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RADIAL BOUNDED SOLUTIONS FOR MODIFIED
SCHRODINGER EQUATIONS

FEDERICA MENNUNI, ADDOLORATA SALVATORE

ABSTRACT. We study the quasilinear elliptic equation

—div(a(z, u, Vu)) + A¢(x, u, Vu) + [uP~2u = g(z,u) in RY,
with N > 2 and p > 1. Here, A : RV xRxRY — R is a given C'-Carathéodory
function that grows as |¢|P with A¢(z,t,&) = %(aﬁ,t, ), a(x,t,8) = Ve A(x, t,€)
and g(z,t) is a given Carathéodory function on RY x R which grows as |£]¢
with 1 < g < p.

Suitable assumptions on A(z,t,£) and g(z,t) set off the variational struc-
ture of above problem and its related functional J is C! on the Banach space
X = WhP(RN) N L®(RN). To overcome the lack of compactness, we assume
that the problem has radial symmetry, then we look for critical points of J
restricted to X, subspace of the radial functions in X.

Following an approach that exploits the interaction between the intersection
norm in X and the norm in WHP(RN), we prove the existence of at least two
weak bounded radial solutions, one positive and one negative. For this, we
apply a generalized version of the Minimum Principle.

1. INTRODUCTION

In this article we look for weak radial bounded solutions for the quasilinear
elliptic equation

—div(a(z,u, Vu)) + Ag(x,u, Vu) + [ulP?u = g(x,u) in RY, (1.1)

where p > 1 and N > 2, A: RV xR x RY — R is a C'-Carathéodory function
with partial derivatives

0A 0A 0A

At(-rvtaf) = E(mvta§)> a(xatvg) = (8751($7ta§)77(%-7(x7t7§))

and g : RNV x R — R is a suitable Carathéodory function.

Equation generalizes quasilinear equations describing several physical phe-
nomena such as the self-channeling of a high-power ultra short laser, or also some
problems which arise in plasma physics, fluid mechanics, mechanics and in the con-
densed matter theory (see [35] and references therein or also [I6] for some model
problems).
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If A(x,t,&) = Al¢|P with A real constant, (1.1)) turns out to be the p-Laplacian
equation
—Apu+ |[ufP"2u = g(x,u) in RY. (1.2)
In the case p = 2, equation (|1.2)) reduces to the following Schréodinger equation
—Au+u=g(x,u) inRY

which is a central topic in Nonlinear Analysis, see [} [6], 19} 20} 23] [36, [37]. Many
authors studied also in the general case p > 1, see [3] [5], 27, 30].

We note that has a variational structure, but there is a lack of compactness
as the problem is settled in the whole Euclidean space RY and classical variational
tools do not work; thus suitable assumptions on the involved functions are required.

On the other hand, even if the function A(z,t,£) has the form %Al(x,t)|§|p
but the coefficient A;(z,t) is not constant, besides the lack of compactness the
study of equation presents another difficulty: the loss of a direct variational
formulation in the space WP (RN ). Let us point out that this problem arises also
if we look for solutions verifying homogeneous Dirichlet conditions in a bounded
domain 2. Indeed, the natural action functional

Jl(u):%/ Al(os,u)|Vu|pd:c+%/ |u|pd1’7/ G(z,u)dx,
Q Q Q

is not well defined in W, () if A (z,t) is unbounded with respect to t. Moreover,
even if Aq(x,t) is strictly positive and bounded with respect to ¢t but 85‘; (z,t) £ 0,
then Jy is defined in WO1 P(Q) but it is Gateaux differentiable only along directions
of W, P(2) N L>().

Thus, many authors have studied by using non-smooth techniques or in-
troducing a suitable change of variable if the term A(z,t,&) has a very particular
form or giving a “good” definition of critical point either on bounded domains or
in unbounded ones, see [11 2, [7, [8, 17, 18] 211 22| 28], 29| B5].

More recently, Candela and Palmieri in [10]-[I2] considered the functional

J(u>:/A<x,u,Vu)dx+1/ IuI”dac—/ Gz, u) da,
Q P Ja Q

defined on the Banach space W, ()N L (£2) equipped with the intersection norm.

Introducing a new weak Cerami-Palais-Smale condition (see Definition they
state some abstract critical points Theorems. Using this variational approach,
the existence of at least one bounded solution of in the case A(z,t,&) =
%Al(x,t)k“\p has been stated when g(x,t) grows as |¢|? with ¢ > p but subcritical

and the involved functions are radially symmetric in [14] or the term |u|P~2u is
multiplied by a weight V' (z) verifying suitable assumptions in [15] (see also [31] and
[38] where a generalized (p, q)-Laplacian operator in R¥ is studied).

Always in the presence of a suitable weight V(x), the existence of solutions of
equation like to has been investigated in [33] (see also [32]) if A(x,t,&) is a
more general function which grows as |£|P and g(x,t) has a sub-p-linear growth of
the type

l9(z,5)] < ()|t}
with 7 suitable measurable function and 1 < ¢ < p.

We notice that the results stated in [32], B3] do not cover the case V(z) =1, so

they do not apply to the equation . Therefore, in this paper we want to look
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for solutions of when A(z,t,€) and g(x,t), in addition to hypotheses similar
to those ones required in [33], are radially symmetric in . To this aim, in Lemma
m we will state a convergence results in RY already proved in bounded domains
by Boccardo, Murat and Puel in [7, Lemma 5] (see also [31, Lemma 4.5]).

This article is organized as follows. In Section [2| we introduce a weak Cerami-
Palais-Smale condition and the related Minimum Principle (see Proposition .
In Section 3| we give some preliminary assumptions on the functions A(z,t,¢) and
g(z,t) that ensure a variational formulation for the equation . In Section 4| we
consider some further assumptions, then we state our main results (see Theorem 4.5))
and we prove some properties of the action functional 7 and a convergence result
a la Boccardo-Murat-Puel in RY. Finally in Section [5| we prove that J verifies the
weak Cerami-Palais-Smale condition in the subspace X, of the radial functions of
X = WEP(RN) N L (RY) and then we state the existence of two nontrivial weak
radial bounded solutions, one negative and one positive, thus concluding the proof
of Theorem 4.5

2. ABSTRACT TOOLS

In this section we denote by (X, | - ||x) a Banach space with dual space (X', || -
lx/), (W] - |lw) another Banach space such that X — W continuously, and by
J: X — R agiven C! functional.

Nevertheless, to avoid any ambiguity, we will henceforth denote by X the space
equipped with its norm || - || x, while, if the norm || - ||y is involved, we will write
it explicitly.

For simplicity, taking 8 € R, we say that a sequence (u,), C X is a Cerami-
Palais-Smale sequence at level 3, briefly (CPS)g-sequence, if

lim J(u,)=p8 and lim |dJ (u,)|x (14 ||u.]lx)=0.
n—-+oo

n—-+oo

Moreover, § is a Cerami-Palais-Smale level, briefly (C'PS)-level, if there exists a
(CPS)g-sequence.

The functional J satisfies the classical Cerami-Palais-Smale condition in X at
the level g if every (C'PS)g-sequence converges in X up to subsequences. However,
thinking about the setting of our problem, in general a (CPS)g-sequence may also
exist which is unbounded in || - ||x but converges with respect to || - ||w. Then, we
can weaken the Cerami-Palais-Smale condition in an appropriate way according to
some ideas developed in previous papers (see, for example, [T0]-[12]).

Definition 2.1. The functional J satisfies the weak Cerami-Palais-Smale condition
at level B (8 € R), briefly (wCPS)g condition, if for every (CPS)s-sequence (uy, )y,
a point u € X exists such that

(1) limy— 4o ||un — ullw = 0 (up to subsequences),

(ii)) J(u) =B, dJ(u) = 0.
If J satisfies the (wCPS)s condition at each level 8 € I, I real interval, we say
that J satisfies the (wCPS) condition in 1.

Let us point out that, because of the convergence only in the norm of W, the
(wCPS)p condition implies that the set of critical points of J at the 3 level is
compact with respect to || - |, so that we can state a Deformation Lemma and
some abstract theorems about critical points (see [I2]). In particular, the following
Minimum Principle applies (for the proof, see [12, Theorem 1.6]).
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Proposition 2.2 (Minimum Principle). If J € C1(X,R) is bounded from below in
X and (wCPS)g holds at level § = infx J € R, then J attains its infimum, i.e.,
ug € X ewists such that J(ug) = B.

3. VARIATIONAL SETTING AND FIRST PROPERTIES

Here and in the following, let N = {1,2,...} be the set of the strictly positive
integers and we denote by x - y the inner product in RY and |- | the standard norm
on any Euclidean space as the dimension of the considered vector is clear and no
ambiguity arises. Furthermore, we denote by:

e Br(z) ={y € RY : |y—z| < R} the open ball in RY with center in z € RY
and radius R > 0;

e B% =RY \ Bg(0) the complement of the open ball Bg(0) in RY;

e meas(2) the usual Lebesgue measure of a measurable set Q in RY;

o LY(RY) the Lebesgue space with norm [u|; = ([pn |ul' dz) Vi1 << +o0;

e L>°(RY) the space of Lebesgue-measurable and essentially bounded func-
tions u : RN — R with norm

oo = ess supg Jul;

o WHP(RY) the classical Sobolev space with norm ||ull, = (|Vul? + |u|§)% if
1 <p< +oo;

o WrP(RYN) = {u e WHP(RY) : u(z) = u(|z|) a.e. * € RN} the subspace of
the radial functions of W1P(RY) equipped with the norm || - ||, with dual
space (WP (RM)).

From the Sobolev Embedding Theorems, for any [ € [p,p*] with p* = ﬁ—fp if
N > p, or any | € [p,+oo[ if p = N, the Sobolev space W1 P(RY) is continuously
embedded in L'(RY), i.e., a constant o; > 0 exists such that

lul; < oyllull, for all u € WHP(RY) (3.1)

(see, e.g., [9, Corollaries 9.10 and 9.11]). Clearly, it is o, = 1. On the other hand, if
p > N then WP(RY) is continuously imbedded in L>(R") (see, e.g., [9, Theorem
9.12]). Thus, we define

X =WHRN)NLZRY), ullx = l|ully + [l (3-2)

From now on, we assume 1 < p < N as, otherwise, it is X = W1?(R™) and the
proofs can be simplified.

Lemma 3.1. For any | > p the Banach space X 1is continuously embedded in
LZ(RN), i.e., a constant o; > 0 exists such that

lul; < oiljullx  for all u € X. (3.3)

Proof. If p= N or if p <1 < p* the embedding (3.3) follows from (3.1)) and (3.2).
On the other hand, if I > p* then, taking any v € X, again (3.2)) implies

/|wmsww/|wmgwwmmgwg
RN RN

thus (3.3)) holds with o; = 1. O

From Lemmait follows that if (u,), C X, v € X are such that u,, - vin X,
then u,, — u also in L'(RY) for any [ > p. This result can be weakened as follows.
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Lemma 3.2. If (u,), C X, u€ X, M > 0 are such that
lun, —ullp =0 asn— 400, (3.4)
[tn|oo <M for alln € N, (3.5)
then u, — u also in L'(RYN) for all 1 > p.
Proof. Let 1 < p < N and [ > p* (otherwise, it is a direct consequence of (3.1))).
Then, from (3.2), (3.5) and (3.1)) we have that
[t =l de < fun =l [ Jun = ul do < OF 4 Juloc) P = ulf,
RN RN
then (3.4) implies the result. O

From now on, we consider 4 : RN x R x RV - R and ¢ : RN x R — R be such
that:

(A1) Ais a C*-Carathéodory function, i.e., A(-,t,&) is measurable for all (¢,£) €
R x RY and A(z,-,-) is C* for a.e. x € RY;

(A2) some positive continuous functions ®;,¢; : R = R, ¢ € {0, 1,2}, exist such
that:

|A(2,t,8)] < o (t)|t]” + do(t)|€]P  a.e. in RY, for all (¢,€) € R x RY,
|Ap (2, t,6)] < DL ()P + 1 (8)]€] ace. in RY, for all (£,€) € R x RY,
la(x,t, )| < Bo(®)|t]" " + do(t)|€P™" ae. in RN, for all (¢,€) € R x RY;

(A3) g(z,t) is a Carathéodory function;
(A4) a function 5 € L7-a (RN) exists, with 1 < ¢ < p, such that

0 < g(x, t)t <n(x)[t|? ae. in RY, for all t € R.
Remark 3.3. From (A4) it results that

lg(z, )| < n(@)[t|*" ae in RN, for all t € R.
Moreover, (A3) and (A4) imply that G(z,t) = fgg(x,s)ds is a well defined C*-
Carathéodory function in RY x R and

1
0 < G(z,t) < —n(x)[t|? ae. in RN, forall t € R. (3.6)
q

Remark 3.4. From (A2) it follows that
A(,0,0) = Ay(2,0,0) =0 and a(x,0,0) =0 for a.e. € RY.
Moreover, from (A3), (A4) and Remark [3.3| we have that
G(x,0) = g(x,0) =0 for a.e. z € RV,
Hence, u = 0 is a trivial solution of .
Proposition 3.5. Assumptions (A3) and (A4) imply that

G(x,u)dr €R for allu € X (or better for all u € WHP(RN)),
RN

/ g(x,u)vdr € R for allu,v € X  (or better for all u,v € WHP(RY)),
RN
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Proof. Let u € WP(RN). Asn e Lva(RY) and |u|? € L4 (RN), Holder’s inequal-
ity with ﬁ and IE) conjugate exponents and (3.6) imply that

1 1
0< [ Gla,uds < f/ n()lul? dz < | o ful?, (3.7)
RN q JRN q 1

Moreover, by applying again Holder’s inequality with ﬁ, q%l and p conjugate
exponents, we have

[ swwwde < [ @l eldo < il e fuly ], G9)
RN RN

for all u,v € WHLP(RN). O
Remark 3.6. From (A3) and (A4) we have that

g(z,u) € L7T (RY)  for all u € WHP(RY).
Indeed, Holder’s inequality with % and f;%i conjugate exponents implies that

p(g—1)

p _p_ pla=1)
/ |9 (@, w)| 7= dw < 0|75 ful,”"
RN p—q

Let us point out that assumptions (Al) and (A2) imply that A(z,u,Vu) €
LY*(RYN) for any u € X. Therefore, from (3.7) it follows that the functional

T(u) = /RN A, u, Vu) do + ]19 /RN P d — /RN Glou)de  (3.9)

is well defined for all w € X. Moreover, taking v € X, from (3.8), the Gateaux
differential of functional J in u along the direction v is given by

(@), = [

RN

—|—/ |u|p_2uvdx—/ g(z,u)vdz.
RN RN

Now, we are ready to state the following regularity result.

Proposition 3.7. Taking p > 1, assume that (A1)—(A4) hold. If (un)n C X,
u€ X, M >0 are such that (3.4), (3.5) hold and

Up = u  ae i RY asn — +oo,

a(x,u, Vu) - Vodz + / At(x,u, Vu)v dx
BY (3.10)

then
J(un) = J(u) and ||dT(un) —dT(u)||lxr =0 asn— 4oc.
Hence, J is a C functional on X with Fréchet differential defined as in (3.10)).

Proof. Tt is sufficient to simplify the proof of [33, Prop. 3.10] by observing that the
functional v € X — %fRN |ulP dz € R is of class C*. O

4. STATEMENT OF MAIN RESULTS

From now on, we assume that in addition to (A1)-(A4), functions A(z,t,£) and
g(z,t) satisfy the following further conditions:

(A5) there exists a constant o > 0 such that
Az, t,€) > aplé]P ace. in RY, for all (¢,€) € R x RY;
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(A6) there exists a constant 79 such that
Az, t,€) <mo alz,t,€) - € ae. in RN, for all (£,€&) € R x RY;
(AT) there exists a constant a; > 0 such that
a(x,t,€) - €4 Ay(x, 1,6t > aja(x,t,€) - € ae. in RY, for all (£,£) € R x RY;
(A8) there exist constants & > p and as > 0 such that
pA(z,t,8) —alz, t,€) - € — Ay(z,t,6)t > asA(z, t,€)  ae. in RV,
for all (¢,£) € R x RY;
(A9) for all £, £* € RN, € £ £*, we have
[a(z,t,€) —a(z,t,9)] - [ — €] >0 ae inRY, for all t € R;
(A10) A(z,t, &) = A(|z|,t,€) ae. in RN for all t € R;
(A11) there exist real constants l1,ls, 71,72 such that

@ (¢t Dyt
lim 1():11, tim 220 _
t—0 |t|771 t—0 |t‘772

with @1, Py as in (A2) and

N1 N_1
(A12) g(z,t) = g(|z|,t) a.e. in RN, for all t € R;
(A13) the function 7 introduced in (A4) is such that

m > n2 > (4.1)

ess Sup|, <1 N(x) < 400

(A14) lim;_o+ gt(ﬁ? = +oo uniformly for a.e. z € RY |z| < 1.

Example 4.1. The function

Az, t,€) = = (A1(z) + Az(aj)|t|‘9) I€]P a.e. in RY, for all (t,&) € R x RY

1
p
with p > 1 and 6 > 1, satisfies (A1), (A2), (A5)-(All) if A; and Ay are two radial
functions and there exists a constant g > 0 such that

Ay, Ay € L¥(RY),  Aj(z) > ap, Ai(z)>0 ae inRY.
We point out some direct consequences of the previous hypotheses.

Remark 4.2. In assumption (A5) we always suppose ap < 1 while from (A5) and
(A6) we suppose a3 < 1 in (A7).

Remark 4.3. From (A7) and (A8) it follows that
(o — o) A(z,1,€) > oy a(z,t,€)-€ ae. in RY, for all (t,£) € R x RY;
hence, if also (A5) and (A6) hold, we have ay < u. So,

A(z,t,€) > aza(z,t,€) - € ae. in RY for all (t,6) € R x RY, (4.2)
with ag = 2= > 0. Moreover, from (4.2) and (A8) we have that

pA(z,t, &) —a(z, t,€) - &€ — Ag(x, 1,6t > agas a(z,t,€)-€ ae. in RY,
for all (t,£) € R x RV,
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Remark 4.4. We note that from (A5)—(A8) it follows that

—(I—a)a(z,t,) - § < Ae(z,t, )t < (p— a2) A, t,§) < (1 — az)moa(z, t,£)§
which implies that
| At (2, t,&)t| < ca(z,t,€)E (4.3)
with ¢ = max{(p — ag)no, (1 — a)}.

Now, we are able to state our main existence result.

Theorem 4.5. Assume that (A1)-(A14) hold, then problem (l.1) admits at least
two weak nontrivial radial bounded solutions, one negative and one positive.

We will prove Theorem [£.5] by applying Proposition [2.2] to a suitable restriction
of the functional J introduced in (3.9). To this aim, the following results will be

useful.

Proposition 4.6. Assume that conditions (A1)—(Ab) hold. Then, there ezists
positive constants by, by such that

T (u) = byl|ullh = ba|lul|f  for each u € X.

Hence, functional J is bounded from below, i.e., there exists a constant a € R such
that

J(u) > a for any u € X, with o = m>1(r)1 (b8P — bas?).
Proof. From (A5) and (3.7) we have
1
J(u) = / Az, u, Vu)dz + 7/ |ulP dx —/ G(z,u)dx
RN b Jry RN

1 1
> ag / IV de + - / ulP dz — ] o Jul?
RN P JrN q pr-a
> b lull2 — baull?

where b; = min{«p, %} and by = %|77|L. O
rP—q

Lemma 4.7. Assume that g(x,t) satisfies conditions (A3) and (A4), with 1 < ¢ <
p, and consider (Wy)n, (Un)n C X and v,w € X such that
lwnll, < My foralln €N, w, - w a.e inRY, (4.4)
vnlly < My foralln €N, v, =0 ae. inRY, (4.5)
for some constants My, My > 0. Then

ngrfoo - g(x,wp)vp dz = 0.

Proof. From ({.4), (4.5) and (A3) we have

g(z,wy)v, =0 ae. in RY, (4.6)
Moreover, from (3.8) and by applying again (4.4)) and (4.5)), it follows that

- - ~1
/]RN lg(z, wy v, | do < |77|p%q|wn|g 1|vn|p < |77|p%q||wn”g len”p < M{] M2|’7|ﬁ~
As € L7 (RY), for each € > 0 there exists R > 0 such that

Lo o do < (4.7)
RN\ Br(0)
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for all n € N. On the other hand, from the absolute continuity of the Lebesgue’s

v

integral taking € = ( < )H there exists §. > 0 such that

MI™ M,
/ \77|ﬁ de <¢€
A

for all measurable set A C Bgr(0) with meas(A) < d.. Thus, it follows that

/ 192, wa)vn di < €
A

for all n € N and for all measurable set A with meas(A) < J.. Hence, by Vitali’s
Convergence Theorem

g(x,wp)v, — 0 in L'(Bg(0)). (4.8)
The conclusion follow from (4.7)) and (4.8]). O

From now on, to overcome the lack of compactness of the problem we reduce to
work in the space of radial functions which is a natural constraint if the problem is
radially invariant (see [34]). Thus, in our setting, we consider the space

X, = WHP(RY) N L°(RY)
endowed with norm || - || x and we denote by (X, | - ||x) its dual space.

Lemma 4.8 (Radial Lemma). If N > 2 and p > 1, for all u € WP (RY) it holds

lu(z)] < C luly a.e. in RN, (4.9)

— N—1
||

for a suitable constant C' depending only on N and p.
For a proof of the above lemma, see [26, Lemma II.1].

Lemma 4.9. Ifp > 1 then the following compact embeddings hold:
WEP(RYN) s L{(RYN)  for any p <1 < p*.
The proof of the above lemma is essentially contained in [13, Theorem 3.2] (see

also [14, Lemma 4.8]).

Remark 4.10. By assumptions (A10) and (A12), we can be reduced to looking
for critical points of the restriction of 7 in to X, which we still denote as J
for simplicity (see [34]).

We recall that Proposition implies that functional 7 is C'! on the Banach
space X,., too, if also (A1)—(A4) hold.

Now, we want to extend to RY a result stated by Boccardo-Murat-Puel in
bounded domains (see [7, Lemma 5]).

Lemma 4.11. Assume that (A1), (A2), (A5), (A6), (A9)—(A1l) hold. Let (un)n C
X, u € X, be such that

U, —u  weakly in WHP(RY), (
Up = u a.e in RV, (4.11)

[tnloo < M for alln € N, (

(

/ [a(z, up, Vu,) — a(z, up, Vu)] - V(u, —u)dz — 0.
RN
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Then
/ |Vu,|P de — / [VulPde  as n — +o0. (4.14)
RN RN
Proof. We will use arguments similar to those ones used in bounded domains in

[31, Lemma 4.5] (see also [7, Lemma 5]). We will prove that any subsequence of
(un)n admits a subsequence satisfying (4.14) and then (4.14) holds for all sequence

Let f,, be defined by

fn = la(x, upn, Vuy,) — a(z, up, Vu)] - V(u, — u).

From (A9) it follows that f,, > 0 a.e. in RV and from ([4.13) we have f, — 0 in
LY (RN).

Thus, from [9, Theorem 4.9] a function h € L*(RY) and a subset Z of RV exist
such that meas(Z) = 0 and, up to a subsequence,

fo(z) =0 and f,(z) <h(z) <oco forallz € RV\ Z, forallneN. (4.15)
Moreover, since u € X and (4.11)—(4.12) hold, we can assume that

un(z) = u(x), |u(z)| < +oo and |Vu(z)| < +oo, forallz e RYV\ Z.
(4.16)
From (A2) and (A6) we also have

fn(@) = %“V“n\p + IVul?] = @2 () Jun " V| = o (un) [V [~ [Vl
— () [0l Vit — G2(0)] VP Vit
Since ®q, ¢2 are continuous functions, by (4.12)), (4.15) and (4.16) we find that
(Vi (x)), is bounded for all z € RN \ Z.

Let £*(z) be a cluster point of (Vu,(x)),. We have |£*(z)| < co and, since f,,(x) —
0 and a is a Carathéodory function, it follows that

[a(:(:,u,f*) - a(m,u, VU’)} : (5* - Vu) =0,

hence (A9) implies that Vu(z) = £*(z) for all z € RY \ Z. From this, we deduce
that Vu, (x) converges to Vu(z) without passing to subsequence. Hence,

YV, (r) = Vu(z) forallz € RV \ Z. (4.17)
Thus, from (A1), and we have that
a(x, up(2), Vun(z)) = a(z,u(x), Vu(z)) for allz € RV \ Z
and then
a(x, up, Vuy) - Vu, = a(z,u, Vu) - Vu  ae. in RV, (4.18)
Now, from (A5) and (A6) it follows that
a(x, Up, V) - Vu, >0 ae. in RY. (4.19)
From and (A2) we obtain that
a2, un, Vun)| < e(|Vun P!+ JuaP7). (4.20)
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Since (4.10) holds, u,, is bounded in W1P(R¥), thus from ([4.20) the sequence
(a(, Un, Vtn))p is bounded in (L7°T (RY))Y, hence, up to subsequences, it weakly
converges to a(z,u, Vu) in (L7T (RV))N. It follows that

/ a(x, up, Vi) - Vudr — a(z,u, Vu) - Vudz.
RN RN

In a similar way, we prove that

/ a(x, un, Vu) - Vudr — a(z,u, Vu) - Vudz.
RN RN

Now, we prove that

/ a(x, Up, Vu) - Vu, de — a(z,u, Vu) - Vudz. (4.21)
RN RN
Clearly, from (A1), (4.11), and (4.17)) it follows that

a(z, U, V) - Vi, — a(z,u, Vu) - Vu  ae. in RY. (4.22)

Moreover,

| [a(@, un, V) - Vu, — a(z,u, Vu) - Vu] dz|

RY (4.23)

< / la(z, up, Vu)||Vuy,| dz +/ a(z,u, Vu) - Vudz
RN RN

where a(x,u, Vu) - Vu € L'(RY) while from (A2), Holder inequality, (4.10) and
@12)

| [ a(z,un, V) - Vg de| < e(|Vull™ 4 [(@a(un)) 77 [un |51 (4.24)
]RN
We notice that from (A11) we have
Dyt
im 2(1) =10>0
t—0 |t|772

hence, there exists § > 0 such that

Do(t) < (Ig +1)|t|™  for all t € R, [t| < 6.
Therefore, taking M = sup, |[un|, and R such that -SM- < §, using in
Radial Lemma it holds

R P

CM CM - _
|Un(x)|§||b§@<5 for all z € RN, |z| > R
x| P P

and therefore, using again Radial Lemma a constant C > 0 exists such that for
|z > R,

(@2(un)) 7T un]? < (I + )77 |77 [ug|? < € L'(BR) (4.25)

|x|(N71)(%+1)

since from (4.1)) and simple calculations it follows that (N —1)(;%; +1) > N. Thus,
from ([4.23)—(4.25)) for each € > 0 there exists R > R such that

| / [a(x, un, Vu) - Vu, — a(z,u, Vu) - Vu] dz| <e. (4.26)

R
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On the other hand, from (4.24)) and (4.12), since u, — u in LP(Bg(0)) for each
€>0,

/ [a(x, upn, Vu) - Vu, — a(z,u, Vu) - Vuj dx‘
Br(0) (4.27)

—1 -1
< e(IVull 5,0 1l 5000

From the absolute continuity of the Lebesgue integral, there exists J. > 0 such
that

| /A[a(x, Un, V) - Vu, — a(z,u, Vu) - Vu] dz| < e (4.28)

for all measurable set A C Br(0) with meas(A) < d.. Hence, from (4.22) Vitali’s
Theorem holds and

/ a(x, up, Vu) - Vu, doe — a(xz,u, Vu) - Vudz. (4.29)
Br(0) Br(0)

Finally, (4.21)) follows from (4.26) and (4.29)). Hence, from (4.13) we finally find

that

/ a(z, U, V) - Vu, de — a(x,u, Vu) - Vudz. (4.30)
RN RN

Now, we set
Yn = a(z,up, Vuy,) - Vu, and y = a(z,u,Vu) - Vu.
So, from (4.19)), (4.18), (A2) and (4.30) we obtain that

Yn >0, yp—y ae inRY, yeL'(RY), /ynda:—> ydz.
RN RN

From Brezis-Lieb’s Lemma [9] it results
a(x, up, V) - Vu, — a(z,u, Vu) - Vu  in LHRY),
hence, using again [9, Theorem 4.9] a function H € L'(RY) exists such that
a(x, i, Vuy) - Vu, < H(z) ae. in RY. (4.31)
Moreover, from (A5), (A6) and we have that

20 (IVunl?) < a(z,up, Vuy,) - Vu, < H(z),

thus, (4.14]) follows from (4.17)) and Lebesgue’s Convergence Theorem. O

5. PROOF OF THE MAIN RESULT

The aim of this section is to prove that J satisfies the (wC'P.S)g-condition in X,
and then to apply Proposition to the functional 7 on X,.. To prove the weak
Cerami-Palais-Smale condition, we need some preliminary lemmas.

Firstly, let us point out that, while if p > N the two norms || - |x and || - ||,
are equivalent, if p < N sufficient conditions are required for the boundedness of
a WlP-function. Even if we are working in WP(RY), we need a condition for
functions u in W1?(Q), Q bounded, as in the following result.
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Lemma 5.1. Let Q be an open bounded domain in RN with boundary 092, consider
p, T sothat 1 <p<r<p*, p<N, and take v € WHP(Q). If vy >0 and ko € N
exist such that

ko > esssupyq v(),
/ |Vo|P de < ’y(kjr meas(€)) —|—/ [v]” dx) for all k > ko,
o of

with Qf = {z € Q : v(x) > k}, then esssupg v is bounded from above by a positive
constant which can be chosen so that it depends only on meas(Q?), N, p, r, v, ko,
[vlp+ ()i for somel > r if p* = +00). Vice versa, if

I

holds with Q. = {x € Q : v(x) < —k}, then esssupqg(—v) is bounded from above by
a positive constant which can be chosen so that it depends only on meas(Q2), N, p,
T, 7, ko, [v|pr (Vi for somel > r if p* = +o0).

—ko < essinfpq v(z)

and
[VoulP de < 7(1@’“ meas (£, ) +/ |v|rd:c) for all k > ko
Q2

The proof follows from [24] Theorem II.5.1] but reasoning as in [I1], Lemma 4.5].

By applying Lemma [5.1} we will prove that the weak limit in WP(RY) of a
(CPS)g-sequence has to be bounded in RY. For simplicity, in the following proofs,
when a sequence (uy), is involved, we use the notation (&,), for any infinitesimal
sequence depending only on (uy,), while (gx., ), for any infinitesimal sequence de-
pending not only on (u,), but also on some fixed integer k. Moreover, ¢ denotes
any strictly positive constant independent of n which can change from line to line.

Proposition 5.2. Let 1 < ¢ < p and assume that (A1)-(AT7), (A10), (A12), (A13)
hold. Then, taking any 5 € R and a (CPS)g-sequence (uy)n, C X, it follows that
(tn)n is bounded in WEHP(RN) and a constant By > 0 exists such that

lun (z)| < By for a.e. x € RN with |z| > 1 and for all n € N. (5.1)
Moreover, there exists u € X, such that, up to subsequences,

U, —u  weakly in WHP(RN), (5.2)

u, —u strongly in L'(R™) for each 1 €]p, p*[, (5.3)

up, —u  ae inRY,
as n — +0oo.
Proof. Let 8 € R be fixed and consider a sequence (uy,), C X, such that
J(un) = B and  [|[dT (un)l|x: (14 ||unllx,) =0 asn — 4oo. (5.5)

From Proposition as ¢ < p, (un), is bounded in WIP(RY) and therefore
Lemma implies the uniform estimate . Furthermore, u € WP (RY) exists
such that 1' hold, up to subsequences.

Now, we have just to prove that u € L>(RY). Clearly, and imply

esssup|, > [u(x)] < Bo < +oo. (5.6)
Then, it is sufficient to prove that

esssup|, <1 |u(r)| < +oo. (5.7)
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Arguing by contradiction, let us assume that either

ess sup|, <3 u(z) = 400 (5.8)
or
ess sup|, <1 (—u(x)) = +o0. (5.9)
If, for example, holds then, for any fixed k € N, k > 3y we have that
meas(B;) > 0 with Bf = {z € B1(0) : u(x) > k}. (5.10)
We note that the choice of k and imply that
Bl = {z e RN :u(z) > k}. (5.11)

Moreover, if we set
Blj,n ={z € B1(0) : up(x) >k}, neN,
the choice of k and (5.1) imply that

B;:n = {2z cRY :u,(z) >k} forallncN. (5.12)
Now, consider the new function Rg teR — R;jt € R such that
0 ift <k
Rit= Sh=
t—k ift>k.
By definition and ([5.11)), respectively (5.12)), it results
0 if v ¢ B;F 0 ifz ¢ B,
Rju(z) = . b Riua(z) = . "
uw(xz) —k ifxe B, up(z) —k fzeB,.
(5.13)

Clearly, (5.1), (5.6) and k& > Sy imply
Rfue Wy P(B(0)) and Rju, € Wy*(B1(0)) foralln e N. (5.14)

From (5.2)) it follows that R} u, — R; u weakly in W'P(RY), then, from (5.14), in
Wy (B1(0)). As Wy P(B;(0)) << L'(B1(0)) for any 1 <1 < p*, then
: + l _ +..11 *
ngrfoo ; | Ry | da 7/ |Ryu|"dx for 1 <1< p*. (5.15)
1(0) B1(0)

Moreover, from (5.3)) we have u,, — u strongly in L'(B;(0)) for any [ €]p, p*[ and
then

lim |t |' da = / lul'dz for 1 <1< p”. (5.16)
n=toe /By (0) B1(0)
Thus, by the weak lower semi-continuity of the norm || - ||, we have that

/ VR ulP dx +/ |Rifu|? do < lim inf (/ VR u,|P dx +/ |Rfun P dx),
RN RN n—+00 RN RN

i.e., from (5.13)—(5.15)) we have

/ |Vu|P dx +/ |Rfu|P dv < liminf (/ |Vuy,|? de +/ IR u, P d:r)
B} B1(0) notee NJBE B1(0)

k

= liminf/ |Vuy,|?P dz + / |Rul? dx.
n—-+oo B}j—,n B, (O)
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Hence,

n—-4o0o
k k,n

/ [VulP dx < hminf/ [V, |P dz. (5.17)
Bt +

On the other hand, since | R} u,||x < |lun|/x holds, it follows that
(AT (un), By un)| < AT (un) | xJunllx -

Then (5.5) and (5.10) imply that nj, € N exists such that
(dT (un), R un) < meas(B;7) for all n > ny,. (5.18)
Let us point out that, since oy < 1, assumptions (A5)—(A7) imply that

(dT (un), R un) = /+ a(x, Up, Vuy,) - Vu, dz —|—/ A (U, Vuy) (un, — k) dx
Bk' n

+
Bk.n

+/ |un|p*2un(un —k)dx — / g(z, un)Rgun dx
Bt B;F

k,n k,n

Un

= / (1 — i)[a(av,un, V) - Vg, + Ag(z, U, Vug)uy] de
B+

k
+ / —a(x, Un, Vuy) - Vu, dr + / |t [P~ 20 (1, — k) d
B, Un B,

—/ g(axun)R:un dx

B,

> oy / a(z, Up, Vty,) - Vu, de — / g(x,un)R,jun dx.
B B

k,n k,n

Hence, from the previous inequalities, (A5) and (A6) it follows that

do / \Vu,|P de < (dT (un), R uy) +/ g(@, up) R uy, da. (5.19)
o B, By
Now, from (5.14)), (5.15) and (A4) we obtain
lim g(x, up) R uy, do :/ g(z, u)Rfudz. (5.20)
n—-+o0o RN RN

Thus, from (5.17)—(5.20) and (A13) we obtain that

/ |Vul? de < c(meas(B,j) —I—/ g(z,u)Rfu da:)
By h

< ¢ meas(B;") —I—c/ n(x)|u|? dx
B

k

< E(meas(B,j) + /B+ |u|p)

k

with ¢ = max{c, esssup, <, 7(2)} since
| ntatulrds < [ nfa)pu do < esssupic o) [ ful da
B} B B B;f

as ¢ < p and u(z) > 1 for all z € B}.
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Thus, we obtain

/ |VulP de < E(meas(B,':) +/ |u|”).
B B

As this inequality holds for all &k > 5y, Lemma implies that (5.8]) is not true.
Thus, (5.9) must hold. In this case, fixing any k € N, k > (g, we have

meas(B, ) >0, with B, = {z € B1(0) : u(z) < —k},
and we can consider R, :t € R — R, 't € R such that

o ift>—k
Ryt = ,
t+k ift<—k.

Thus, reasoning as above, but replacing R,Jg with R, , and applying again Lemma
5.1l we prove that (5.9) cannot hold. Hence, (5.7)) has to be true. O

We are ready to prove the (wCPS) condition in R by adapting the arguments
developed in [I0, Proposition 3.4], also in [II, Proposition 4.6], to our setting in
the whole space RY.

Proposition 5.3. If 1 < ¢ < p and (A1)—(A13) hold, then functional J satisfies
the weak Cerami-Palais-Smale condition in X, at each level B € R.

Proof. Let 8 € R be fixed and consider a sequence (u, ), C X, verifying (5.5). By
Proposition the uniform estimate (5.1)) holds and there exists u € X, such that,

up to subsequences, (5.2)—(5.4]) are satisfied.
We need to prove the following three steps:

(1) Define Ty : R — R such that

Tyt = {t . ?f 1<k (5.21)
kil i [t > k,
with k& > max{|u|s, B0} Then, as n — +o00, we have
I (Teun) — B, (5.22)
1T (Thun )| x; — 0; (5.23)

(2) |lun —ull, = 0if n = +o0, as
| Thtn —ullp =0 asn— +oo; (5.24)
(3) J(u) =p and dJ(u) = 0.
Step 1. Taking any k > max{|u|w, 8o}, if we set

By ={x € B1(0) : lupn(z)] > k}, mneN, (5.25)
the choice of k and (5.1]) imply that
Bpn={z €RY : |u,(2)| >k} forallneN. (5.26)
Then, from (5.21) and (5.26]) we have that
Up () for a.e. x & Bg.n
ke Un () {M:Ezﬁ for @ € By (5.27)

and
[Thtinloo <k, |Thunl|lp < |lunll, for each n e N.
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Defining Ry : R — R such that

0 if [t < k

t—kL if [t >k,

Rt =t —Tt = {
[t]

from ([5.26)) it results that

0 for a.e. * &€ By
Ry (z) = e : 5.28
ktin () {un(x) — k\uz& for x € By n; (5:28)
hence, (5.25) and ([5.28)) imply that
Ry, € WP (B1(0)) for all n e N. (5.29)

Since k > |u|oo, we deduce that
Tyu(z) = u(x) and Rpu(r) =0 for ae. z € RY;

thus, from (5.2) it follows that Ryu, — 0 weakly in W.'P(RY), and, from (5.29),
in Wy (B1(0)). From the compact embedding of W, (B;(0)) in L'(By(0)) for
1 <1 < p*, we have that

lim |Ryun| de =0 for 1 <1< p*. (5.30)

n—-+oo RN

Now, arguing as in the proof of (5.19) but replacing R} u, with Rju, we obtain

Qoa1 / |Vu,|P de < al/ a(x, Up, V) - Vu, de
o B Bren (5.31)
<A{dJ (un), Riun) +/ g(x, up) Rpuy, dz.
Bk,n
We note that (5.5) and |Rrun|lx < ||un|x imply that
lim [{(dJ (un), Rrun)| = 0; (5.32)

n—-4oo

while the boundedness of the sequences (||un|lp)n and (||Rxunllp)n, (©.4), (5.6),
(5.28]), and Lemma imply that

lim g(x, up) Rpuy, de = 0. (5.33)

n—-+oo Bk,n

From ((5.31)—(5.33)) we obtain that

lim |Vu,|P dez =0, (5.34)

n—-+o0o B

lim a(x, Up, V) - Vu, dz = 0. (5.35)

n——+00 By

Hence, from (5.28)), (5.30)), and (5.34) it follows that
nll)rfoo | Rt ||p = O. (5.36)

Moreover, from (5.4), (5.25)), and k > |u|. we obtain
nggloo meas(By ,,) = 0, (5.37)
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which together (5.16]) implies

lim [un|'dz =0 for 1 <1< p" (5.38)
n——+oo Bk,n
From (3.9) and (5.27) we have
j(Tkun)
:/ A(m,un,Vun)dx—l—/ A (x,kun,O) dx
RN\Bk,n Bk,n |un|
1 1
+ - [t |P dx + — kP dx — G(z, Tpuy,) dz
P JRN\Bg,n P J By RN (5.39)

= J(up) — / Az, up, Vuy) do +/ A <:E,k'u",0> dz
Bion Bi,n |tn]
1 1
— 7/ |t |P da 4+ — / kP dx — / (G(x, Trun) — G(x,uy)) da.
p Bk,n p Bk,n RN

From (A5), (A6) and (5.35) we have

Az, up, Vuy,) dr < 770/ a(x, Up, V) - Vi, dz — 0, (5.40)
Bi,n Bi,n

while (A2), (5.4), (5.37)), and (5.38]) imply
/ A(x,k“—",o) dxg/ <I>0<ku—">k”dx
By |un| B |tn|

(5.41)
< P
< (fﬁgﬁ <I>0(t)>k meas By, , — 0
and ) )
—= / [t |P dx + f/ kP dz — 0. (5.42)
p B on b By,
Furthermore, from (5.27)), we have
/ (G(z, Tyun) — G(z,uy,)) de = / (G(x, ku—n) - Gz, un)) dx — 0 (5.43)
RN Bk,n |Un|

since , (5.37), and (|5.38)) imply that
n 1 q
/ G(x, ku—> dx < —|n|_2_k%(meas(Bgn))? — 0
Bk,n |Un| q P

and
G dr < 71 4 ; —0
(m,un) r < qufq ( |un| m) .

Bk,n Bk,n

Then, (5.22)) follows from (5.5)) and ([5.39)—(5.43]).
To prove (5.23), we take v € X, such that ||v||x = 1; hence, |v] < 1, ||v]lw < 1.

From ((3.10) and (5.27) we have
(dT (Trun),v)

= / a(x, Ty, VIgu,) - Vodx + Ai(z, Tpuy, VIgu,)v de
RN RN

—|—/ |Tkun|p_2Tkunvdx—/ g(x, Tyuy)vda
RN RN
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= / a(x, Uy, Vuy,) - Vodz —|—/ a(x, k’u—n,O) -V
RN\ Bg,n Bi,n |un|

Un

+/ At(x,un,Vun)vdx—i—/ At(x,k ,O)de
RN\Bk,n Bk,,n |un|

+/ |un|p*2unvdm+/ kpflu—nvdxf/ g(z, Tpuy)vdx
RN\Bk-,n Bi,n ‘u"| RN

= (dT (up),v) — / a(x, up, V) - Vodr — Ai(x, Uy, Vug)vde

By,n Bg,n

- / |un|p_2unv dx + / (g(xuun) - g(w,Tkun))vdx + €n,
Bi,n Bi,n

since (A2), (5.37), Hélder inequality and |Vv|, <1, |v|o < 1 imply that

| a(x,ku—n,0> ~Vvdx| S/ CI)Q(k&)kp*HVﬂdx
Bi.n |un| Bi.n |un|

(5.44)

p—1

< (mayea(0) ( /B waz) T o

|/Bk,n Ay (Jﬁ,kﬁ,())vdx‘ < /BM él(k%)kpqu

(5.45)

< (max <I>1(t))kp*1 meas(By.n) — 0,
It|<k

| kP 2y de| < kP meas(Byn) — 0, (5.46)
Bk,n |U/n|

where all the limits hold uniformly with respect to v.

Furthermore, from (4.3) and (5.35) we have that
lim | A (2, U, Vg )up|dz =0,

n—-+oo By,
n

and then, since 1 < k < |u,| on By, and |v|s < 1, we obtain

| A (x, Uy, Vg )v dx| < / |As (2, wp, Vuy,)|dz
Bren Bren (5.47)

< / | At (2, U, Vug)||un| de — 0
B

k,n

uniformly with respect to v, while from (5.38]), Hélder inequality and |v[, < 1 we

have
p—1

|/ |t [P~ 200 dx| < (/ [t |P d;v)T .
Bk,n Bk.n

Moreover, from (3.8), (5.37), (5.38), and |v|, <1 it results

g—1

‘ g(x7un)vd;v| < |17|ﬁ(/3 |y, [P dx) 50

Bi,n kon

uniformly with respect to v, and

’ 9(z, Trup v dz| < |n|ﬁ(/ | Ty, |P da:) 50

Bk,n Bk‘n
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uniformly with respect to v. Thus, summing, from (5.5) we obtain
(4T (Tun), )| < i + | / a2, Vity) - Vo . (5.48)
Bk,n

Now, to estimate the last integral in (5.48)), following the notation introduced in
the proof of Proposition let us consider the set B,jn and the test function

go;n = szun.
By definition, we have ||} [|x < 2[|us| x; thus, (5.5) implies
14T (un) [, |03 nllx < €n
From definition (5.13) and direct computations we note that

(dT (un), @ZT) = / a(x, Uy, Vun)RZun -Voudx +/ a(x, up, V) - vVu, dx

+ +
By By

+ / A(x, up,, Vun)vR,':un dx + / |un|p72uan;un dx
B B

k,n k,n

7/+ g(z, un)o R uy da |
B

k,n

where, since B} C By, from (5.37) we have

: + )=
nhrfoo meas(B,,,) =0,

while |v]e <1, (5.35), (5.47), (5.38]), and (3.8)) imply

‘ a(x, up, Vuy,) - vVuy, d:z:‘ < / a(x, up, V) - Vu, de — 0,
B;" B

+
k,n

+
By

‘/ Ay(@, U, Vg )R} upda] S/ | A (2, wn, Vug) | (uy, — k)dz
B;:,”n,

S/ | At (2, U, Vug)|un de — 0,
N

k,n

} / [un [P upv R up da| < / |t |P dz — 0,

k,n

9(@, un VR uy da| < / lg(x, un)||un| dx
+

+
k,n k,n

.

q—1

§|n|ﬁ(/8+ ul?) T 0

k,n

uniformly with respect to v. From the previous estimates it follows that

lim a(z, Un, Vn) R up, - Vodr = 0 (5.49)

n—-+oo B:’
,\n

Now, if we fix k > max{|u|c, S0} + 1, all the previous computations hold also
for k — 1 and then in particular, (5.34)), (5.38), and (5.49) become

lim [Vup|Pde =0, lim |tn|P dx = 0, (5.50)

n—-4o0o Bj_1 n—-4o0o Br_1
—1,n —1,n
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ngrfoo 5t a(z, U, Vun )R up, - Vodz = 0. (5.51)

From (5.51)) since B;", C B |, , we have

€kn = / a(z, U, Vun)Rk‘tlun -Vovdx
Bl

k—1,n

= / a(z, U, Vun) Ry, - Voda
B

+
k,n

+ / a(z, ty, Vun) R uy, - Vod
Bt

\B{ .
).

+ / a(z, ty, Vun) R uy, - Vod
B, \Bi.

k—1,n

a(z, Uy, Vun)RZ'un -Vodr + / a(z, Up, Vuy,) - Vodr

+ +
k,n By

k—1,n

where (A2), (5.13]), the properties of B,j_lﬁn \ B,j,n, Holder inequality, |Vu|, < 1,
and (5.50]) imply

| / a(z, Uy, Vun)RZ'_lun - Vo dz|
Bi_1,\B\n

< k/ la(x, un, Vuy)||Vo| dzx
By 1, \Bi 0
< kmax@z(t)/ |, [P Vo] da
ltl<k By, \Bi
+ kmaxd)g(t)/ |V, [P~ V| de
ltl<k B 1 \By

p—1

< kmax <I>2(t)(/ P dz) 7
[t| <k B;r_lyn\B,:r_’n
p—1

k t WPdz) T o0
+ r’fll?/g¢2()(/3:1n\3,jn|VU| ﬂf) -

The above arguments imply

| a(@, un, Vuy) - Vodz| < epp. (5.52)
Bt

Similar arguments apply also if we consider By ,, and the test functions

sDl;n = lezu"’ SDI;—l,n = UR/;—IU";

hence, we have

| a(x, up, Vuy,) - Vo dsc| < égn- (5.53)
B;n

Thus, (5.23) follows from ([5.48)), (5.52) and (5.53) as all &, ,, are independent of v.
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Step 2. We note that (5.2)—(5.4) imply that, if n — +o0,
Typu, — u  weakly in WhP(RY),
Tyu, — u  strongly in L'(R™) for each I €]p, p*[,
Tiun, — u  ae. in RV,
Now, arguing as in [, let us consider the real map
it eR s (t) =t €R,

where 77 > (%)2 will be fixed once «, 5 > 0 are chosen in a suitable way later. By
definition,

o (t) — Bl(t)] > g for all t € R. (5.54)

If we define vy, = Thuy — u, since k > |uloo, we have that |vg,|e < 2k for all
n € N. Therefore,

[W(vkn)| < (2k), 0< ' (vp,) <P (2k) ae inRY foralln € N,  (5.55)
P(kn) =0, ¥(vgn) =1 ae inRY asn — +oo. (5.56)
Furthermore, we note that
[ (vE,n)| < |vk’n|e4k2ﬁ a.e. in RY for all n € N,

thus, direct computations imply that (||t (v n)||x)» is bounded, and so from (5.56)),
up to subsequences, we have

Y(vgn) — 0 weakly in W,HP(RY), (5.57)
while from it follows that
(AT (Tkun), ¥(ven)) = 0 asn — 400,
where

<dj(Tkun)> 1/J(Uk,n)>

= / a(, tn, Vuy) - Vo (vg.p) do + / oz(g:7 ]guin,o) VY (Vg da
RN\ B, n Bin ‘u"|
+ / Az, Un, Vg )Y(vg ) do + / A (:1:7 kui, 0)1/)(Uk,n) dr
RN\ By, n, Bion ‘un|

+ / |un|p_2unw(vk7n) dr + / kp_l Ui'gb(vlc,n) dx
RN\B]CYH Bk,n |u

nl

— / g(x, Tyun) (v ) de.
RN
Since (||t(vk,n)|lx)n is bounded, arguing as in (5.44)—(5.46) it follows that

Un
I k- 0) - 2)dz =0,
Jm Bk’na(x, |Un|70) Vi (vi,n)de =0
lim Ay (m,k—un ,0)¢(vk7n)dag =0,

n——+oo Bk,n |un|

lim kP (o) d = 0.

n—-+oo Bk,n |un‘
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Furthermore, from Lemma with w,, = Tyu,, and v, = Y(vg ), we have
lim g(x, Tyun)Y(vg n) dz = 0.
n—-+oo RN

Hence, summing, the previous relations imply

€kn = / a(xa Unp, Vun)w/(vk,n) . vvk,n dz
RN\ By n
+ / At(xvumvun)d)(vk,n) dx (5.58)
RN\BICY”
+/ |un‘p_2’ufnw(vk,n) dx.
RN\ B, n,

We note that from (A2),

\ Ai (@, up, Vun (o) da|
RN\ B, n,

(5.59)
= 1 () g [P £)|Vaan|? ).
/RN\BM( 1(un)|un | +‘r§|12>1§¢1( )|V, | )|¢(ka )|dz
We prove that
lim D1 ()P~ Y (vk,n)| d = 0. (5.60)

n—-+o0o ]RN\B;C "

In fact, since the sequence (uy,), is bounded in WP(RY), there exists a constant
M > 0 such that

ltnlly <M, |lup —ull, <M forallneN.
Moreover, from assumption (A11),

@, (1)
1m
t—0 |t|771

=1 withl >0,

hence, there exists d; > 0 such that
Dy (t) < (I1 + 1)|¢|™  for all t € R, |t| < d;. (5.61)

Now, fixing € > 0, as from (4.1) it follows that (i +p)% > N, then there exists
R, such that

CM

<y, (5.62)
R.?
n 0211\\7.4721 1
1) (CM)P*Tme r’ 7 / S — 5.63
(L +1)(CM)P e TRt (5.63)

where C is the constant introduced in (4.9)). From (4.9) and (5.62)), it follows that
M M
5 < C—%— <6 ae xR with 2| > R

jun ()] < C

|77 R.”
hence, (5.61), (4.9), and (5.63) imply

/(RN\B Ly Bl ) de
k,n)BE_
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< / (Iy + D|un|" P Yu, — u|eﬁ”un7u”%‘/ dx
(RN\ By )N B,

~_Cc?n2

. N-T 1
< (1 WO MY TPe rZ P / S |
_(1+ )( ) € B‘E ‘:}(j|(nl+p)NP_1 T <€

while from Holder’s inequality
/ @ ()t [P (o)
(RN\By,n)NBR,

< (maxq>1(t))|un|g—1(/ \w(uk,n)wdx)l/” -0

[tI<k Br,

since (5.57)) implies that ¢ (vy,) — 0 in L7 (RY). Then, (5.60) holds and from
(A5) and (A6) it follows that

/ Vatn P[0 | d
]RN\Bkm

< Mo a(z, up, V) - Vg |[¢(vgn)| dz
@0 JRN\By

_m
@0 JRN\By,

(5.64)
a(x, Up, V) - Vg o |t (vg n)| de

+ (@, tn, V) - Vulto(vpn)|da,
(7)) RN\Bk,n

where the boundedness of (u,,), in WP(RY), (A2), Holder’s inequality, (5.56) and
the Lebesgue Dominated Convergence Theorem imply that

| a(a:,un,Vun) : VU|7/J(Uk,n)|d$|
RN\Bkm,

< / By (1) [t [Vl |8 (05 )
RN\Bg,n

+ / 62 (1) [Vt [P Va0 ) | (5.65)
RN\B;C,”

< Do (t) ) |un Pt
< (ﬁ?zﬁ 2( ))Iu 1 (/RN\B&
1/p
+ (maxoa®) ([ [Vulwoal) o) o
RN\Bp . n

[tI<k
From (55.58)—(5.60), (5.64), (5.65)), (A5) and (A6) we obtain

€k.n > / a(x, Unp, vun)w/(vk,n) : vyk,ndx
RN\Bkvn

TulP Py 1/p
[Vul? | vk, ) [Pda

=0 ax b (1) / (2, Vi) - Vg tb(vp)| dit
Qg [t|<k RN\ By

+ / it P~ 220 (0
]RN\Bk,,,L
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Thus, setting
B () = 0 (0k,0) — = max by (£)] 4 (k)]

Qg [t|<k
and choosing, in the definition of 9, constants a = 1 and 8 = 2% max)y < ¢1(t),

oo
from ([5.54) it results ’
a.e. in RV, (5.66)

N =

hk’n(fL‘) >

Therefore,

Ekn > / hie na(2, Un, Vy,) - VUi, d
RN\ By, n
+/ |t [P 2t (0 ) d
RN\ B n
= / a(z,u, Vu) - Vog ,, dzx
RN\ B,
+ / P (a(25 U, V) — a(@, U, Vu)) - Vg, do (5.67)
RN\ B, n
+ / (hi na(z, un, Vu) — a(z, v, Vu)) - Vog ,, dx
RN\ B n
[ b = P2 p) do
RN\ B,

—|—/ |u|p_2u1/)(vk,n) dz,
RN\ By n

where (5.2)), respectively (5.57)) imply that

lim a(z,u, Vu) - Vo pdr =0,  lim |ulP~2ush(vy, ) dz = 0.
n—-+oo ]RN\Bk,n n—-+oo RN\Bk,n

Now, we want to prove that

lim (hkma(m, U, VU) — a(z, u, Vu)) - Vg pde =0. (5.68)
n—-+4oo RN\Bk,n

Indeed, recalling that (Vvy ,,)n is bounded in LP(RY), arguing as in the proof of
(4.26]), from (A11) for all € > 0 there exists R. > 0 such that
/ |hi na(x, uy, Vu) — a(z, u, Vu)|ﬁ dr < e (5.69)
(RN\ By, )NB,_

where (RV \ By ) N B§ = B% (0). On the other hand, we note that (A1), (5.4)
and (5.56|) infer that

hina(x, Uy, Vu) — a(z,u, Vu) = 0 a.e. inRY,
while from Hoélder’s inequality it follows that
’ (hk,na(x, Up, Vu) — a(z, u, Vu)) -V n dx’

RN\ By,
- (5.70)
< (/ |k na(x, wn, V) — a(alc,u,Vu)|ﬁ dm) i Vg n
RN\ By, n

p-
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From (5.55) and (A2) we have that for each z € (R \ By,,),

|hkma(, un, V) — alz,u, Vu) |71

P _

< (w’(Zk) (¢>2(un)|unv’—1 + <max¢>2(t))|wp—1) +a(z, u,vu)|) T (5.71)

lt|<k
< (1 +[Vul?),
hence, the Lebesgue Dominated Convergence Theorem implies that
lim |hie na(z, tn, Vu) — az, u, Vu)|7-1 da = 0. (5.72)
00 J(RN\ By, )N B, (0)

Thus, from ((5.66) and (5.67)), by using the previous estimate, the strong convexity
of the power function with exponent p > 1, (A9) and Mk > 1 we obtain

€k > 1/ (a(x,un, Vuy,) — a(z, un,, Vu)) -V(up —u)de
2 RN\Bk,n

+ / ([P~ 22, — [P~ 200) (ty — w) dz.
RN\Bg,n

Using again (A9) and the strong convexity of the power function with exponent
p > 1 we have

ngrfoo A (a(x, U, V) — a(x, Un, Vu)) -V(up —u)dr =0, (5.73)

lim (|t [P~ 21y — JulP~2u) (uy, — u) dz =0 (5.74)
n—-+oo RN\Bk,n

Next we prove that

lim |y, — u|P dx = 0. (5.75)
n—-+oo RN\Bk,n
In fact, if p > 2,

[y — P < (|tn|P2upn — [ulP~%u)(u, —u) ae xRN forallneN; (5.76)
thus, (5.76]) implies (5.75). On the other hand, if p € (1,2), it is ﬁ > p; thus, as
(Txun)n is bounded in WLP(RY) and |Tyu,| < k a.e. z € RV \ By, for all n € N,

it follows that (Tkun)n is bounded in L*(RY) for any ¢ > p, and in particular is
bounded in L7 T (RY). Passing to a subsequence, Tyt, — u in L7 1 (RY), hence

lim | Tyt [P Tt u da :/ |ul? dz,
N N

n—-+oo R R
which implies, together (5.37), that

lim |un|p_2unudx:/ |ul?P dx. (5.77)
n——+o0o RN\B)C)” RN

Moreover, since (Tt )y is bounded in LP(RY) and u € L7 1 (RY), up to sub-
sequences, we have that

lim |ulP~2uTyu, dr = / |ulP dx,
RN

n—-+oo RN
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i.e., using again (5.37)),

lim lu|P~2uu, do = / |u|P da. (5.78)
RN

n——+o0o ]RN\Bk n

Hence, from (5.74), (5.77)), (5.78]), (5.37), and (5.38) we obtain

0= lim (Junl® + |ul? = [un P~ ?upu — |ulPuu,) do
n—-—+o0o RN -
= lim e, P dx+/ |ul?P dx
n—-+o0o RN\Bkyn RN
— lim [un [P 2upude — lim lulP~ v, dz
n—-+4oo RN\Bk,n n—-+oo RN\Bk,n

lim |t |P da — / |u|P dx,
N RN

n——+oo R
ie.,

lim |un|P dax = / |u|P de.
N RN

n—-+oo R

Thus, by applying Brezis-Lieb’s Lemma (see [9]), condition follows, also in
the case 1 < p < 2.

In each case, Tju, — u in LP(RY). Finally, as Tyu, — u a.e. in RV and
| Thtin]oo < k for all n € N, from (5.73), we can apply Lemma [4.11] to the sequence

(Thuy)n obtaining that VTyu, — Vu in LP(RY). Thus, (5.24) follows.
Step 3. The proof follows from (5.24), Proposition [3.7] (5.22) and (5.23). O

Proof of Theorem[/.5. The functional J is bounded from below in X (see Propo-
sition and satisfies condition (wC'PS) in R (see Proposition [5.3)), thus, from
Proposition 2.2} J admits a minimum point v* in X. Clearly, it is

J(u*) = umel)r(lj(u) < J(0)=0.

Now, we prove that u* is not trivial since J(u*) < 0. To this aim, we consider

Y1 € VVO1 P(B1(0)) the unique eigenfunction associated to the first eigenvalue A\; of
—A, in B1(0) (see [25]). It results

w1 >0a.e. in By (0), p1 € L (Bl (0)),

/ lo1[P dz =1, / V[P da = Ay
B1(0) B1(0)

We denote again by ¢ its null extension to R \ B;(0).
Let us remark that ¢, is radial since by the Pdlya-Szego inequality we have

A= [Vorlh > [Verlp,

where @7 is the Schwartz rearrangement of ¢y.
Taking 7 € (0, 1), from (A2) we have

1
J(rtp1) = / A(z, 71, V(Tp1))dx + 5/ |T¢1|P do — / G(z,Tp1)dz
RN RN RN

< / (Qo(Te1(z))|Te1(@)]” + do(Te1(2))|V(Te1(2))|") dz
B1(0)
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P
+ T lp1|P dx — / G(x,Tp1)dx
P JBi(0) Q

< ecmP — / G(z,1p1)dx,
B1(0)

where ¢ = maxg<i<|p, |, Po(t) + Aimaxg<i<|p, |, Po(t) + 1%.
Now, from (A14) there exists a constant § > 0 such that for each s € [0, ] and
for a.e. € B1(0) it is G(z,s) > 2¢1sP. Then, for any 7 > 0 small sufficient, in

particular 0 < 7 < ﬁ, it results

J(rp1) <P —2¢17P < 0.

Finally, let us prove that J has at least two solutions, one negative and one
positive. For this, let us denote by u, = max{0,u} and u_ = max{0, —u}, the
positive and the negative part of u, respectively, so that v = u; —u_.

If we replace g(z,u) by g4+ (x,u) := g(x,uy), all the previous statements still
hold true for the functional J; obtained by replacing G with G, defined as
Gi(z,t) = fg g+ (z, s)ds. In particular, J; has a nontrivial critical point u. Hence,
from (A5) and (A6) we find that

0= (dJs+(u), —u_) = / a(z,—u_,V(—u_))V(—u_)dx

RN

+ Ay(z, —u_, V(—u_))(—u_)dz + /RN lu_|Pdx — /RN g+ (z,u)u_dx

RN
g
> 0 / |Vu,|pdx—|—/ |u_|P dx
Mo JrN RN
[e7s]e %)
> lJu—lw
Hence, u_ = 0 a.e. in RV, and u is a positive critical point of 7.
Similarly, replacing g(z,u) with g(z, —u_), we find a negative solution of (|1.1)).

O
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