design for P1 under these conditions.
While ψ is not present in P2, we observe that ψ is a component of ζ (2.17) and will
therefore have an effect on P3. We conclude that as ψ →∞,

lim
ψ→∞

P3 =
−
∫ x
0
q(s) sinh(2

√
λ1(g(1)− g(s)))ds+ φ sinh(2

√
λ1g(1))

2
√
λ1r(x) cosh2(

√
λ1(g(1)− g(x)))

.

Subject to solvability conditions, both p ∈ P and p 6∈ P are possible. We also
consider the case that ψ → 0. For P1 we observe that

ψ = 0 =⇒ P1(x) = − 1

2
√
λ1r(x) cosh2(

√
λ1g(x))

∫ 1

x

q(s) sinh(2
√
λ1g(s))ds.

Here we see that at x = 1, P1(x) = 0. We conclude that there is no design under
these conditions. In regards to P3, observe that at ψ = 0, from (2.17) and (2.18),
while the exact value of these constants will be changed, the overall character of
predesign P3 will remain unchanged. Therefore we may still have both p(x) ∈ P
and p(x) 6∈P.

3.4. Schematic of solvability conditions. What follows is a representation of
our solvability conditions applied to a given data set. While our solvability condi-
tions and code may produce results for a more general data set, in this particular
example the data set D is of the type that would produce Case 1.
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Given: data set D

Test sign of λ1 > 0Fail

Case determined by α

α = 0, Case 1

α 6= 0, Case 2 or Case 3

Test solvability conditions (2.31) and (2.32)Fail

Pass

Compute M [p] and graph p(x).

RETURN

Figure 7.
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4. Conclusion and discussion

We consider the optimal design problem modeled by a linear second-order, regu-
lar Sturm-Liouville problem on a finite interval with the spectral parameter in one
of the boundary conditions. We find the explicit formulas for the potential optimal
design. We analyze the intervals of the parameters of the problem where such a de-
sign exists. A similar problem for a particular case of the Sturm-Liouville operator
was previously considered by one of the authors, however, we bypass the results of
that paper in four aspects. (a) In that publication, it was claimed that the opti-
mization problem for the general linear Sturm-Liouville operator of the second order
may not be treated analytically and only numerical optimization is a hope. Here,
we find the optimal design ∀q 6≡ 0 explicitly. (b) Further, only the critical points of
the functional were found. We now call them the predesigns. It was not analyzed
whether the predesigns produced the actual, physically meaningful, designs. This
analysis is performed here and results in the solvability conditions that have the
form of the restrictions of the data set. (c) The physical meaning of the spectral
parameter (for the known mechanical problems) is the eigenfrequency. Hence, for
the mechanical problems, we must assume that the parameter is positive. Yet, for
mathematical completeness, we mention optimization results for non-positive val-
ues of the spectral parameter (which the Spectral Theory allows). (d) We create a
code that allows finding a design - if it exists - for any given data.

As a result of generalizations (a) and (c), we find that the set of designs is broader
than in the known papers [20] and [19], as well as the previous author’s paper [7].
Initially, we found two critical points for all cases of α. However, these were resolved
to prove that there is indeed a unique critical point - and thus predesign - for all α.
Further, we show that a unique design - not only predesign - exists ∀D which passes
our solvability conditions. The results (a) – (c) above represent the main pleasant
moments of this study. We also mention the existence of a solution corresponding
to the design p2(x), not only to p1(x), though this was observed in the previous
author’s paper [7] for the particular case q ≡ 0.

Based on the duality that was derived in [19] for the mechanical version of our
problem, we may expect that the following two problems have the same optimal
solution p(x):
1. Given the data set D1 = {α, β1, β2, β′1, β′2, λ1, q, r}, find p(x) such that M [p]→
min.
2. Given the data set D2 = {α, β1, β2, β′1, β′2, q, r, M}, find p(x) such that λ1[p]→
max.
We have contributed to Problem 1.1 but may hope that the optimal p from solving
Problem 1.1 is the same as the optimal p from solving Problem 1.3. The validity
of this duality in the case of multiple critical points and solvability conditions
(restrictions on the data set) should be studied further especially because, for an
arbitrary variational problem, the duality may not hold (see [15]).
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