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EXISTENCE OF SEMI-NODAL SOLUTIONS FOR ELLIPTIC
SYSTEMS RELATED TO GROSS-PITAEVSKII EQUATIONS
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Commumnicated by Claudianor O. Alves

ABSTRACT. In this work we consider existence of semi-nodal solutions, i.e.,
solutions of the form (u,v) with u > 0 and v¥ := max{0, £v} # 0 for a class
of elliptic systems related to the Gross-Pitaevskii equation.

1. INTRODUCTION

This work concerns the elliptic system
—Au = Mu+ p|[u)??2u+ BlulP2ulv]?, in Q
—Av = \v + pa|v]*7 20 4 BlulP|v]9 %0, in Q (1.1)
u=v=0, on0f.

For p = ¢ = 2 the cubic system arises in mathematical models for various
physics problems, especially in nonlinear optics and Bose-Einstein condensation,
see [14, [I7]. In those works present information on the physical significance of non-
cubic nonlinearities and on the existence and multiplicity of solutions. Furthermore,
when \; < 0, system comes from the study of solitary wave solutions of the
coupled Gross-Pitaevskii equations,

0
—ig®1 = Ay + 11 |P1* Py + fO3Py, z€Q, £>0

)
—ig P2 = Ay + pa| @2 2@y + IRy, xEQ, >0 (1.2)
P = ¢j(z,t) €C, j=1,2
®i(z,t) =0, €9 t>0,5=12

When @ (z,t) = ety and ®y(x,t) = e~ 2ty, system reduces to (1.1)). In
the Kerr-like photorefractive media, the solution ®; represents the j* element of
the beam (see [2]). The self-focusing in the j*" component of the beam is related
to the positive constant p;, whereas the coupling constant 3 > 0 signifies the
interaction between the two beam components. When p; = 0, the self-focusing
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has been suppressed, and this type of situation is also relevant in optics (see for
example [I5] [16, 20]). The problem denoted by system is also encountered in
the Hartree-Fock theory for a binary mixture of Bose-Einstein condensates in two
different hyperfine states |1) and |2) (see for example [I3]). In this context, each
®; represents the corresponding condensate amplitude, while 11; and 8 denote the
intra and interspecies scattering lengths. The self-interactions of the single state
|7) are represented by the sign of p;, with p; > 0 indicating the focusing case
and p; < 0 corresponding to the defocusing case. When the intraspecies scattering
length p; is zero, it means that the interaction between particles of the same species
is extremely weak or nonexistent (see for example [22]). In addition, the sign of /3
plays a crucial role in determining whether the interactions between states |1) and
|2) are attractive or repulsive. Specifically, if 8 > 0, the interactions are attractive,
while # < 0 implies that the interactions are repulsive. This feature is important in
understanding the competition between different states and can have a significant
impact on the behavior of the system as a whole.

Recently, there has been growing interest in studying systems of the form
that are related to the system in the cubic case p = ¢ = 2. This is evidenced
by the increasing number of research papers published on the topic, among which
we highlight [T}, 3, [8, [9] [T0] 18], 19} 21], 25] and references therein. On this subject,
we also refer the interested reader to [23].

In this work, we investigate the existence of semi-nodal solutions for system
(L.1), that is, solutions where v > 0 in Q and v* := max{0, v} # 0 in Q, which
has also received attention in recent studies, in particular, we are interested in the
case where 3 = o = 0 and p+q < 2%, > 0 and N < 5. Clapp and Soares
[11] dealt with the case where p = ¢ < 2*/2 = N/(N —2), A\; = —1, u; = 0 and
Q =RY with N > 4, among other results, they showed the existence of semi-nodal
solutions subject to the mentioned conditions. Chen, Lin & Zou [B [6] dealt with
thecasep=¢=2,A; <0,p; >0,8>0,and Q C RY bounded with N € {1, 2,3},
they showed existence and multiplicity results of nodal solutions for (1.1). In [7],
the same authors provided the existence of semi-nodal solutions for for the
critical case p = ¢ = 2*/2 with Q@ C RY bounded, N > 6, u; > 0, A\; € (0, ()
and 8 < 0, here \1(Q) is the first eigenvalue of (—A, H}(Q2)). In this work, we
are interested in the case where p; = 0, A\; < \(Q), 8 > 0, p > 1, ¢ > 2 with
p+ q < 2*. In particular, 3 < p 4+ ¢ < 2* which implies that 3 < 2*. Hence our
main result applies only for the cases N € {3,4,5} where p+ ¢ < 2*. Furthermore,
assuming that N € {1,2}, it suffices that p > 1 and ¢ > 2 because 2* = 4o00. For
the sake of convenience, we will change the notation of system to this case,
more specifically, we will consider the system

—Au =M+ &uP o7, in Q
—Av = pv + TuP|v|7 %0, in Q
u=v=0, on 0}
u>0, vF#0 inQ.

(1.3)

Our main result reads as follows.

Theorem 1.1. Assume that Q C RN is a smooth bounded domain, p > 1, q¢ > 2
with p+q < 2* =2N/(N — 2) for N € {3,4,5}, and p+ q < 400 for N € {1,2},
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A 1t < A1 (), where A1 (Q) is the first eigenvalue of (—A, H} (). Then there exists
a pair of solution u,v € C%(Q) to (1.3).

Our approach is based on minimization arguments presented in [4, [24] with
the necessary technical modifications. The main difficulties in our approach are
to avoid semi-trivial solutions (i.e. solution of the form (u,0) or (0,v)) and to
construct Palais-Smale sequence that converges to the infimum of the functional
associated with system (2.21]) restricted to a certain subset of the Nehari manifold.

2. MAIN RESULT

To present our main result, we use the following notation: H := H}(Q) x H} (),
1/2
[l = llull® = Mul3, and [[o]}; == [[v]* = plv]3, where |[f]| := ( [, |V f|*dz)
is the norm of H}(Q), we will write |f|s as the norm of L*(Q) and f*(z) :=
max{0, £ f(z)}. Given the condition A, u < A1(£2), we see that there exists Cy, :=
Cxu(A1(€2)) such that

Onullull < Jlullx < C3llull - and - Caullv]l < [lvll,e < Cxllvll - for all u,v € Hg(Q)

(2.1)

To obtain solutions for system (L.3)), we define the functional Iy, € C*(H,R)
given by

1 1 1
Dyu(w, ) = SllullX + S lvllE - Py /Q |ulPlo]? dz

Here we shall follow same ideas from [4] which allows us to minimize the functional
I, over the following subsets of the Nehari manifold

No = {(u,v) € H 2 I}, (u,v)(u,0) = 0, u # 0, v # 0},
N = {(w,0) € H 2 1}, (u,0)(0,0%) = 0, u £ 0, v* # 0},
M)\M = N)\ QNJ ﬂNH_

The following result is of fundamental importance for constructing a Palais-Smale
sequence at the level where we obtain solutions to our problem. This approach is
based on an idea presented in the work [24].

Lemma 2.1. Let (u,v) € My, and z,w € H} () \ {0} then for all § > 0 there are
unique positive numbers t = t(8), r =r(0), and s = s(d) such that

(t(u—62),r(v — dw)* — s(v—dw) ™) € My,

Moreover if ||z]], |lw]| < 1 and ||ul|,||v]] < M, then there are constants My =
Mo(p,q,)\,,u,)\l(Q),Q,Ml,N) > 0, and C; = Ci(pv%/\nu’Al(Q)vQ’MlvN) >0
such that

[£'(0)], [ (0)1,1s"(0)] € [0, 2] and [t(0)], r(0)],|s(0)] € [C1, Cal,
el o™ > Mo

Proof. Firstly, we mention that (¢, ) € My, if and only if

2 P Plo|fdx  and 3 [F / P|o¥|d.
611 erq/|¢| ] o115 pryrps |17
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Therefore, for each (¢ (u —6z),r(v —dw)t — s(v — dw)”) € My, we obtain that
It = 52)15 = 2 [t = 5)Pr(0 = 5wyt = s(w — 6u) |7 da
||lr(v — dw) ||2 = /|t —82)|P|r(v — dw) ™| dx (2.4)
Isto = dw)" I =~ [t = 52)Pls(o ~ u)” | de
To make the presentation clear, we define the following functions:
71O = lu=6l3 (@) = [ fu=b:pl(o - 5u)"
= [ = sl =501 £ = o = 50

£5(8) = [l(v = dw)~ |-
It follows from (2.4]) that ¢(0),r(d), and s(§) are precisely the solutions for the
system

2 _ P pa P g

£ 12(0) = 2t 0) + L (), (25)
P2 f4(6) = 1%(1157”1"‘1 £2(6), (2.6)
s°f5(6) = ot qtpsqu(d), (2.7)

Here we observe that the solution ¢(d) is given explicitly by

§) = (14 Byrmez(f,(5) moracs [f4(0 )]T [f5(8)]7= mi;qriz). 03
0 = (1 RO T T e =
Recall that

p+q
£0) = [ul2, f2(0) = / ot = 2o 2,

- pP+a, -
0) = [ o717 = PEL o, fa0) = [t 2,
Q q
f3(0) = 7

Here we used that (u,v) € My, to determine the values of f»(0) and f3(0). Since
0 < p<A(9), H&( ) = LP(Q), and HE(Q2) — L9(2) by Holder inequality’s there
exists Cpg = Cpqe(2) > 0 such that

u q +
(1= g P < el = / Wl o517 < CogllulP o=, (2.9)

Since ¢ > 2 and lul, lv]] < M, expression yields a constant My > 0 such
that ||u|, [[vE||? > Mo, hence is proved. As ||ul|, |[vF || € [My, Mi], we easily see
from the expressions of f;(0) that there exist K1 = K;(a, b, p, g, A, u, A1 (), M1, N) >
0 and Ky = Ka(a,b,p,q, A, 1, A1(R2), M1, N) > 0 such that

Ky < fi(0) < Ky, 1<i<5. (2.10)

A standard calculation shows that

11(0) / VuVz — Auz) 15(0) = /Q\u|p_2u2|v+\q - CI/ ufPlot | w
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£50) = —p / JulP~2uz]o |7 — g / o™,
Q

£1(0) :f/QVv+Vw7u/v+w, £0) = f/ﬂvv*vwfu/v*w.

It is important to observe that ||z, |w]] < 1 and |ju||, ||[v]| < M;. By the Sobolev
embedding theorems, there exists a constant K3 = K3(p, ¢, A, 1, A1 (), M1, N) > 0
such that

If1(0)| < K3, 1<i<5. (2.11)
From the explicit expression of ¢(4) given by in it follows that for a certain
¥ € C'(R%) (and ¥ ¢ C*(RY)) we can write t(6) = ¥(f1(9), ..., f5(5)). Therefore

t'(0) = > f10) Wy, (f1(0),..., f5(0)), and from this equality, together with
and we conclude that there exist C; = Ci(p, ¢, A, 1, A1 (), Q, M7, N) > 0
such that |¢'(0)] < Cy and C; < t(0) < Cy. The other inequalities can be derived
from combining the last estimates with and . O

The following proposition shows the existence of a Palais-Smale sequence that
converges to the infimum of I, over Mj,. Notice also that p +¢ > 2 and

1 1
Iy (u,v) = (5 — m) (llullX + llv]12)  for all (u,v) € My, (2.12)
Hence, inf(y v)enm,, Iau(u,v) > —oo. In what follows, we will use the notation

(e @)l = llell + [l for all o, ¢ € Hy(Q).

Proposition 2.2. Let ¢y, = inf(yv)em,, Inu(u,v). Then there exists a sequence
(Un, vn) € My, such that

D (Un,vn) = exy and I3, (Un, vy) = 0.
Moreover, there exist My, My > 0 such that ||uy,|, |[vE] € [Mo, Mi] for all n € N.

Proof. By applying the Ekeland’s variational principle [12], we construct a sequence
(Un, vpn) € My, such that

(2.13)

I)\M(unavn) — Chpy
1
Dau(tn, vn) < Iaa(0,0) + | (un = u, v = 0)ll, - V(p, d) € M.

As (un,vn) € My, then [[un |3 + [[vall2 = [ [un|?|vn|? which leads us to
p+q-—1 1 9 9 1
S 5 (lenllX + llvalli) — o g ), [l ol

2(p+q)
= Du(tn, vn) = cap +0n(1).
The above expression and (2.1]) gives us

(llunll3 + llonll2)

2(p + g)ex
20 n 2 n %) < n 3 n 2) = n(1);
v (lunll® + [lval®) < (llunllX + llvall) g1 ¢ (1);
therefore (u,,v,) is a bounded sequence, i.e, there exists M7 > 0 such that
[[(tn,vn)|| < My forallneN (2.14)

By the Riesz Representation Theorem, it follows that for every fixed n € N there
exist 2, w, € H(Q) such that (z,,w,) = I3, (un, v3) /113, (tn, v5) || ; moreover

[z, wa)ll =1 and I}, (tn, vn) (20, wn) = (113, (tn, vn)]. (2.15)
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From now on, we will assume that n € N is fixed. Let ¢(5) := ¢,(9),r(0) :=
7 (6), s(8) 1= 5,(8) be given as stated in Lemma 2.1] and u := up, v 1= vy, 2 := 2y,
w := wy, we will define (u(d),v(0)) := (un(d), v, (5)) by

(w(8),v(8)) = (t(8)[u—0z], r(8)[v—dw]t — s(6)[v — dw] ") € My,

Recall also that I, € C*(H,R), where H = H}(Q) x H}(Q). Setting R(X —Y) :=
Dy (X) = Dy(Y) = I, (X)(X = Y) for any X,Y € H, we have limx_y (R(X —
Y)/||X —Y]) = 0. Since lims_,o+ (u(d),v(d)) = (u,v), it is not difficult to see that
([u(6) = ull + [Jv(d) —v[l) /6 = [I'(0)u — z[| + [ (0)v" — 5'(0)v™ —w] as § — 0%
Therefore, o(8) := R(u(d) — u,v(d) — v) satisfies 0(§)/6 — 0 as § — 07 and

(

Inu(u(9),v(0)) = Ly (u, 0) + I, (u(9), 0(5))(@6(5) —u 0(5) —v)+o(6) (2.16)
setting T5 (¢, @) := I} ,(u(8),v(0)) (¢, ¢), by (2.13) and (2.16]) we have
(8~ w, 0(8) ~ o]
> Du(u,v) = I (u(9), v(5))

=Ts(u—u(d),v —v(d)) +0(d) =
=(1—=t(8))Ts(u—62,0) + T5(u,0) — Ts(u — z,0)
+ (1= 7(8))T5(0, [vn, — dw] ™) + T5(0,v™) — T5(0, [v — dw]™)
— (1 =5(0)T5(0,[v — dw]™) — T5(0,v™) + T5(0, [v — dw] ™) + 0(9)

= (1= t(6))Ts(u—62,0) + (1 — r(6))T5(0, [v — sw] ™)
— (1 =5(0))T5(0,[v — dw]™) + 0T5(z,w) + o(9).
As a consequence,

LD v (LD )+ (7D o sul
1-— 8(5) 0(5)

- (T)Tg((), [v—dw]™) + Ts(z,w) + 5

Given that lims_.o+ t(d) = lims_o+ r(0) = limgs_,o+ s(6) = 1, taking the limit as
§ — 0%, the above inequality gives us

n

*llt (0)u =z, (0)v" = '(0)v™ —wl|
> ’(O)TO( 0) — 7/ (0)To(0,v™) + ' (0)To(0,v™) + To(2, w) (2.17)
—t'(0)To(u, 0) — ' (0)To(0,v™) + 8'(0)To(0,v7) 4 To(z, w).
Since (u,v) € My, it follows that Ty(u,0) = Tp(0,v") = TH(0,v~) = 0; therefore,
from and we conclude that
£'(O)] + [r'(0)[ + |s"(0)]

n

(lw, oll + 11z, wll) = To(z, w)

= L) (zw) (218

= 113, (w, V)]l
By Lemma there exists Cy > 0 (that does not depend on the index n) such

that [t/(0)| + |»'(0)| + |s'(0)] < 3C3. From (2.18), (2.14) and (2.15) we obtain

143, (s vn) || < 3(2M1 + 1)C5/n. The existence of the constant My > 0 is guaran-
teed by Lemma [2.1] This completes the proof. O
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Proof of Theorem[I]. Firstly, we deal with the case N € {3,4,5}. Let (up,v,) the
sequence obtained in Proposition 2.2} by @2:12)), [lun, |[v;f|| € [Mo, Mi], My > 0
and A, < A1(2), we can deduce that ¢y, > 0. It follows from the boundedness of
Un, vy, in HE(Q) that there exists ug,vo € H(Q) such that, up to a subsequence,
un — ug and v, — vg weakly in H}(Q). Since I3, (un,vy) — 0 and (v — o) is

bounded in Hg (), it follows that
||v,jf|\z — / (anVvoi — /wnva—L) -T, = I;\H(un,vn)(o,vff —vE) =0, (2.19)
Q

where
T, = upytii = _ o)z,
vim = [ P2 = o)

Then Holder’s inequality gives us
+
| [ lunPllo 2ok 0 = o] < funlfao (a0 = ol (220)

Since 2 < p + ¢ < 2*, it follows that H}(Q) — LPTI(Q) is a compact embedding;
therefore v,, — v weakly in H{(Q) imply that [vF — |, 4, — 0, which combined
with the boundedness of u,, v, in H}(Q) and (2.20) gives us I';, — 0. As

/ (Vo Vi — pogvg)dz — o ||
Q

from we obtain ||vi||2 — ||vi||2 Since viE — v strongly in L2(Q) it follows
that ||vj[||2 — ||lv]|? and therefore v:F — v strongly in H{ (Q) In a completely
analogous manner, we can conclude that U, — ug strongly in Hg (Q2). It follows from
Proposmonnthat Inu(uo,v0) = exps Iy, (10, v0) = 0 and [lugl| > 0 and |viE|| > 0.
Notice also that we can replaced w, by |u,| and still have Iy, (|un|,vn) — cxp-
Without loss of generality we assume that u, > 0 which implies that uy > 0. Since
I ;\M (up, vg) = 0 we deduce that ug, vy are the weak solutions of the system

—Aug = \ug + p |uo|p*2u0|v0\q, in Q,
p+q

7A”UO = Uy + a |’UJ0|‘D|’U0|q72’UQ, in Q,
p+gq

(2.21)
ug =vg =0, on 09,
u >0, vi#0 in Q.
It follows from the standard theory of elliptic regularity and a bootstrap argument
that ug,vo € C?(Q2). Furthermore, by using that —Aug > 0 in Q and |u| > 0,
the Strong Maximum Principle implies that ug > 0 in €. Once again by using that
p+ g > 2, there exist ¢, s > 0 satisfying
1 1
(7]) ) =¢ and (7q ) =T
p+q’tP2st p+q’trsi?
It is easy to verify that u = tug and v = svg satisfy (1.3). The cases N = 1,2 with
p+ q < +oo follows in a similar way by using that H}(Q) — L%(£) is a compact
embedding for each ¢ > 1. O
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