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SIGNORINI’'S PROBLEM FOR THE BRESSE BEAM MODEL
WITH LOCALIZED KELVIN-VOIGT DISSIPATION

JAIME E. MUNOZ RIVERA, CARLOS A. DA COSTA BALDEZ,
SEBASTIAO M. S. CORDEIRO

ABSTRACT. We prove the existence of a global solution to Signorini’s problem
for the localized viscoelastic Bresse beam model (circular arc) with continuous
and discontinuous constitutive laws. We show that when the constitutive law
is continuous, the solution decays exponentially to zero, and when the consti-
tutive law is discontinuous the solution decays only polynomially to zero. The
method we use for proving our result is different the others already used in
Signorini’s problem and is based on approximations through a hybrid model.
Also, we present some numerical results using discrete approximations in time
and space, based on the finite element method on the spatial variable and the
implicit Newmark method to the discretized the temporal variable.

1. INTRODUCTION

In this work we consider the Signorini problem for Bresse model. The beam is
configured over a circular arch of length ¢ over the interval [0,¢] C R,

P1Ptt :Sz—FlN, (11)
p2thie = My — S, (1.2)
P1Wit = NI - 157 (13)

where
S = K(pz + 9 + W) + K(x)(put + Y1 + lor),

M = b, + B(2)ur, (1.4)
N = ko(we — @) + K(2)(wze — lpy).

The functions ¢, and w are the transversal displacement, rotatory angle, and
longitudinal displacement, respectively. The coefficient are p; = pA, ps = pl,
k=kGA, b=FI, ko = EA, | = R~'. Where k is correction factor, E is the Young
modulus, G is shear modulus. Moreover p, A, I, and R represent the density of the
body, area of the cross-section, and radius of curvature of the beam, respectively.
We assume the above coefficients are constant.
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We consider the initial conditions

o(x,0) = po(z), P(2,0) =1tho(z), w(z,0)=wo(x), Vze(0,)
oi(x,0) = p1(x), Y(x,0) =Y1(x), wi(z,0) =wi(x) Vz e (0,£).

and Dirichlet boundary conditions
©(0,t) = (0,t) =w(0,t) =0, ®(,t)=0 Vt>0. (1.6)
On the other hand, at x = ¢ we consider the Signorini’s conditions and ¢:

w(l,t)<g;, Vt>0
g2 < p(l,t) <gs, Vt>O0.

where g1, g2 and g3 are the gaps to the obstacle, see Figure[I[} We have the following
conditions

(1.5)

(1.7)

St) =0 if go <op(l,t) <gs, N({1) {
<0 if @(&t) = 93,

<0 ifw((t) =g,

=0 ifw(t) <g. (18)

Rigid Obstacle

FIGURE 1. Beam subject to a constraint at the free x = /—end.

To ensure that in (|1.8) only one condition occurs at the same time, we impose
that

S(l,t)gs — o, )] [, t) —g3]m =0 and Nl t)[w(l,t) —g]" =0, (1.9)

where h™ = max{h,0} is the positive part of function h.

Here we consider two cases, first when the model (L.I)-(L.9) has a continuous
constitutive law, and when the model has a discontinuous constitutive law. In the
continuous case we assume that the functions K, B € C*([0,]) are positive on the
interval ¢y, £1[ and vanish outside this interval. Furthermore, we assume that there
are positive constants ¢, C7 and Cy such that

|B'1? <¢B; |K')? <cK (1.10)
C1K < B < K. (1.11)

When the constitutive law is discontinuous we assume that K, B € C1([fg, {1]) are
positive functions vanishing outside ]¢y, ¢1[. The typical graph of B and K for the



EJDE-2024/17 SIGNORINI’'S PROBLEM FOR BRESSE BEAMS 3

continuous and the discontinuous case are given in figures 2] and [3] In both cases
the viscoelastic component is localized over the interval ¢, ¢1[. This interval will
be denoted by I when the constitutive law is continuous and Ip in the discontinue
case.

I =4y, £1[Viscoelastic component Ig =0, £o[U]¢1, £[Elastic Component

‘:j 1L LLLI TTITERRTTTT L 1L LLL -_—::-
V ‘% 0 ¢

FIGURE 2. Typical example of y = K(z) (y = B(x)).

Ip =]ly, ¢1[Viscoelastic component Ig =)0, ¢o[U]¢;, £[Elastic Component

y=K(x) (y = B(x))

<‘T‘-| ||”||1[||'”||I||'”||'”||'”||'”|| [ D’
Lo 4 l

F1cure 3. Typical example of y = K(z) (y = B(z)).

The Signorini problem for the wave equation was studied by Kim [8], there
the author proved the existence of at least one solution, by using the Divergent-
Rotational Lemma. Similarly, Andrews et al [2] considered the one-dimensional
contact problem for the Euler Bernoulli beam model. They showed the existence of
a global solution. Kuttler and Shillor [9] considered the contact problem between
two stops to viscoelastic Euler Bernoulli beam equation. Numerical aspects of
the problem were considered in Dumont and Paoli [5] and Coppeti and Elliot [4].
Uniqueness has not been proven so far.

The main result of this article shows the existence of a global solution to the
Signorini problem (L.1)-(L.9). Moreover we prove the exponential stability of the
system provided the constitutive law is continuous, and satisfy conditions —
. When the constitutive law is discontinuous we show the lack of exponential
stability and that the solution decays polynomially as t~/2.

The rest of this article is organized as follows. In section 2 introduce the semi-
group associated with the hybrid model. In section 3, we show the exponential
decay in case of continuous constitutive law and the polynomial stability in the
discontinuous case. In section 4 we show the lack of exponential stability for the
discontinuous case. In section 5 we introduce the penalized problem as a Lipschitz
perturbation of the semigroup. In Section 6 we show the existence of solution of
Signorini’s problem. Finally, in section 7 we show some numerical results.
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2. EXISTENCE: THE HYBRID-PENALIZED METHOD

To prove the existence of weak solutions to Signorin’s problem we use the hybrid-
penalized method introduced in [I2]. That is given € > 0, we consider the linear
hybrid model

P1Ptt — Sy —IN = Oa in (O7L) X (Oa OO)
P2"/)tt - Mz + S = 07 in (07 L) X (07 OO) (21)
pws — Ny, +1S =0, in (0,L) x (0,00)
where S, M and N are given in (|1.4). Here we consider dynamic boundary condition
on ¢ and w,
ol t) =ut), w(t,t)==z(t),
where the functions w and z are defined by the coupled system of ordinary differ-

ential equations
eur + eur + eu + S(4,t) =0,

ez + ez +ez+ N4, t) =0,

together with the stationary boundary condition

©(0,t) = 9(0,t) =w(0,t) =0, (£t)=0, Vt>D0.
System coupled with the ordinary differential equation is called hybrid
system. The initial conditions are given by

¢(z,0) = o(z), ¥(z,0)=1vo(z), w(®,0)=wo(z),

ei(2,0) = p1(x), Yu(z,0) =v1(2), wi(z,0)=wi(x),
(u(0),u:(0), 2(0), 2:(0)) = (uo,u1, 20,21) € C*

System (2.1)-(2.2) is the linear version of the penalized problem. This procedure
allow us to arrive to the semi linear penalized problem (normal compliance) by using

Lipstchitz perturbations to the hybrid model (2.1)-(2.2). To follows this ideas we
introduce the notation

‘I):%:a \I’:/lz[}ta W:(-L)t,Ut:U, Zt:Z-

(2.2)

Let us denote by
Z/{ = (Lp) ¢7 ’(/}7 W?"u7 W u’ U7 Z7 Z)T'
The phase space considered here is
H = Vo x L*(0,£) x HE(0,£) x L*(0,£) x Vo x L*(0,£) x C*. (2.3)

where
Vo = {u € H'(0,0);u(0) = 0}.
‘H is a Hilbert space with the norm

14
el = [ [Rlpa 0+ 1o+ IO + bl + pal 0P + ol
0

(2.4)
—Upl? + W 2| do + e(fuf? + U2 + |22 + | ZI2).
Let us denote the operator
S, IN M. S N, 1S 1
AU = ((I),—”’+—,\I/,—”——,VV,—“——,U,—[U+u+fS(£,t)],
P P P2 P2 pL Pl € (2.5)
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The domain of A is

® Koy + K Py,
D(A) = {u en: |w|evexul | w,+BY,, |c [Hl(o,e)]B}. (2.6)
v Kowe + KW,

The set D(A) is the typical domain generated by the Kelvin-Voigh operators.
Among its main properties we have that the domain depends on the differential
operator and that the family of resolvent operators are not compact. System —
(2.2) can be rewritten as

U, =AU, U0) = Uy, (2.7)
where Uy = (gpo,gol,wo,i/)l,wo,wl,uo,ul,zo,zl)T. A straightforward calculation

gives

Re(AU,U)y = — /OKK|<I>I + U+ IW|? + BV, |* + K|W, — 1®|* dz 2.8)
— U - €|Z]2.
Therefore A is a dissipative operator. The resolvent equation is
iU — AU =F,
taking the inner product with ¢/ over H and then taking the real part we obtain
—Re(AU,U)3 = Re(F,U) 4.

From we obtain
/Z K(2)| @y +U+HIW [*+B(2) |V, >+ K (2)|W,—1®|? dr+e|U[*+€| Z|* = Re(F,U)».
’ (2.9)
The resolvent equation in terms of its components is
g — D = fi, (2.10)
iAD — S, —IN = fo, (2.11)
i) — U = fs, (2.12)
AU — M, + 5 = fq, (2.13)
io—W = fs, (2.14)
IAW — N, +15 = fs, (2.15)
ixu —U = fr, (2.16)
IAU+U+u+ %S(é, t) = fs, (2.17)
Az — Z = fy, (2.18)
N+ Z 4+ 2+ %N(@, t) = fio. (2.19)

Our next step is to show that A is the infinitesimal generator of a contraction
semigroup. To do that use the following result which is a consequence of Pazy
result [I6] Theorem 4.6] and the Lumer-Phillips Theorem.

Lemma 2.1. Let A be dissipative with 0 € o(A). If H is reflexive then A is the
infinitesimal generator of a semigroup of contractions.



6 J. E. MUNOZ RIVERA, C. A. DA COSTA BALDEZ, S. M. S. CORDEIRO EJDE-2024/17

Proof. Since o(A) is an open set, there exists ¢ > 0 such that ¢ € o(A). This
implies that each A > 0 belongs to ¢(.A). In particular we have that R(I —A) = H.
Using [I6, Theorem 4.6], we conclude that D(A) = H. By using the Lumer-Phillips
Theorem our conclusion follows. O

Theorem 2.2. The operator A is the infinitesimal generator of a Cy semigroup T
of contractions.

Proof. Since A is dissipative and because of Lemma [2.1]it is sufficient to show that
0 € o(A). In fact, we take F' € H and show that there exist only one U € D(A)
such that —AU = F. Let us denote

F = (f1, f2. f3: fa: f5: fo: fr, fss for f10) T
U= (0,0,0, % w, W uU,zZ)e DA).
For A = 0 the resolvent system — can be written as
e=f V=fs W=/f U=/f, Z=/o,
—6(pe + ¥ + )y — lro(wg — lp) = F1,
—bYus + Kz + Y +lw) = Fy,
—ko(we — 1)y + kl(ps + 9 + lw) = F3,

(2.20)

where
Py = pifo+ [K(@)(fan + f3 + Ufa)le + UKo (@) (f5,2 — Lf1),
Fy = pafs+ (B(@)f3.20)e — K(x)(fen + f3 +1fa),
Fy = p1fo + [Ko(2)(f5,0 — Uf1)]e — LK (2)(for + f5 + 1fs)
satisfying the following boundary conditions
P0) =0, pl)+18() = fs — fr
$(0) =0, () =0,
w0) =0, wlt)+ N(O) = fuo ~ fo

Let us introduce the space V = Vy x Hg x Vy. Denoting U? = (p%, ¢ w') € V we
conclude that the bilinear form a: YV — C,

a(U', U?)
= [ R+ 62 ) iy e — e — )
+06901(f)¢2(€) +ew! (Ow?(0),
is coercive and continuous over V. Note that the function
F(U) = /OZ PP+ P + Fswd + e(fs — fr)e(l) + €(fio — fo)w (),  (2:21)

belongs to V*. So, Lax-Milgran’s Lemma guarantees that there exists only one
weak solution to problem

a(U,U)=F(U), YUecK. (2.22)
Using system (12.20) we conclude the solution & € D(A). Hence 0 € p(A). O
As a consequence of Theorem we have the following result.
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Theorem 2.3. For each Uy € H there exist a unique mild solution to problem
—. Moreover if the initial data Uy € D(A) there exist a strong solution
satisfying

UeCH0,T;H) N C(0,T; D(A)).

3. ASYMPTOTIC BEHAVIOR

Here we show that the semigroup associated with the hybrid system -
is exponentially stable provided the constitutive law is continuous and satisfies sat-
isfies —. When the constitutive law is discontinuous, the corresponding
semigroup is polynomially stable, with rate ¢='/2. Our main tool is the characteri-
zation due to Priiss [I8] and Borichev and Tomilov [3].

Theorem 3.1. Let S(t) = e be a contraction Cy-semigroup over a Hilbert space
H. Then, in Priss [I8)] is established that there exist C' and ,~v > 0 satisfying

1S()|| < Ce ™ & iR C o(A) and |(GA] — A) "z < M, VAER.  (3.1)

For polynomial stability, Borichev and Tomilov [3] results establish that there exists
C > 0 such that

C
—1
[S(HA < i/

Our starting point to show the exponential stability is to show the strong sta-
bility.

Lemma 3.2. The operator A defined by (2.5)) and (2.6)) satisfies iR C o(A).

& iR C o(A) and ||(iN — A)7Y| < MIA|Y, VA€ R, (3.2)

Proof. Let us consider the set

M= {s e R" ] —is,is[C p(A)}.
Since 0 € p(A), M # &, the supremum ¢ = sup.M can be finite or infinite. If
o = +oo then iR C p(A) and we have nothing to prove. We will prove that the
finite case is not possible. By contradiction, let us suppose that ¢ < oo. Then,
exists a sequence {\,} C R such that A\, = 0 < 400 and

(@A d = A) M| £gay — +o0

Hence, there exists a sequence {f,} C H such that ||fn]l% = 1 and |[(i\,] —
A)7Lfnlli — +oo. Noting

U I .
and U,, = 22—, F,, = —L»— we obtain
[ T T T

iUy, — A, = F,, — 0. (3.3)
Taking the inner product,
and taking real part,
¢
~Re(Al,ty) = [ (BIVIP 4+ KIQT + 07 4 WP+ KW~ 167 ) do
0
+ |Un|2 + ‘Zn|2 — 0,
T 4 U L I W — 19" — 0 strong in L*(Jlg, £1]). (3.5)
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Therefore,

TRt Il Wl —1le™ — 0 strong in L2(]€0,€1 D, (3.6)
", z") — (0,0).

Since || AU, || < C, it follows that U, is bounded in D(.A). This implies in particular
that @,,, ¥,,, and W,, are bounded in H}(0, /) and ¢, 1, w are bounded in H?(If).
Then there exist subsequences such that

®, - ®, U, ¥, W, =W strongin L*(0,¢) (3.8)
<pn7w+wn+lwn _>pr+1/)+lw7
Ynz = Vo, Wnz — lpn, — wy —lp,  strong in L2(IE), (3.10)

where Ip =|0,£4o[U]¢1,¢]. From (2.16)) and (3.7) we obtain u = z = 0; therefore
©(0) = w(0) = 0. From (3.8), (3.10) and (3.6), it follows that U, — U strongly in
H. Since A is closed, we conclude that U satisfies

iold — AU = 0.

Moreover, using the convergences (3.5)-(3.6]) and the resolvent system, we conclude
that the solution vanishes over ¢y, ¢1] so we have that

SD(EO) = 1/)(80) = QOz(EO) = w:c(fO) = W(ZO) = wx(fo) = 0.
So, over ]0, £5[U]¢1, £[ the solution satisfies
—p10%0 + K(pz + Y +1w)y — lkg(wz — lp) =0,

— 2021 4 biyy + k(e + U +lw) = 0,
—p10%w + ko(wp — 19) e + 1k(ps + ¢ + 1w) = 0.

Looking the above equation as a second-order final-value problem over ]0, £q],
we obtain ¢ = ¢ = w = 0 over |0, £y[. Using a similar argument we conclude that
¢ =1 = w = 0 over |¢1,¢][. Hence U = 0 on H, which is a contradiction. This
completes the proof. ([

The next Lemma plays an important role in the proof of exponential stability.

Lemma 3.3. Assume that hypothesis (1.10) and (1.11)) hold. Then for each € > 0
there exists C. > 0 such that the solution of (2.10)-(2.19) satisfies

K|\®|? + BIAY|? dx + K|AW|? dx < C.|[U||%||Fll% + C\|FII3, + U3,
Ic

Proof. Multiplying (2.11)) by i\K® and integrating over I = [{y, ¢1],

/ p1 K|A®|? da :/ (Sy + IN + f2)iAK® da. (3.11)
Ic Ic
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Recalling the definition of S and N over I~ we obtain

/ P K|\®|? dx

Ic

= / [K(e + 1 + 1w) + K (®y + U + IW)]iAK ® da

Ic

+/ Uko(ws — o) + K(Wy — 1®)JiNKD dz + | foizK® du,
Ic Ic

=064+ 65+ 6 + &y + foitAK® dzx.
Ic
Here

6= [ [K(® +TU+IW)iXK®+Kd,)dx,

Ic

&y = / [£(0x + ¥ + Iw)IN(K'® + K®,) dx,
Ic

6 = Uro(we — €p)iINK® dx,

Ic
By = / (K (W, — (D)]iNK® da,
Ic
where Ic =]y, (1] and K(¢y) = K(¢1) = 0. Estimating & we have

6= / [K(®, + U+ IW)INE'D + K(®, + U+ 1W)) de
Ic

- / K (®, + O + IW)AKT + KIW) de.

Ic

Taking the real part in (3.13) and using (2.9) we obtain
Re® — Re / K (@, + W + IW)INET®) da
Ic
_ Re/ (K (B, + O+ IW)NET T oyl da,
Ic

< ellAD* + el XV + e AW + CellUll ]| F I3
Similarly, using (2.10)), (2.12)), (2.14]), and (2.9)) we obtain

Re &) = Re/ [K(pz + 9 + W) iN(K'® + K®,) dx,
Ic

<e [ |®*+ |V +|W]Pdx + R,

Ic

Re®; <e [ |+ V> +|W|*dr + R,

Ic

Re &, < e/ |®> + |2 + |[W|*dx + R.
Ic

Substituting (3.14)) and (3.15)) into (3.12)) yields

[ rIABP do < @ + NP + ColUl ] Pl
Ic

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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for |A| > 1. Repeating the above procedure multiplying equation (2.13|) by i\b; ¥
and equation (2.15) by iAKW we arrive at

| paBINUP do < TP + WP + Cld
Ic

| KW de < AR + AW + ol

Ic

Summing the last three inequalities our conclusion follows. O

Remark 3.4. Lemma [3.3] is also valid for discontinuous constitutive law. That is
for any 6 vanishing out side of Ip =]{y, ¢1[ satisfying

81 < clo] (3.19)
it is valid that

/ OINP[* + 0NV |? da + O AW |* d < Cc|[U ||| Fllae + Celld|[3, + el F 3

Ip

The proof is identical as Lemma |3.3

We introduce the following notation:

/ /
g, = P g2 Tyg2 7 _ R g g (3.20)
2 2 2 2
(bgpa)’ q bgps q
Ep = — U+ S|M|?, I,=—=|9+ 3|M], (3.21)
2 2 2 2
/ /
£o = I e LN, 3, = ey e (309)
€= €48+ T=T,+TIy+1L. (3.23)

and
b b - o B
L= / E(s)ds — / (p16qPY + p1rgIPW + p KqlW ®)dx
a b i a i i
+/ (¢lSN + glSN + ¢SM)dzx.

nwx

Taking ¢g(z) = ¢ ;em we have ¢'(z) = €™ > ¢(z), for n large, Hence

Co/bgdx<£<01/b5d:v. (3.24)
Remark 3.5. Recalling the definition of S and M we obtain
/b|5’|2dac < c/b/i|<p$ +z/1+lw|2dm+/b |K(®, + U +IW)|? da.
Using theadissipative pr(c)lperties, '
/ 82 < c / o 4+ Lol dr + et F

Similarly

b b
[P s < [P o+l Pl
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and
b b
/ IN[Pdz < ¢ / s — W dz + c|Ull3 | F e

From where it follows that, for large values of n,

b
/ B2 + |90+ 16+ L® + [T+ [+ (W2 + [y — 12 da
¢ b
< / £ dz + c|Ull3 |l

b b
/ Sda:s«:/ B2 + lpw + 0+ ol + [T 4 [ + (W + g — 1|2 d
el Fl

Lemma 3.6. If the constitutive law is continuous, then for each [a,b] C]0,¢[ we
have

b
‘E(S) = L(s)|,| < Celthllael|Fll3¢ + Cell Fllae + A3,

If the constitutive law in discontinuous, then for each [a,b] C]0,£] we have

e-1(s)]:

< ACAP Ul Fllae + Cell Fllag + el

Proof. Multiplying (2.11)) by ¢S, (2.13) by ¢M, and (2.15) by ¢/N, we obtain
d d
_ plﬁ;qi (I)|2 q |S|2

2 dx 2dz (3.25)
= Ry + p16q®V + p1rgl®W — iXp1gK®(®, + U + W) — glSN,
p2bg d o qd o . — _
——=—=—|U|* — =—|M|* = Ry — iAp2qBYWY, — qSM, 2
5 g UI° = 5 7 IMIT = Rz — iApag qs (3.26)
pKqd o qgd o
- ———|N

2 dx Wi 2dx| | (3.27)

= R3 — 1 KqIW® — idp1gKW (W, — ®) — qlSN.
Summing identities (3.25)), (3.26)), (3.27)) we arrive at

pikq d o pbgd o mKqd o qd .o qgd o qd o
— — o - - WP - 2 SPP—- E—|M|P - 2 —|N
2 d:cl | 2 da:' | 2 dx | 2dx| | 2 dx | 2dx| |

= Ry + p15q®V + p1gl®W — py KqIW® — qISN — qISN — gSM + J(x),
where
J(x) = —idp1gK® (P, + U + IW) — iApagBY W, — iXp1g KW (W, — 1®). (3.28)

Note that J vanishes outside of |¢y,¢1[. Recalling the definition of Z and £ we
obtain
~ L (2w + £ @)
dz
= Ry + p15q®V + p1rql®W — py KgIW® — gISN — qISN — ¢SM + J(z).

Hence, when the constitutive law is continuous, Lemma [3.3] implies

£
|/0 J(x) dz| < Cellt|lpl|Flls + Cel| Fllae + el (3.29)
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Instead when the constitutive law is discontinuous we obtain
¢
| / J(x) dz| < CeMP Ul Fll3 + Co || Flla + elld]f3,- (3.30)
0
After an integration using the above inequalities our conclusion follows. ([
Let us denote
E(s) = p1] @ + p2|W* + pr|[ W[ + bltpa|* + Klpw + 9 + lw]* + rolws — lip]*.

Theorem 3.7. The semigroup associated with system (2.1))-(2.2) is exponentially
stable provided the constitutive law is continuous and satisfies (1.10)-(L.11). Also
if the constitutive law is discontinuous, then solution decays polynomially to zero as

IS U || < Ct 2 |Uo || p.a) - (3.31)
Proof. From ({2.9)), (2.16]), and (2.18]), we obtain
e([ul + U + 21> + |Z1?) < CelU|l#|| Fll3 + CelI F I3, (3.32)

From , , , and , we obtain

; Klps + 9+ 1w + Bl [* + K|w, —lp|* dz < O]l || Fll2 + C: || FII3,. (3.33)
On zhe other hand, from Lemma [3.3] we have

/1 K|®? + B[O du + K|W|* dz < C Ul | Flls + C- || F |13, + ellUd|]3,-
o
For A large and each interval |a, b[C I we have
b
| B@)de < CUla Pl + P I + el (3.34)

Using the observability Lemma over the interval ]a, b[ we obtain

b
E(a) + E(b) < c / B(o) da + ColUlull Pl + CIF I +el0F o

< CellUllzl| Fllze + Co I F 113, + elled|f3,.

Using Lemma over the interval |0, a[ and ]a, [ and the above inequalities we
obtain

/0 E(x) dz < ColUlls| Flla + CHIFIE + el

‘
| B@)do < ol Pl + CF 1B, + <l
From the above inequalities we obtain
¢
413, :/O E(z) dz+e(|ul +UP+[2[*+]Z]%) < CellU|la|| Fllne+Ce || F 13 el

which implies that |||y < C||F||3. From where the exponential stability holds.
Finally, we consider the discontinuous case. Note that (3.33]) is also valid for
discontinuous functions B and K. From Remark

/ OIND|* + 0NV |2 dx + O AW |2 do < Ce|[U||1||F |3 + C:||F||3, + elUd|3,-
Ip
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Therefore for each interval ]a,b[C Ip we have

b
| B do < ol Pl + CL I, + <l (3.30

Using the observability Lemma for discontinuous constitutive law over the in-
terval |a, b] we obtain

E(a) +E(b) < CIAP Ul Flloe + Ce|| FII3, + U3, (3.37)

Reasoning as above we conclude that
¢
Ul = [ B(o)do+ el + UF + |5 + |2P)
0

< CeAP Ul F Nl + Co |l F I3, + ellU13,.
From where we obtain that ||U||3 < |\|?||F|/%, which implies the polynomial sta-
bility. O
4. LACK OF EXPONENTIAL STABILITY

In this section we prove that the semigroup associated with system (2.1])-(2.2))
is not exponentially stable when the viscoelastic constitutive law is discontinuous.
To do that we use [14, Theorem 5.1 ].

Theorem 4.1. Let T be a contractions semigroup over H and Ty a group with
unitary norm, that is ||[To(t)U| = ||Uo||, defined in Ho C H. If the operator
T(t) — To(t) is a compact operator, then the semigroup T (t) is not exponentially
stable.

Another key result for our purpose is given in the following Lemma.

Lemma 4.2 (Lions-Aubin [I0, Theorem 5.1]). Let be V., H, Vij Banach spaces such
that V. C Vi C H, where the first embedding is compact. Let p € LP([a,b]; V), @ €
L?([a,b]; H). Denoting

W ={peL"(la,b);V): ¢ € L’([a, 0] H}.
Then the embedding W C LP([a, b]; Vo) is compact.

Finally, we establish the observability inequality to the evolution Bresse system.
To do it let us denote

To(x,t) = |@e(@, )] + |G, t) + Pla,t) + (2, 1),
Iil)(xvt) = |'(/~}t($7t)‘2 + ‘ix(l‘,t)ﬁ,
Lo(t) = | (1) > + |@a (2, ) — 1(, 1)

Lemma 4.3 ([19, Lemma 2.1]). Let us suppose that there exists a solution to Bresse
system, bounded by the initial energy associated with the model

1 Put — K(Pa + U+ 1@)y — 1K (D — 1@) =0 in a, b[x]0, T,
P2 — buy + K(Py + 0 +10) =0 in]a,b[x]0, T, (4.1)
1y — 1K (0 — @) g + k(P + 0 +10) =0 in a, b[x]0,TT.

Then there exists a positive constant satisfying

/ ' To(a,t) + To(b,t) + Ty(a,t) + Ly(b,t) + Lo, (a,t) + L (b, t) dt < cE(0)
0
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where E(t) = f; Zo(x,t) +Zy(z,t) + L, (z, t) de.
Now we are in a position to show the lack of exponential stability.

Theorem 4.4. If the constitutive law is discontinuous then the semigroup T (t) is
not exponentially stable.

Proof. Let us denote by 7o the group associated with system (4.1)) for ]a, b[=]0, {o]
satisfying the boundary conditions

2(0,t) = G(lo, 1) =9(0,1) = ¥(lo, 1) = (0, 8) =@(lo, 1) =0 (42)
over the phase space
H = H(0,00) x L*(0,40) x H(0,00) x L*(0,£o).
Note that ||75(t)Uo||2 = |[Uo]|? for all Uy € H. Let us consider the spaces

]Loz{feLQ(O,é):f[e g =0}, Vo= Hj(0,0)N Ly,

Ho = Vo x Lo x Vp x Lo x Vy x Lg x {0} x {0} x {0} x {0}.

Let us denote by To the group over Hy (null extensions on [, £]) associated with

[EI)-[ED) that is
%(t) 0= (@v ¢t7 12;7 1Z;t7 71), lDt, 07 07 07 0)
So we have
ITo (U |I* = IUholl?, Vo € Ho (4.3)
Now, we prove that T (t) — To(t) : Ho — H is a compact operator, where
7—Z/{Orn = ((pm7§0;n7wm7w;tm7wm7wtrnau7 Ut, Z,Zt) S Ha
%(t)uan - (¢m7@?71/;7n71;’tm>(:}m7®2n30707070)) S HO

Let o™ := ™ — @™, y™ (=™ — o, ("™ = w™ — ™. By definition we have

m— g™ if 0,4
vm(x,t)—{(p @, 1 HAS » €0

[0, 4]

Spm7 if © ¢ [0760]7

o g e
y"(x,t) = {wm7 if x ¢ [0, £o],
- o —am, it a e [0,4]
" (z,t) = {wm, if z ¢ [0760]~

Moreover v, y and ( satisfies
prvee — k(g +y +12)s — K(var + Y +1G)w
— UK (G — 10) = UK (ot — o) = 0,
P2yt — bYzz — (BYat)w + K(ve +y +1() + K(vat +yi + 1) = 0, (4.5)
P1Get — Ko(Co — 1) — LK (ot — l01)
+lk(vy +y 4+ Q) + 1K (v + ye + 1G) = 0.
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Multiplying (4.4]) by v, (4.5) by wy, and integrating over [0, ], we obtain
d ¢
%Hﬂm(t)ﬂi + / Klvee 4y + 1617 + Blyee? + K[Car — lvi|* d + e|u]® + €]z
Lo

= =S (Ly )Ly s t) — M™ (L, )b (£y s 1) — N™ by, t)ywe (£, t)

(4.7)
where
() = [T(@) = To@Ug" = (0™, v y™ yi" ¢ G s e, 2, 24).
Integrating (4.7) over [0, t], we obtain
t e
IO+ [ [l 16 P + Bm P + R — P de
0 /b (4.8)

_— / (§™ (05 ally 1) + NI (6 06 ) + N7 (€ tywn(€ 1) .

Using Lemma on the interval ]0,0[, we conclude that S™. M™ N™ are
bounded, therefore there exists a subsequence (we still denote in the same way)
such that

S™(ly,t) — S(ly,t) weak in L2(0,T),
M™(ly ,t) — M(£y,t) weak in L(0,T),
N™(ly,t) — N(ly,t) weak in L?(0,T).
We only need to prove that
( ¢ (Lo ), v (€ )w?(fg,t)) ( t(lg 1), e (fg 1), w (Eg,t)) (4.9)

strong in [L2(0,7T)]3, which implies the norm convergence in (.8). To do that we
use (2.9) and system (2.1]) to obtain

et wit € X0, T Hi (Ip)), i i wip € L2(0, T3 H(Ip)).

Since H' ¢ H'™% c H ' for 0 < 0 < % where the first inclusion is a compact

embedding, then Lemma implies that there exists a subsequence (we still denote
in the same way) such that

(P, i wi") = (@, 9, wi)  strong in L2(0,T; H' = (Ip)xH'~°(Ip)xH'~°(Ip)),
and since the embedding H'~%(Ip) c C(Ip) is compact, we have
(", ", wi") = (@1, ve,wi) - strong in L*(0,T;C(Ip) x C(Ip) x C(Ip)).

Since Ip = [{o, (1] the above convergence implies (4.9). Hence (4.8) implies the
convergence in norm of 4™, since H is a Hilbert space we obtain that 7 (¢) — To(t)
is a compact operator. The proof is now complete. (Il

5. PENALIZED PROBLEM

Here we establish the well possedness and the asymptotic behavior of the abstract
semi linear problem. We introduce a local Lipschitz F function defined over a
Hilbert space H. We assume that for each ball Bg = {W € H : |W||y < R}, there

exists a function globally of Lipschitz type j‘;, such that
F(0)=0, F(U)=Fr(U), YUEBg (5.1)



16 J. E. MUNOZ RIVERA, C. A. DA COSTA BALDEZ, S. M. S. CORDEIRO EJDE-2024/17

and additionally, that there exists a positive constant ¢ such that
t —_—
/ (Fr(U(5)),U(s)),, ds < kollU ()3, VU € C([0,T];H). (5.2)
0

Under the above conditions we have the following theorem proved in [13].

Theorem 5.1. Let {T(t)}i>0 be a Cy semigroup of contraction, exponentially or
polynomially stable semigroup with infinitesimal generator A over the phase space

H. Let F locally Lipschitz on H satisfying conditions (5.1) and (5.2)). Then there
exists a global solution to

U, — AU = F(U), U(0)=U,€H, (5.3)
that decays exponentially or polynomially respectively.

Let us consider the semilinear system
P1Ptt — Sx —IN = 0,
p2tbi — My + 5 =0,
prwie — Ny +15 =0,
1
eusr + eur + eu + S, t) = - [(u —g3)" — (g2 —u)"|,

1
€zpe + ez +ez+ N4 t) = —E(z —g1)".
Let us denote
‘F(U) = (07 0,0,0,0,0, fl(u)7 0, fg(Z))
where

filw) = —2[(w—g0)* (g~ "] and fo2) = (- g0)"

Since f1, fo are Lipschitz functions, it follows that F is Lipschitz on H satisfying
condition (|5.2). Under these conditions we have the following result.

Theorem 5.2. The semigroup defined by (5.4) is exponentially or polynomially
stable provided K (x), B(x) and Ko(x) are differentiable or discontinuous functions,
respectively.

Proof. Note that the above system can be written as
Uy — AU =FU), U0) =Up.

Where A is given by . From Theorem and Theorem our conclusion
follows. O
6. SIGNORINI’S PROBLEM
Here we show the main result of this article. First we introduce the space

Ho = K x L*(0,€) x H}(0,¢) x L*(0,£) x V x L*(0,¢)

where

K={ueVyge<ull) <gsz}, V={weVywl) g}

Theorem 6.1. For any initial data (¢, p1, %o, Y1, wo,w1) € H there exist a weak
solution to Signorin’s problem (L.1)-(L.8) which decays as establish in Theorem[5.3,
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Proof. Multiplying, equation (5.4)1-(5.4)s by ©§, ¥5, w§, ut, vt, and z;, respectively.
Integrating over (0, ¢), we obtain
d
dt

where

L
Ec(t) :*/0 K |5 +95 +lwi [P+ Bl [* + K wi, — g do—eluf|* — el (6.1)

1 € € € €
2Ec(t) = Ee(t) + _Ne(t) +e(Ju 2 Jug? + 2 + 1),

4
280 = [ [paletl? + palul? + pulu P + sl + 7+ Lo + B0 P
0

+ Kolws, — lgaeﬂ dx
Ne(t) = (w6, 8) = ) T+ 1(¢°(6,) = ga) T + (92 — (£, ) 7.

Taking (o, wp) € K x V, and integrating we obtain

E(t) + %Ne(t) +e(fuf]? + Jug® + [ + [26]%) < Ee(0), (6.2)
N(t) <€E(0) =0, ase—0. (6.3)
Hence denoting the limit (¢, ¢¥¢, w®) — (¢,%,w) we obtain
w(t,t) < g1, g2 < p(4,t) < gs. (6.4)
Using Lemma we obtain that §(¢,t), wi(l,t), S€(¢,t), and N({,t) are
bounded in LQ(O, T), so is uy and zy. Using 4 we obtain

T T
1
/ [eu§t+eu§—|—eu€—|—56(L,t)] [v—uf]dt = _E/ [(ue—gg)+—(gl—u6)+ [v—uf] dt.
0 0
For all v € L%(0,T;K) N H*(0,T; L?(0,L)). Where K = {w € H(0,L) : g1 <
w(L) < go}. Tt is no difficult to show that
T
lg% ; [eutt—&—eut—i—eu][v—u Jdt =0.

In fact, from (5.4) 4 eus, is bounded by a constant depending on €, in L?(0,T). More-
over, Lemma implies that u§ = (¢, t) is also uniformly bounded in L?(0,T).
Therefore u§ is a continuous function, uniformly bounded in L*°(0,7"). Integrating
by parts we obtain

T . T
/ eug,[u(t) —uldt = e ugv(t) — u]|, — / eusvg(t) — ug) dt — 0.
0 0

Hence,
b [ 9L 6 ot) — u(6) de
e—0 0
T
=t [ [0 =02 = (=) Jlole) ) .
Since

A(w—@ﬁww—uwnw
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T T
- / (u — g2 [u((t) — ga) dit — / (u — go)* (u — go) dt,
0 0

T T
- / (0 — go) *u(£) — go] dit — / (u — go) " (u — g)* dt < 0.
0 0

For all g1 < wv(L,t) < go. Similarly we obtain

- / (g1 — ) [ot) — ws ()] dt < 0.

Therefore, from the last two inequalities we obtain

T
/O 1[(1&6 —g2)t = (g1 —u)T]o(t) —us(t)]dt <0, Ve>O0.

€

For all v € H'(0,T;L?(0, L)) such that g; < v(L,t) < go. Taking the limit ¢ — 0
we obtain

/T S(L,t)[v(L,t) — p(L,t)]dt >0, Yve L*0,T;K). (6.5)
0

Inequality (6.5)) implies condition (1.8]). Using similar ideas we arrive at
T

N(L,t)[w(L,t) —w(L,t)]dt >0, Yw € L*(0,T;V).

From where condition (|1.8]) follows. Then the proof of existence is now complete.
To show the asymptotic behavior we use Theorem and obtain

E(t) < CE(0)e

where

1t
E(t) = 5/ {P1|<Pt|2+P2|¢t|2+P1\wt|2+’€|<Pw+¢+lw|z+b|%\2+ﬁo\%—lwﬂd%
0

So, using the semicontinuity of the norm and noting that N'(0) = 0, we obtain
E(t) <liminfE.(t) < C{ lim E.(0)}e " < CE(0)e "
(t) < liminf Ec() < O{ lim Bc(0)}e™"" < CE(0)e
where C' is a positive constant independent of parameter e. Thus, we conclude the

exponential stability of the Signorini’s problem. Similarly we obtain the polynomial
stability. 0

7. NUMERICAL RESULTS

In this section we show numerical results for the penalized system (2.1)-(2.2).
Here, we use the well-known Newmark’s methods [6] [15].

7.1. Variational formulation. Letting u = [p,v,w]", from (2.1)) we obtain the
variational problem

(u(t), 1) + a1 (u(t), w) + az(ui(t),n) =0, vaey (7.1)
where V =V x H} x Vy and u® satisfy the initial conditions
(u®(0), 1) = (ug,u), (uf(0),1) = (uf,n). (7.2)

Here a; : V x V — R are functionals defined by
(ugt(t)’ ﬁ) = Pl(S";v U]_) + P2(¢§7 ’11/2) + pl(wga ’LL3),
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al(uﬁ(t)7ﬁ) = k(@; + '(/}6 + Zwe,ul,m + us + ZU3) + b(wza u2,z)
+ ko(ws — 1%, us o — lug) — S€(¢, t)us (L) — N(4, t)ug(L),

¥/ l
an(u(t), @) = / K(2)(¢5y + 0 + 1) (g0 + 0z + lug) de + / B(a)fus p da
0 0

¢
—|—/ Ko(z)(wiy — lof) (us e — lug) de.
0
Here (-, ) is the inner product in L?(0, ).

7.2. Algorithms and numerical approximation. To have the full discretization
of (TI)—(72) we first consider a partition of the interval Q = (0,¢), X;, = {0 =
o < 21 < - < TN = f}, Qj+1 = (xj,xj+1), and €); ﬂQj =0 if ¢ # j, and
Q = UNe Q,., where N, is the number of the elements of the partition. Then we
define the finite-dimensional subspaces S = {u € C’(O,Z);u|Q € Pi(2)} where
P, is the set linear polinomials defined in €, ‘

V= (v e Shioh(0) =0} and UM = {u" € SP;ul(0) = " (0) = 0}.

Considering u” = [p", " w"] T, the approximation is characterized as the finite-
dimensional problem in R3™Ve,

(Wl (1), 0") + a1 (0 (1), ") + as(u) (), 0") = 0, Wuh € V' x U x V", (7.3)
where u’¢(t) satisfies the initial conditions
€ ~ h,e ~ h,e ~ h,e ~
(uh7 (0)7uh) = (uo 7uh)> (ut (0)7uh) = (ul =uh)' (7.4)
In matrix form, dynamical problem ([7.3)-(7.4])) can be written as
Md(t) + K(d(t)) + Cd(t) = 0,
d(O) = d(), d(O) == dl,
where, d(¢) is the vector of displacement nodal generalized at time ¢t. M, C are
matrices associated with the functionals: (u§,(¢),0) and as(uf(t), @) respectively.
K(d(¢)) is the vector of consistent nodal elastic stiffness at time ¢.

Taking a partition P on the interval [0, 7] of M intervals of length At such that
0=ty <t1 <--- <ty =T, with t,41 —t, = At and considering the non-linearity
the numerical scheme becomes

Man+1 + Cdn+1 + Kdn+1 = K(dn—i-l)a
. At? .. ..
dyy1 =d, + Atd, + T[(l —2B)dy, + 2Bdn 1],
C'ln+1 = dn + At[(1 - V)dn + 7&n+1]
with
~ 1 + + + T
R(dni1) = == (0,0, (dan,2(8)=gs) " —(g2—dan, ~2(1)) ", 0, (dan, (1) =g1) ")) -

Here, g and ~ are two parameters that govern the stability and accuracy of the
method. The matrices, from the above system, are obtained from the finite element
method standard assembly, M = UY¢ m¢, K = UN¢ (k& + kS, + k%), for instance,
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considering linear functions in the interpolation functions, we obtain the elementary
matrices

ph/3 0 0 ph/6 0 0
0  ph/3 0 0  ph/6 0
e | 0 0 mh/3 0 0  ph/6
“ |pmh/6 0 0 mh/3 0 0o |’
0 ph/6 0 0 ph/3 0
0 0 ph/6 0 0  pih/3
00 00 0 0
01 00 -1 0
¢ ~blo 0o 00 0 0O
M~™pl10 0 00 0 O0f
0 -1 00 1 0
0 0 00 0 0
k/h  —k/2 —kl/2 —k/h —k/2 —kI/2
—k/2 kh/3 klh/3 k/2  kh/6 kIh/6
K — —kl/2 klh/3 KkI*h/3  k1/2 klh/6 Kki*h/6

—k/h kj2 k)2 k/h K2 klJ2
—k/2 kh/6 KIh/6 k/2 kh/3 klh/3
—klJ2 klh/6 KkI2h/6 kl/2 Kklh/3 Ki2h/2

Remark 7.1. Generally to penalized models, in particular to Bresse beams, oc-
curs a typical numerical problem, the shear locking, for more details see [I1]. To
overcome this problem alternatives was performed in Hughes et al [7], Prathap and
Bhashyam [I7] and Abimael et al [I1] and references therein.

To obtain computational results, we use the implemented code in the Language
C. The graphics were developed using GNUplot. In all experiments we use the
following parameters to Newmark’s method: g = i and v = % The finite element
mesh h = 0.01 m and length of the beam ¢ =1 m.

Let I, viscoelastic component in I = [0,¢]. Here we are consider the following

case.

7.3. Cases I,. We consider the localized viscoleastic damping functions I, =
[go,fl] and Iv = [fo,f]

_ 4 _ 4 if Iv
i) = co(x — Lo)*(x — £y) 1 x € I,
0 ifxel\I,.

el =) ifxel,
fz(x)_{o ifrel\l,

7.4. Linear case - without contact: ¢g; = +00, go = —00, g3 = 400.

7.4.1. Ezperiment. We take a rectangular arch beam with I,, = [0.3,0.6], thickness
and width equal 0.08 m, p = 2700 kg/m?®, x = 5/6, » = 0.3 (Poisson ratio),
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e

-+

FIGURE 4. Dissipation functions: continuous (blue lines) and dis-
continuous (red lines) cases.

E=69-10° N/m? R=2m and At =1 s. We use the initial conditions

22, z € [0,0.15],
] =3(x = 0.15)2 = 0.3(z — 0.15) — 0.0225, z € [0.15,0.3]
27 Y 2(2 — 0.3)2 — 0.6(a — 0.3), z €10.3,0.6]
—2(z — 0.6)> — 0.8(a — 0.6), z € [0.6,1],

1 ze(0,015),
70 015, 1).

and 1y = 1 = wp = w1 = 0. See Figures[5] and [6]

Vi)

FIGURE 5. Evolution of the rotation angle of filaments: ¢(z,t).

7.5. Nonlinear case - penalized problem.

7.5.1. Experiment: contact problem: go = —0.3, g3 = 0.3. We consider a rectangu-
lar arch beam with p; = 0.2, ps = 0.16, p3 = 0.3, £ = 0.064, b = 1.0, and xg = 0.2.
The initial conditions ¢(x,0) = 0, p¢(z,0) = z, ¥(x,0) = 0, ¢(x,0) = sin(Fx),
w(x,0) = wi(x,0) = 0. Furthermore, we consider At = 1072 s. and the penalization
parameter € = 107!, See Figure |Zl
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FIGURE 6. Asymptotic behavior of the numerical energy
EM(t, o™e e whe) at time 100 s. Here we compared the numer-
ical experiments to continuous case (left side) versus discontinuous
case (right side), where we obtain the exponential and polynomial

stability, respectively.

100

[}

FIGURE 7. Beam'’s oscillations at the end o = ¢: ¢©™¢(¢,t) and the
asymptotic behavior of the energy at 100 s we performed the ex-
periment for I, = [0.6, 1] and viscoelastic damping function differ-
entiable (blue line and discontinuous (red line) cases, respectively,
see Theorem

0 and by project UBB 2020108 IF/I.
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