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GROUND STATE SOLUTIONS FOR NONLINEAR
SCHRODINGER-BOPP-PODOLSKY SYSTEMS WITH
NONPERIODIC POTENTIALS

QIAOYUN JIANG, LIN LI, SHANGJIE CHEN, GAETANO SICILIANO

ABSTRACT. In this article we study the existence of ground-state solutions for
the Schrodinger-Bopp-Podolsky equations
—Au+V(z)u+ du = f(z,u) inR>
—A¢p+ a2A2¢ =47mu? in ]RB,
where V' € C(R3,R) has different forms on the half spaces, i.e. V(x) = Vi (x)
for z1 > 0, and V(z) = Va(z) for 21 < 0, where Vi, Va € C(R3) are periodic in

each coordinate. The nonlinearity f is superlinear at infinity with subcritical
or critical growth.

1. INTRODUCTION

In this article we consider the existence of ground state solutions to Schrodinger-
Bopp-Podolsky equations:

—Au+V(z)u+ ¢u = f(z,u) inR3

—A¢p+a’A%p =4ru® inR3 (L1)
where a > 0 is the Bopp-Podolsky (BP) parameter. This system, which was first
studied in [I3], appears when one looks for stationary solutions u(x)e’* of the
Schrédinger equation coupled with the Bopp-Podolsky Lagrangian of the electro-
magnetic field.

The Bopp-Podolsky theory, developed by Bopp [2], and independently by Podol-
sky [3], is a second order theory for the electromagnetic field. As the Mie theory
[21] and its generalizations given by Born and Infeld [} 5] [6l [7], it was proposed to
deal with the so called infinity problem that appears in the classical Maxwell the-
ory. In fact, by the well-known Gauss law (or Poisson’s equation), the electrostatic
potential ¢ for a given charge distribution whose density is p satisfies the equation

—A¢p=p inR3 (1.2)
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If p = 470,,, with 79 € R3, the fundamental solution of (1.2)) is G(z — zg), where

1
g(l‘) EE
||
and the electrostatic energy is
1
Eri(G) = 7/ V6|2 = +oo.
2 Jgs

Thus, to overcome this inconvenient new electromagnetic theories appeared. The
most important ones are the Born-Infeld theory where equation (1.2)) is replaced

by
v
Cav (Y,
V1=Vl
and the Bopp-Podolsky theory where the equation for the electrostatic field is
~A¢+a*A%p =p in R

In both cases, if p = 4mdy,, their solutions can be written explicitly, and the
corresponding energy is finite.

In this article, we focus on the Bopp-Podolsky theory, which then involves the
study of the operator —A + a?A? whose fundamental solution satisfies

—A¢+ a?A%p = 4nd,,

and is given by K(z — z¢), where
||

l—e o
K(z):=———
|z
In particular it presents no singularities at xg, since
1
lim K(z —z9) = —
r—T0 a

and its energy is

1 2
Eep(K) = 7/ |VK|? dz + a—/ |AK|? dz < oo.
2 R3 2 R3
We refer to [I3] for more details.
The most common Schréodinger-Bopp-Podolsky system is

—Au+V(z)u+ K(z)pu = f(z,u) inR?
—Ad+a?A%p = 4mu® in R?

In recent years, the question of the existence of solutions for has been inten-
sively studied by many researchers under a variety of conditions on V, K, f: we
refer the reader to the papers [111 [13| [15] 16, 18] 22| 23] 27, 28] and the references
therein.

d’Avenia and Siciliano [I3] firstly studied the system where they assumed
V(z) is a positive constant, K(x) = ¢* and f(z,u) = |u|P~2u for p € (2,6). By
using a suitable truncation and a useful splitting lemma, they obtained the existence
and nonexistence of solutions. In particular, they take two different approaches to
overcome the lack of compactness of the Sobolev embedding H'(R?) < L*(R3),2 <
s < 6: by means of the Splitting Lemma and by looking for solutions in the subspace
of radial functions of H'(R?), both of which are only available for the case p € (2, 6).

(1.3)
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In [IT1, 18], the main results extended the existence results in [I3] which only dealt
with the subcritical case to critical case. In [I1], by using some new analytic tech-
niques and new inequalities, Chen and Tang assume K (z) = 1, f(x,u) = pug(u)+u®
and prove that system admits ground state solutions for all ;1 > 0if p € (4,6);
for all u > po if p € (2,4]. In [I8], Li, Pucci and Tang considered the system when
K(z) = ¢% and f(z,u) = plu/P~'u + |u|*u. Under certain assumptions on V, they
prove the existence of a nontrivial ground state solution, using the method of the
Pohozaev-Nehari manifold, the arguments of Brezis-Nirenberg, the monotonicity
trick and a global compactness lemma.

Yang, Chen and Liu [28] assume V is coercive, K(x) = 1, f(z,u) = Ag(u) +
|u|*u. By using cut-off functions, the mountain pass theorem and Moser iteration,
they prove the existence result without any growth and Ambrosetti-Rabinowitz
conditions.

Siciliano and Silva [23] assume V is a positive constant, K(z) = ¢* and f(z,u) =
|u|P~2u for p € (2,3]. Different from [13], they apply the fibering approach, and
prove the system has no solutions at all for large values of ¢ and has two radial
solutions for small gq.

For the periodic potential and the nonperiodic potential, Yang, Yuan and Liu
[27] study the existence of ground states for a nonlinear Schrédinger-Bopp-Podolsky
system with asymptotically periodic potentials:

V € C(R*R),0< V(z) < Vao(x) € L(R?), forallz € R* and V — V., € F.
Here F = {k(z) : Ye > 0,m({zx € Bi(y) : |k(z)| > €}) — 0 as |y| — oo}

As a consequence, they also prove existence of grour?d states for the nonlinear
Schrédinger-Bopp-Podolsky system with periodic potentials.
In particular, Cheng and Wang [I2] investigated the following Schrédinger-

Poisson system with nonperiodic potential and subcritical exponent:
—Au+V(z)u+ ¢u = a(x)|ufP"?u  in R?
—A¢p=u? inR3,
where p € [4,6),V,a € C(R3 R),

| Vi(z), xeRy, _Ja(z), zeRi,
V(x){Vg(x), xeR;{, ale) {ag(x), xeR%.

Here R3 = {z € R?: +2; > 0} and

(H1) Vi, Vs, ay,as € C(R?) are Ty periodic in the xy-direction for k = 1,2, 3 with

T =1,

(H2) essinfa; > 0, for i = 1,2,

(H3) min o(—A+V) > 0.
Borrowing an idea from [I4], they got a surface gap soliton ground state by using
a variant of Lion concentration compactness lemma and based on the ground state
energies of each periodic problem.

Kang, Chen and Tang [17] investigated the following Schrédinger-Poisson system
with nonperiodic potential and critical exponent:

—Au+ V(2)u+ du = |u[*u + Mu[P?u  in R?
—A¢p=u? inR?,

(1.4)

(1.5)

where p € [4,6), V belongs to C(R3 R) and satisfies the following assumptioons:
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(A1) Vo = infers V(x) > 0, and given V; and V5 periodic functions in each
coordinate direction, it is

. Vl(l'), IL’GR?’,
Viw) = {Vg(x), x € R;’i.

(A2) mino(-A+V) >0.
They prove the existence of ground state solutions by splitting lemma and some
detailed analysis.

For other papers about periodic and the nonperiodic potential, we refer to [I]
10}, 19} 20} 24}, 26], B0, BI] and the references therein.

Motivated by the above works, we study a Schrodinger-Bopp-Podolsky system
with nonperiodic potentials and subcritial and critical growth. First, we study the
case of subcritial growth, i.e.,

—Au+V(2)u+ ¢u = |uf?u in R
—Ad+a?A%p = 4mu® in R3,
where p € [4,6), V belongs to C(R3,R) and satisfies (A1) and (A2). To state our
results we need some preliminaries and notation, to used throughout this article.

Let H'(R?) denote the usual Sobolev space with the standard scalar product
and squared norm

(1.6)

iy = [ (9uP + ) do

When the domain of integration is not explicitly written, it is understood to be the
whole space. We introduce the subspace of H!(R?),

E:={ue H'(R%: /V(:E)u2 dz < oo}
which is a Hilbert space and
l|lul|? == /(|Vu|2 +V(x)u?)dx, YuckE.
Assumption (A2) implies that || - || g1 and || - || are two equivalent norms on E. Let
Sy be the Sobolev embedding constant (see Theorem [25]), then
lully < Sqllull, YueE,2<q<6. (1.7)

Hereafter || - ||, is the norm in L9(R3). Let D be the completion of C°(R?) with
respect to the norm || - ||p induced by the scalar product

(¢, 4) = / (VoVh + a? ApAy) d.

Then D is a Hilbert space continuously embedded into D*?(R?) and consequently
in L5(R?). Fixed u € E, the Lax-Milgram theorem [29] implies there exists a unique
solution in D of the second equation in ([1.6)) and is given by

_ ==yl
1l—e =

bu(z) = Kxu? = / P u?(y) dy. (1.8)

Substituting ([L.8)) into the first equation of (1.6]), we have
—Au+V(2)u+ dyu = [ulP"2u  in R3, (1.9)
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Associated with ([1.9) we have the energy functional Z : E — R defined by

I(u) = %/(IVUF + V(m)uQ)dx + i/(ﬁ“uz do — % / |ul? dz.

Furthermore, one can see that Z is a C'* functional with the derivative given by
(Z'(u),v) = /(VUVU + V(x)uv)dz + / dyuv de — / |ulP2uvdx, Yu,v € E.

We define

N:={ueE: (T (u),u) =0,u#0}, (1.10)
which is the Nehari manifold of Z. In this paper, we obtain the existence of ground
state solution by solving the minimization problem

c:= inf T(u). (1.11)
By using V; (¢ = 1, 2), we consider the auxiliary Schrédinger-Bopp-Podolsky system
—Au + Vi(z)u + dyu = [ulP"2u  in R (1.12)

Similarly, we define the working space
E; = {u € H'(R?): /V;—(ac)u2 dz < oo} ,
which is a Hilbert space and
lull3, = /quvuﬁ +Vi(@)u)de, Y ue B

By (A2), we have also mino(A + V;) > 0 for ¢ = 1,2. Then, we can deduce that
II-I,1l - ||z, are equivalent to || - ||g:. Hence, || - || is equivalent to || - || g,, where
1 =1,2. In addition, the corresponding energy functional Z; : E; — R is defined by

1 1 1
Zi(u) = 3 /(|Vu|2 + Vi(z)u?) dz + 1 /(l)uu2 dx — » / |u|P da.
It is a C! functional with the derivative given by
(Zi(u),v) = /(VUV’U + Vi(z)uwv) do + /gbuuv dz — / lulP~2uv da, Vu,v € E;.

The minimisation problem on the Nehari manifolds is
Ni={u€E;: (Z)(u),u) = 0,u #0} and ¢;:= inj{[ Zi(u). (1.13)

ueN;

Now, we summarize our first results as follows.

Theorem 1.1. Suppose (A1) and (A2) hold and p € [4,6). If ¢ < min{cy,ca},
then (1.6) has a positive ground state solution uy with Z(up) = c.

A sufficient condition that guarantees ¢ < min{cy, ¢} is given in the next result.

Theorem 1.2. Suppose (Al) and (A2) hold and p € [4,6). Let w; be a positive
ground state solution to (1.12)) for i = 1,2 and assume that either

c1 < e, / (Vo — Vl)wf dr <0,
R

or
o < ¢, / (Vl—Vz)wgdx<0.
R

3
+
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Then, ¢ < min{cy, co} and thus has a positive ground state solution.
Secondly, we study the case of critial growth.
—Au+ V(2)u+ du = |u[*u + Mu[P?u  in R?
—A¢ +a*A%p = 4ru® in R3, (1.14)

where p € [4,6),A > 0,V (z) € C(R? R) and satisfies (A1), (A2). As before we
define the main objects.
Similar to the case of subcritial growth, we define the energy functional

J(u) = %/(|Vu|2+V(x)u2)dx+i/qﬁuquw— é/|u|6dx— %/|u|pdx,

and for all u,v € E, its derivative satisfies

(T (u),v) = /(Vqu +V(z)uv) dz + / pyuv dz — / Jul*uv da — )\/ |u|P~%uv de.
We define the Nehari manifold of J and the minimization problem
M:={ue E:{(J (u),u) =0,u#0} and m:= ulen}; T (u). (1.15)
By using V;, we consider the auxiliary Schrédinger-Bopp-Podolsky system
—Au+ Vi(2)u + dyu = |ul*u + Nu[P"?u  in R3. (1.16)

For all u,v € E;, we have
1 , , 1 N B
Ji(u) = 5 (IVu|* + Vi(z)u®) dox + 1 pyu” dz — G |u|® dz — » |ulP dz,

(T (u),v) = /(VUVU + Vi(z)uwv) do + /¢uuvdx - / lu*uv do — )\/ |ulP~%uv da.
Let the Nehari manifold of 7; be

M; ={u€eE (T (u,u)=0,u#0} and m;:= ule%, Ji(u). (1.17)
We have our second result.

Theorem 1.3. Suppose (Al) and (A2) hold, m < min{mi, mo} and either p €
(4,6),A > 0 or p = 4,\ > 0 sufficiently large. Then (L1.14) has a positive ground
state solution g with J(tg) = m.

Next we give a condition that guarantees m < min{ms,mz}.

Theorem 1.4. Suppose (Al) and (A2) hold and p € [4,6). Let v; be a positive
ground state solution to (1.16)) for i = 1,2 and either

my < ma, / (Vo = Vi)wida <0,
R3.

or

mo < my, / (Vlfvg)v%dx<().
&

Then, m < min{my,ma} and thus (1.14) has a positive ground state solution.
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Notation. We use following notation along this article.

e C,Cand C; (i = 1,2,...) denote positive constants which may change from
line to line.

e — and — denote strong and weak convergence in the related function
spaces, respectively.

e 4 and A denote not strong and weak convergence in the related function
spaces, respectively.

e Br(xp) denotes the ball centered at zo € R® with radius R.

e p = z% is the conjugate exponent of p, E~! denotes the dual space of E.

[ ]

[ ]

on(1) denotes a vanishing sequence in the specified space.
S is the best Sobolev constant for the embedding of D%?(R?) in L°(R3).

2. PRELIMINARY RESULTS

In this section, we give some properties of ¢,,, which will be used later.

Lemma 2.1 ([I13, Lemma 3.4]). For every u € H'(R3) we have:
(i) for every y € R?, du(.ry) = dul- +y);

(i) ¢u = 0;

(iii) for every s € (3,+00], ¢, € L*(R3) N CO(R3);

(iv) for every s € (3,400], Vo, € L*(R?) N CO(R?);
(V) d)u S ID;

(vi) [[pulle < Cllul?;

(vil) ¢, is the unique minimizer in D of the functional

1 2
B() = 5196l + G180l - [ buds, vo e D

(viil) [ ¢uulde < S?||ullfys:
(ix) if up — u in HY(R3), then ¢y, — ¢y in D.

Let us define the function ¥ : H'(R?®) — R by

U(u) = /(;5uu2 dz.

It is clear that for all fixed u € H*(R?), we have ¥(u(- +y)) = ¥(u) for all y € R3
and that ¥ is weakly lower semi-continuous in H*(R?®). The next lemma shows
that the functional ¥ and its derivative ¥’ have the Brezis-Lieb splitting property,
which is similar to the well-known Brézis-Lieb lemma.

Lemma 2.2 ([I8, Lemma 2.5]). If u,, — u in E and u, — u a.e. in R3, then
(i) U(up —u) = V(uy,) — U(u) + o,(1).
(i) O (up —u) = ¥ (uy) — V' (u) + 0,(1) in E7L.

Lemma 2.3 (Brézis-Lieb lemma [8]). If u, — u in E, then:

(3) fltn = ul]2 = a2 = llu]]2 + 0a(1)-
(i) Jlwn — ulls = unlls — [fullt + 0a (1), where s € (2,6].
(1) [l — 22t — 0) = un |22 — a2+ 0,(1) in B
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3. SUBCRITICAL CASE

In this section, we give the proof of Theorems and First, we give some
properties of N defined in (1.10].

Lemma 3.1. Suppose that (A1), (A2) are satisfied, then we have:
(i) for any u € E \ {0}, there exists a unique t, > 0 such that t,u € N.
Moreover, Z(t,u) = maxssoZ(tu);
(ii) N is a natural constraint for the functional Z, i.e., critical points of T on
N are critical points of T on E;
(iii) the functional Z is bounded away from zero on N, i.e., ¢ = inf,enr Z(u) > 0.

Proof. (i) We first consider the case p > 4. In fact, for all t > 0, tu € N is
equivalent to

t2||ul® + t4/¢uu2 dz =+¢? / |ulP dz.
Set a1 = [[ul|* > 0, a2 = [¢yu*dz > 0, a3 = [|u|Pdz > 0. Then we obtain
a1t? + agt* = ast?. Let

g(t) = ait?® + ast* — ast?.
Since p > 4, then g(t) - —oo as t — oo and ¢(t) > 0 as t — 0. So there exists
a solution ¢ = ¢, > 0 such that g(t) = 0, ie., t,u € N. Furthermore, since
T'(tu) = g(t), we deduce that Z(t,u) = maxysoZ(tu). It remains to show the
uniqueness of t,,. In fact,
g (t) = 2a1t + daot® — past?™1,

g’ (t) = 2a1 + 12a2t* — p(p — 1)astP 2,

g" (t) = 24ast — p(p — 1)(p — 2)astP 3,
By a direct calculation, we obtain that ¢"’(t) = 0 has a unique solution ¢/, and
g"(t) > 0with 0 <t <t/ ¢""(t) < 0 with ¢t > t!”. So ¢’ (t) = 0 has a unique
solution t!, and ¢"”(t) > 0 with 0 < ¢t < #!/, ¢”(t) < 0 with ¢ > t!!. By iterating
this procedure, we obtain the uniqueness of t,,. Next, we consider the case p = 4.
Define

A:{ueE\{O}:/¢uu2dx</u4dx}.

We show that the set A is non-empty. In fact, take ug € C5°(R3,[0,1]) satisfying
up = 1 in Bg,(0) and ug = 0 for R3\ Bag,(0), where Ry is a positive constant to
be determined. Then by Lemma [2.1} on one hand,

5/3 4
/qbuoug dz < SQ(/B o |ug|*2/° dsc) < SQ§7T(2R0)5. (3.1)
2R

On the other hand,

4
/ué dz > / ugde = —TR3, (3.2)
Br, (0) 3

and a suitable choice of Ry permits to have S?(2Ry)® < R}, implying that ug € A.
Let

) =700 = Sl + [ out e~ [utan)

We take u € A, it is easy to verify that h(¢) > 0 for ¢ sufficient small and h(t) < 0
for t sufficient large. Then similar to the case of p € (4,6), it is not difficult to
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verify that there exists a unique ¢, > 0 such that h/(t,) = 0, i.e., t,u € N and
Z(tyu) = maxysqg Z(tu).

(ii) For each u € N, from (1.7) and (1.10)),
0=l + [t do— [ fupde ful? = [ up ds = ul? - Spul?.
Since p € [4,6), this implies that
1.1
lull = (gp)7=> > 0. (3.3)
P
Define A(u) := (Z'(u), u), by a direct computation,

(A (), u) :2||u\|2+4/¢uu2 dx—p/|u|pdx
- <2—p>||uu2+<3—p>/¢uu2dx

(3.4)
< (2 - p)llull®
<(2- )(i) e <0
p SP .
Then there exists p € R such that Z'(u) = pA’(u). Therefore
0= (Z'(u), u) = p(A'(u), u),
which implies g = 0 by (3.4) and then Z'(u) = pA’(u) = 0.
(iii) For any u € N, we can deduce from p € [4,6) and (3.3)) that
1 1 1 1
Zw) = (5 = DlalP + (5 = 3) [ éuida
1 1 1 1,1 =
> (= — = 2> (2 = 2) (=)= .
> (5= DIl = (5= 1) ()77 >0
This completes the proof. [l

Corollary 3.2. For any u € E; \ {0}, there exists a unique t,; > 0 such that
tuiv € N;. Moreover, Z;(t,;u) = maxs~o Z;(tu), where i = 1, 2.

Lemma 3.3. Suppose that (A1), (A2) are satisfied, then there exists a (PS). se-
quence {un,} C N, namely such that Z(u,) — ¢ and Z'(un) — 0 as n — +oo.
Moreover, the sequence {u,} is bounded and bounded away from zero on N.

Proof. By the Ekeland Variational Principle, there exists a sequence {u,} C N
such that
Z(up) = ¢ and Z'|p(up) =0 as n— +oo.

Since u,, € N, we obtain

0 = (T (un), un) = ||Junl? +/¢unui dx—/|un|pdm,

and by a direct calculation, for p € [4,6),

1., 1 9 1 1 » 1 9
= _z [ - _Z > )
T(un) = Z(un) 4<I (un), un) 4”“"” + (4 p) / |un [P dz > 4HunH
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Then, it follows from Z(u,) — ¢ as n — +oo that {w,} is bounded. From the
definition of A in the proof of Lemma we have as n — 400,

0(1) = Vi Z(ttn) = T'(1tn) + A () (3.5)
for some p,, € R. Taking the scalar product with u,, (which is bounded), we obtain
that

on(1) = (T (un), un) + pn (A (un), tn) = pin (A’ (Un), un). (3.6)
Since u,, € N and p € [4,6), we obtain, as in equation ([3.4))

(W) v < 2 p) ()77 <0,

Sp
and (3.6]) gives p,, — 0.
It follows from (3.5 and (3.6) that s, — 0 and Z’(u,) — 0 in E~! as n — +oo0.
Moreover, by (3.3), {tn }nen is bounded and bounded away from zero. O

Since {u,} is bounded in E, passing to a subsequence, there exists u € F such
that as n — oo,
U, = u in F,
u, —u in L, (R*),r € [1,6), (3.7)
up(z) — W(xr) a.e. on R3.
Here is some preparatory work that will be used later.
Lemma 3.4 ([I3, Lemma B.5]). Let {y,} C R}, v € H'(R3),{v,} C H'(R?) be
bounded.
(i) If lyn| — +o0, then v(- +y,) — 0 in HY(R3).
(il) If {yn} is bounded, then, up to a subsequence,
v A0 in HY(R?) = v, (- +yn) A0 in H'(R?)

Now, we give the splitting lemma of a (PS). sequence of Z, which plays a crucial
role for the subsequent discussion.

Lemma 3.5 (Splitting Lemma). Let {u,} C E be a bounded (PS). sequence of T
at level ¢ > 0 and assume that u,, — w in E. Then, passing to a subsequence, either
up, strongly converges to , or setting k € NU{0}, there are sequences {u’ le CFE
and yi € ThZ x ToZ x T3Z C R3 with 1 < i < k such that
(i) (=1)% " (yn)1 = +oo and |(yp)1 — (y4)1] = +oo for 1 < i # j <k, as
n — +o0, where (y,), denotes the y-th component of y;,, 1 <~ < 3.

(i) up — T+ S0 ul(-—yi) in E.

(i) Z(un) =Z(@) + 321y Ze, (u?) + on(1).

(iv) Z[ (u') = 0 and v’ # 0 with 1 <i < k.
where g; = {1, 2}.

Proof. Let us divide the proof in various steps.

Step 1: Let 2. = u,, — w. We have two possibilities:

If z1 — 0 in E, then the first alternative follows and the proof is concluded.
If 21 4 0in E. Let ¢; = {1,2} and

R3 ;=1
RY =4 00 ST (3.8)
R+7 E; = 2.
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Since zL — 0 in E, it follows from Lemma and Lemma for any ¢ €
C§°(E,R), as n — o0,

(T'(uy), ) = /(VuanD—l-V(x)ungo) dx+/¢unung0dx —/|un|p_2uncpdx
= /(Vﬂth + V(z)uyp) do + /(VZ;VQD +V(x)zlp) da + /qsgw dz
+ [ontode = [fapupde— [P e dot o)
= (T'(@), ) + (T (2n), ) + 0n(1)

@@+ [(VaiTe+Viskp)do+ [ Vazlods

+/ Gz1 2 da — / [2nlP "2 2pp da + 0p (1)

— (@@, ) + (T, (1), ) + / (1) (Vi — Va)zlpda + on(1)

3
(-net

= (T'(@), ¢) + (IL, (2), ) + 0n(1).
Which together with Z’(w,) — 0 and Z'(w) = 0 imply that

<Iél(z}l), ) =0, asn— occ. (3.9)
In addition, for any ¢ € C§°(E,R), by Lemmas n and as n — 0o,
(T'(un), @) = <I’(U) > + (T (2), ) + 0n(1). (3.10)
Since Z'(uy) — 0 as n — oo, From and Z'(u) = 0 it follows that
(T'(= 1) @) = 0.
Setting ¢ = 2L, we obtain (Z'(2}), z1) — 0, i.e.,
|28 ] + /qsz dx7/|z}l|pdx% 0. (3.11)

Let
d1 := limsup sup / |21]? da.
Bi(y)

n—oo ye]R3

We claim that d; # 0. If not, by Lion’s lemma, 2> — 0 in L"(R?) for r € (2,6). By
Holder’s inequality, we obtain that

1/6 5/6
/¢Z 2dx < /|¢Z1 |6dx (/Iz,ll|12/5d$) < CSHZ}zH%Q/S — 0.

From it follows that [|2}||?> — 0, which contradicts 2} / 0 in E. Then, there
exists y}L S TlZ x ThZ x TsZ C R3 such that

5
/ |2} [2de > 2. (3.12)
Bi(y) 2

Let §711 = (07 (yi)% (y}L)g)?U%, = ((yi)l’ 070)7 and w'}L = Z}L(+€71L) ClearlY7 ||w71LH =
|z%|| and w}; — 0 in E but not strongly. Therefore, by (3.12)), we obtain

5
/ lwh |2dz > =L (3.13)
Bi(o}) 2
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It is easy to check that |(yl)1| = |oL]| = +o0, that is,
(=)= H(yh)1 — +oo. (3.14)

Considering the sequence {w} (- + o)}, which is bounded in Eg,, there exists u! €
E., satisfying

wy (- +0,) = !
wrll( + U'rlL> —u' in Lloc (R3)7

wh(z +ol) = ul(z) ae. in R3.

in £, ,

From , we obtain u! # 0. From , for any ¢ € C§°(E,R), we obtain
(ZL, (w (- +0p)), ) = (ZL, (2 (- +yn))s ) = (ZL, (20), (- = y)) — 0.
Hence, we have Z. (w} (- + 0;.)) — 0 since C§°(E,R) is dence in E, it follows that
7! (u') = 0. (3.15)
Step 2: Let 22 = z! —ul(z — yl). Then, 22 — 0 in E because the norm of E

is equivalent to the norm of E.,. In addition, from Lemmas and by the
simple calculation, as n — oo,

1 1 1
Imn=w%W+f/mﬂ%m—w%w

Sl + ) /mum+/@

Lose a||P) + o
—§(|\2n||p+|| 5) + on(1)
I(zy) + Z() + on(1)
I(z7) + Z(u') + Z(w) + 0a(1)
A

(z2) + I, (u 1)V, — Vo)ut dz + Z(7) 4 0, (1)
]R

(3.16)

)51

= I(z) + Iz, (u') + Z(7) + on(1).
We have two possibilities:
If 22 -5 0in E, ie., 2t —ul(z—yl) =u, —u—ul(z —yl) =0, ie,
Uy — T+ ut (- yL). (3.17)
From ([3.16)), we obtain

T(un) = Z(0) + I, (u') + 0, (1). (3.18)

Then the Lemma is proved for ¥ = 1. It follows from (3.14), (3.17)), (3.18), and
(13.19]).
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If 22 / 0in E. From Lemmas 2.2]and [2.3] we obtain that for any ¢ € C5°(E, R),
as n — oo,

(Z'(zn), ) = (T'(20), ) + (T’ (u'), (@ + y,)) + 0n (1)
= (T'(2p), ) + (T2, (u"), o( + yp))

+ (=1 (Vi = Va)u'p(x + gy )dz + 0n (1)
R3
(

= (T'(z0), ) + (T2, (u'), o( + yp)) + 0 (1).

It follows from (Z'(z ), ©) % 0 and Z/ (u') = 0 that (Z'(22),¢) — 0. Setting
¢ = 22, we obtain (Z'(22),22) — 0, i.e.,

Hzn||2 /qﬁzz dx—/|z,21|pdac—>0.

do := lim sup sup / |22 )% dzx.
Bi(y)

n—oo yeR3

(3.19)

Let

Simlar to §; # 0, we obtain dy # 0. Then, there exists y2 € T\Z x ToZ x T37 C R3
such that

)
/ 1222de > 2.
Bi(y2) 2

Let 5721 = (0, (yrQL)Qa (yr%)?))vgr% = ((y72L>1a 0,0), and w’rzl = Z%(:L‘—l—g,%) Clearly, ||w721|| =
22| and w2 — 0 in E. Therefore,

/ |w?|?dx > 5—2. (3.20)
B(2) 2
It is easy to check that as n — oo, |(y2)1| = |02| — +o0; that is,

(=1)% "M y2)1 — +oo. (3.21)
Then w2 (- +02) 4 0 in E. In addition, we claim that

(W1 = (yn )1l = +oc. (3.22)

To see this, first observe that
wi(-+ o0+ (Y2 — (Yn)1)
=zn(-+on+ Wa — (Y1 + &)
Zn (- o+ (Yo = (a1 +63) = (- + o+ (y)1 — (Yo )1 + &0 = yp)
wa (- +op + (Y — (a1 + &5 = &) —u' (- +on + ()i — (Y1 + €0 — )
wy (- +0n +yn —yn) —u' (- on +yn — Y —0y)

From Lemma [3.4] (ii), since w2 (- +02) /4 0 in B, if it were [(y2)1 — (y})1] /4 +o0,
we obtain

wi(-+op + (o)1 — (yn)1) 7 0.

On the other hand, since w}(- + ol) — u!, we obtain

wn(+Jn+yn7yn)7ul(+0—721+y727,7y:tia711)4\07
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which is a contradiction. So we obtain (3.22)). Moreover, for any ¢ € C3°(E,R),
we obtain as n — oo,

(T2, (), ) = (T, (20), @) + (T, (uh), (@ + )
= (T, () ) + (T, ('), (@ + )

+ / (Vey — Ve ol + ) + 0, (1)

= (T2, (20), ) + (T, (u'), (@ + ) + 0n (1)
By (Z.,(z), ) — 0 and Z. (u') = 0, we obtain Z/ (z2) — 0 since C§°(E,R) is

dense in E. Considering the sequence {w?2 (- +02)}, which is bounded in E.,, there

exists u? € E., satisfying

(3.23)

wi (- + o7) = u?

w2(-+02) —u? in L] (R%),

loc

in £,

w?(z + 02) — u?(z) a.e. on R3.
We can see that u? # 0. For any ¢ € C§°(E,R), we obtain
(ZL,(u?), ) = (ZL, (wi(- + 07)), ) + 0 (1)
= (T, (7 (- +y2))s ) +0a(1)
= (T, (), (- = y2)) + 0n(1) = 0n(1).
Hence, since C§°(E,R) is dense in F, we have

17, (u?) = 0. (3.24)

Step 3: Let 23 = 22 — u?(x — y2). From (3.16)), we have
T(un) = I(22) + I, (u') + Z(7) + 0,(1)
I(zn) + Zey (u) + Iz, (u') + Z(T) + 0n(1).

We have two possibilities:

If22 5 0in E,ie., 22 —u*(x —y2) = u, —u—ul(x —yl) —v?(x—y2) =0, ie,

(3.25)

Up — T+ u'(x —yl) +u*(x — yn). (3.26)
From ([3.25)), we obtain
Z(up) = Z(w) + L., (u') + I, (u?) + 0, (1). (3.27)

Then the Lemma is proved for k = 2. It follows from (3.21)), (3.22), (3.26), (3.27),
and (3.24)).

If 22 4 0 in E, we just repeat the argument.

Step k: By Z(u,) = Z(u) + Zle T.,(u*) +0,(1), since Z., (u?) > c., > min{cy, co}
and Z(uy) is bound, the iteration must stop at some finite index k. The proof is
complete ([l

Proof of Theorem[I.d]. In view of Lemma we obtained that there exists a
bounded (PS). sequence {ux} C N such that Z(ug) — ¢ and Z'(ug) — 0 as
k — 4o00. Since {u} is bounded in E, the, going to a subsequence if necessary,
still denoted by {ux}, we can suppose that there exists @ € F such that up — @ in



EJDE-2024/43 SCHRODINGER-BOPP-PODOLSKY SYSTEMS 15

E. With ¢ < min{cy, ¢2}, by Lemma [3.4] if uj, / u, we can obtain that k > 1 and

nontrivial solutions u', u?, ..., u? of Z., with e; = {1,2} satisfy
k .
c= lim Z(ux) =Z(u)+ E Z.,(v') > kmin{eci, c2} > min{cy, ca},
k—+o00 =

which is contradiction with ¢ < min{ey, c2}. Thus, ux, — @, and then Z(u) = ¢ and
T'(w) = 0. Obviously, @ # 0. Therefore, T is a ground state solution of .
Considering uy = [u], it is easy to check that Z(ug) = Z(u) = ¢ and up € N.
From standard arguments, we infer that Z'(wg) = 0. Thus, @ is a non-negative
solution of system . Furthermore, the strong maximum principle implies that
o > 0 in R3, and thus, g is a positive ground state solution of system . O

Proof of Theorem[I.4. We just study the case of ¢; < c¢y. The case ca < ¢ is
analogous. Let w; € N7 C E be a positive ground state for the purely periodic
problem for with ¢ = 1. We can see from Lemma that there exists s > 0
satisfying sw; € M. Then, from the assumption of Theorem and Corollary

we have

¢ < ZI(swn)

2 4 p
s 9 S 9 s
Sl + 5 [ b lunPda - =

52 9 st 9 sP » 52 9
Sl + 5 [l de =Sl + 5 [ 06— Viuiar

R?
2
=7 (sw1) + —/ (Vo — Vl)w% dz
R3

2
<1 (wl) =C1,
which implies that ¢ < ¢;. Thus, ¢ < min{eq, 2} O

4. CRITICAL CASE

In this section, we give the proof of Theorems and According to [24]
Theorem 1.2], we have the following result.

Theorem 4.1. Assume that (A1) holdls and mino(—A+V;) > 0. Then, for every
A>0andp € (4,6), (1.16) has a positive ground state solution. Moreover, if p = 4,
then (1.16)) possesses positive ground state solutions for A > 0 sufficiently large.

Similar to the case of subcritical, we have some properties of M .

Lemma 4.2. Suppose that (Al), (A2) are satisfied, then we have
(i) For any u € E\ {0}, there exists a unique t, > 0 such that t,u € M.
Moreover, J (t,u) = maxy~oZ(tu).
(ii) M is a natural constraint for the functional J, i.e., critical points of J on
M are critical points of J on E.
(iii) The functional J is bounded away from zero on M, i.e., m = inf,ep J(u) >
0.

Proof. (i) For t > 0,tu € M is equivalent to

2 Ju® + ¢ / pui® Az = 18]S + AP [Ju2.
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Set a1 = ||ul|*> > 0, ag = [pyu*dz >0, ag = [|ul|§ > 0, as = [lull5 > 0. Then we
obtain a1t? + agt* = ast® + Aaqt?. Let

§(t) = art® + ast* — ast® — Nayt?.

Since p > 4, then §(t) - —oo as t — oo and §(t) > 0 as t — 0. So there exists
a solution £ = £, > 0 such that g(f) = 0, i.e., {,u € M. Furthermore, since
J'(tu) = §(t), we deduce that J(f,u) = max;~oJ(tu). It remains to show the
uniqueness of t,. In fact, suppose by contradiction that there exists 0 < t; < t3
such that §(t;) = §(t2) = 0. Then

||U||2 24 t2 )\tp 4
puu® dz = 17 ||ull§ + flullp,

||u||2 ¢ 2d t2 )\tp 4 p
wu? da = 13§ + [[ull}-

As a consequence,

1 4 —4
(5 — ) Il = (3 = )l + X~ = 89,

which is impossible by 0 < ¢; < ts.
(ii) For any u € M, we have that

0= fulP + [ Gy de = [ulls = Al
> J[ull® = [lull§ = lull?
> Jull2 = SElull® — ASEljull”.
Since p € [4,6), there exists a constant Ay > 0 such that
|lul] > Ag > 0. (4.1)
We define B(u) := (J'(u),u), by a direct computation,

(B'(u), u) = 2llull® + 4/¢uu2 dz — 6lullg — Aplluly

— @ —p)llul®+ (- p) / but® d + (p — 6) ]S
<2-p)ul?*<o.
Then there exists i € R such that J'(u) = aB’'(u). Therefore
0=<J’(U) u) = (i(B'(u),u),
) =

which implies i = 0 by (4.2)) and then J'(u) = iBB ( )=
(iii) For any u € M, we can deduce from p € [4,6) and . that

Tl = (5 - %)HuHQ +(G-3) [oaldot (- Dl
1 1
2 (5 - 5)||u\|2
> (% - %)A% > 0.

This completes the proof. [
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Corollary 4.3. For any u € E; \ {0}, there exists a unique t,; > 0 such that
tuit € M;. Moreover, J;(tyiu) = maxysq Ji(tu), where i = 1,2.

Lemma 4.4. Suppose that (Al), (A2) are satisfied, then there ezists a (PS). se-
quence {u,} C M such that J(u,) — ¢ and J'(up) — 0 as n — +oo. Moreover,
the sequence {uy} is bounded and bounded away from zero on N .

Proof. By the Ekeland Variational Principle, there exists a sequence {u,} C M
such that
J(up) —c and J'|m(up) =0 as n — +oo.

From the definition of B in the proof of Lemma [4.2] we have, as n — +o0,

on(1) = VT (un) = T (un) + finB (uy), (4.3)
for some ji,, € R. Taking the scalar product with uy, we obtain that
on(1) = (T (Un), un) + fin (B (un), un) = fin (B (un), tn). (4.4)

Since u, € M and p € [4,6), we obtain
(B (1)1t} = 2 [ +4/¢unui dr — 6/ fun® d — )\p/ fun|? dz
= @) unl®+ (4= p) [ Gu e (p-06) [ unf do

< (2= p) | <0.

It follows from (4.3) and (4.4) that i, — 0 and J'(u,) — 0 in E~! as n — +oo0.
It remains to show that {u,} is bounded in E. Since u,, € M, we obtain

0= (T (un), un) = ||un||® + /gbunui do — / |, |® da — )\/ |ty |P da.
By a direct calculation, for p € [4,6),

T (un) = T (un) — 7<«7l(un),un>

>
— 4
Then, it follows from J(u,) — ¢ as n — +oo that {u,} is bounded. Moreover, by
(4.1), {u,} is bounded and bounded away from zero. O

Since {u,} is bounded in E, passing to a subsequence, there exists 4 € E such
that as n — oo,
U, =0 in F,
u, — 4 in L, (R*),r € [1,6), (4.5)
un(z) = 4(x) a.e. on R3,
For € > 0, let
31/41/1(53)51/2
T) =
O @y
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where 1 € C§°(R3,[0,1]) is such that ¥ (z) = 1 for |z| < R and ¢(x) = 0 for
|z| > 2R. We need the following asymptotic estimates as e — 07 (see [9])
IVe:l3 = $*2 +0(e),  llwellg = 5% + O(e?)
O(e*/?), if s € [2,3)

(4.6)
leells = O(e*/?|nel), if s =3,
O(e=9)/2)  if s € (3,6)
Lemma 4.5. Suppose that (A1) and (A2) are satisfied. Then
0<m< %53/2, i=1,2, (4.7)

where m; defined in (1.17), if one of the following conditions is satisfied:
(i) 4<p<6and A >0;
(ii) p =4 and A > 0 large enough.
Proof. From the definition of m; and Lemma [4.2] there exists t. > 0 such that

0<m; < Ji(tepe) = I?ggiﬂ(twa). (4.8)

On the one hand, since 0 is a local minimum of 7;, there exists a constant C' > 0,
independent of €, such that J;(t..) > C > 0. Then from the continuity of 7; , we
may assume that t. > t; > 0, where ¢; is a positive constant.

On the other hand, from the definition of . and , for any € > 0 small
enough, we have

53/2
Ti(tepe) < (832 + C1)t% + Cot* - vtﬁ

where C1,Cs are positive constants, independent of €. Thus there exists to5 > 0
such that t; < t. < tg for each € > 0.

We set
t? 2 £ 6
h(t) = 5 |VSOE| dzr — g |906| dz.

By a direct calculation, we can show that g attains its maximum at
J IVsoslzdx)
f |6 da

Moreover, by (4.6), using the inequality (a + b)? < a? + p(a + b)?~'b, which holds
for any p > 1 and a,b > 0, we deduce that

max h(t) = h(to)

2/4 2
— (f|v305 - /|v 5|2 I(I‘V@Et‘ dx 6/4/ |g05|6d:17
x

Sl

to = (

Tleel [Te-Po d
1]Vl
3 Tl

1 [8%2 4 0(e)*/?
[93/2 + O(e3)]1/2

~5%2 1 0(e).

I /\

3
1
3
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Then we obtain

Tiltep.) = /|wg|2dx+—/v sosdw+f/¢%sosdx

_EE/QOE

1
< 553/2 +0(e) + Cl||90€||2 + Callelliz/s — CaMleell}-

To complete the proof, it remains to show that

. Cille:l3 + Calleelltys — CaMllpellh

= —00. 4.9
e—0t £ > ( )

In fact, by (4.6) the following estimate holds as € — 0:
Cill@:l3 + Calleellt2/5 — CaMllpellh < Cae + Cse® — Cere =972, (4.10)
If 4 < ¢ < 6, it follows immediately from (4.9) for any A > 0. If ¢ = 4, one can
chose A = e~ # 1 > 0 in the above inequality to obtain (4.9)). ([l

Now, we give the splitting lemma of a (P.S). sequence of J, which plays a crucial
role for subsequent discussion.

Lemma 4.6 (Splitting Lemma). Let {u,} C E be a bounded (PS). sequence of
J at level m € (0, 1.5'2) and assume that u, — 4 in E. Then, passing to a
subsequence, either u, stmngly converges to U, or setting keNu {O} there are
sequences {u’ }’C L C E and y, € T\Z x ToZ x TsZ C R® with 1 < j < k such that

(1) (71)81 (yn)l — +o0 and |(yn)1 - (yn) | — +00 fOT 1 < 7é J < k7 as

n — 400, where (y%)., denotes the y-th component of y, 1 <~ < 3.

(i) wp — 4+ Zle ui(- —yi) in E.

. k

(i) T (un) = Z() + 32y T, (w') + 0n(1).

(iv) JL(u') =0 and u* # 0 with 1 <i < k.
where g; = {1,2}.
Proof. Let us divide the proof in various steps.
Step 1: Let 2. = u,, — 4. We have two possibilities:

If z1 — 0 in E, then the first alternative follows and the proof is concluded.
If 2L /A 0in E. Let g; = {1,2} and

R )., = {Ei i z ; (4.11)
Since z1 — 0 in E, it follows from Lemmas and that, as n — oo,
T (un) = T (2) + T (@) + 0,(1),
(E,R), g1 ={1,2}
(T (un), ) = (T'(@), ) + (T (2n), ) + 0n(1)
(@) + T+ [ (D= )sheda+o,(1)

3
(=1)F1L

= (T'(@), ) + (T, (23), @) + 0n (1),

and for any ¢ € C§°



20 Q. JIANG, L. LI, S. CHEN, G. SICILIANO EJDE-2024/43

which together with J'(u,) — 0 and J'(@) = 0 imply that
(T (zh),¢) =0, as n— oo. (4.12)

In addition, since (J'(un), ) = (T'(@), ) + (T'(2L),¢) + 0,(1), which together
with J’(un) — 0 and J'(4) = 0 implies that

(J'(2L), >—>O as n — oo.

Setting ¢ = 2z, we obtain (J'(z}),21) — 0, i.e.,

||z,1L||2+/¢>Z71L( /\zn|6dx )\/|zn\pdm—>0 (4.13)
Let
1 := lim sup sup / |21]? da.
Bi1(y)

n—oo  yeR3

We claim that §; # 0. If not, by Lion’s lemma, 2! — 0 in L"(R?) for r € (2,6). By
Hoélder’s inequality, we obtain that

’d < 6d e 1125 42) ™" < Cs)L 2 0
¢z x |¢le ‘T |Zn| €L — Hz”n||12/5_> .

It follows from ) that ||2}]|? = [|z}5dz + 0,(1). Asume that ||z}]|? — n,
so [|z}|0dz — 7]1, as n — co. By Sobolev embdding, we obtain [ |z}|®dz <
S~z (|8, which implies that 7, < S~3n3. Hence, 7, = 0 or n; > S3/2. If n; = 0,
then 2z} — 0 in E. If n; < S73n2, then

m= lim J(u,)

n— oo

= lim J(z,) + J (@)

n— o0

lim T ()

1 A
24 116 1
= |z, b1 (2 —f/zn dm—f/znpdx
S lzal + / 5 [ 1ras =2 [z
_ _ - - 53/2
2771 677 3771

which contradicts m € (0, $5%2). Then &; # 0. Hence, there exists y} € T\Z x
TvZ x T3Z C R3? such that

I \%

5
/ 2} 2de > 2L (4.14)
Bi(y},) 2

Let fvlL = (07 (yrll)Qv (?%%)3)3 Jrlz = ((y}l)17 Oa 0)7 and wrll = ZTll( +§711) Clearl}’v ||wrlz|| =
||| and w} — 0 in E but not strongly. Therefore, by (4.14)), we obtain

1)
/ lwl|2de > = (4.15)
Bl( 1) 2
It is easy to check that |(yl)1| = |oL]| = +o0, that is,
(=)= (yp) — +oc. (4.16)

Considering the sequence {w) (- + o})}, which is bounded in E.,, then there exists
ul € E., satisfying
wy (- +0y) = !

wrll( + U'rlL> - ul in Lloc (R3)7

in £, ,
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wl(z+ol) = u(z) ae. on R
From , we obtain u! # 0. From , for any ¢ € C§°(E,R), we obtain
(T, (wi (- +00)),0) = (T2 (2 y))s 0) = (T, (2), (- = y)) — 0.
Hence, we have J/ (w;, (- + 0,,)) = 0 since Cg°(E,R) is dense in E, and then
JL (u') = 0. (4.17)

Step 2: Let 22 = 2z —u!(z —y.). Then, 22 — 0 in E due to the norm of E is
equivalent to the norm of E,,. In addition, from Lemmas[2.2]and by the simple
calculation, as n — oo,

Flun) = glunl + 5 [ Gu,2 do = gl = >l
=J(2) + T (@) + on(1)
=J(20) + T (') + T (@) + 0a(1) (4.18)
—TE T+ [ )0 =Vl e+ T (@) + 0,1

e
= J(23) + Jey (u') + T (@) + on(1).

We have two possibilities:

If 22 -5 0in E, ie., 2} —ul(z —yl) =u, -t —ul(z —yl) =0, ie,

Uy — 04 ul(z—yl). (4.19)
From , we obtain
T (un) = T (0) + Ty (u') + 05 (1). (4.20)
Then the Lemma is proved for & = 1. It follows from (4.16)), (.17), (#.19), and
4%?% # 0in E. From Lemmas and we obtain for any ¢ € C§°(E,R), as
n — 0o,
(T'(z),0) = (T (20),0) +{T" ('), (@ + ) + 0a(1)
= (T (z3), ) + (T, ('), 0( + )

+/ (—1)(Vy — Vo)ulo(z + .t )dx + 0, (1)
R

3
(=1L

(4.21)

= (T (z), @) + (T, (), 0(x + yp)) + 0n(1).

It follows from (7'(z}),¢) — 0 and J/ (u') = 0 that we obtain (J'(z2),¢) — 0.
Setting ¢ = 22, we obtain (J'(22),22) — 0, i.e.,

122| + /qﬁzi(zi)gdx _ / 121 1% de — A/ 2P dz — 0. (4.22)
Let
o := lim sup sup / |22 )% dz.
B1(y)

n—oo0 yeR3
Simlar to §; # 0, we obtain 3 # 0. Then, there exists y2 € T1Z x ToZ x T37Z C R3

such that
1)

/ 122 2de > 2.
Bi(y3) 2
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Let g?z = (0’ (yi)% (y%):‘)?O’?L = ((y%)la 070)7 and w?L = Z?L(x+£r2z) Clearly, ”w?z” =
22| and w2 — 0 in E. Therefore,

)
/ (w2 |2dz > =2 (4.23)
Bi(o3) 2
It is easy to check that as n — oo, |(y2)1| = |o2| — +o0, that is
(=177 yp)1 — +oc. (4.24)

Then w2 (- +02) 4 0 in E. In addition, we claim that

[(yp)1 = (yp| = +o0. (4.25)
To see this, first observe that
wi (- + 05+ (Ya) = (Yn)1)
=z2(-+on 4+ a1 — ()1 + &)
z (o + (i) — (a1 +60) —u' (- 0p + (Yp)1 = (Yn)1 + & — yn)
wy(-+on 4 (o — () + &5 — &) —u' (- +op + (i) — (ya)1 + & — )
wy (- o Y = Yn) — (o Y = Y — )

From Lemma (ii), since w2 (- + 02) A 0 in E, if it were |(y2)1 — (y})1] /A +oo,
we obtain

wi (- + o + (Y — (ya)1) 72 0.
On the other hand, since w;, (- + o}) — u!, we obtain
wy (- op Y —yp) —ul(Hon Y~y — ) =0,

which is a contradiction. So we obtain (4.25)). Moreover, for any ¢ € C3°(E,R),
we obtain as n — o0,

(T2, (2n); )
= (T, (20), ) + (T, (uh), ol + yp)) + /(%2 = Ve Ju'p( + yp)dz + 0, (1)

= (T2, (), 0) + (T, (u'), (@ + yn)) + 0n(1).

By (J., (%), ) — 0 and J/ (u') = 0, we obtain J/, (z2) — 0 since C§°(E,R) is
dense in . Considering the sequence {w%( + o’%)}, which is bounded in E.,, there
exists u? € E., satisfying
w2(-+02) = u? in E.,,
w?m( + 0-721,) - ’LL2 in Llroc (R3)’
w2 (x +02) = u?(z) ae. on R
We can see that u? # 0. For any ¢ € C§°(E,R), we obtain

(TL,(W?), ) = (T, (wi (-+00))s ) = (TL, (za () ) = (TL, (20), 9(-—yn)) — 0.
Hence, since C§°(E,R) is dense in F, we have

77, (u?) = 0. (4.26)
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Step 3: Let 23 = 22 — u?(z — y2). From (4.18), we have
T (un) = T (27) + Tey (uh) + T (@) + 0,(1)
T (z0) + Tex (u?) + Loy (u') + T (@) + on(1).

We have two possibilities:

If 22 - 0in E, ie., 22 —u?(x —y2) = up — i —ul(x —yl) —u?(x —y2) — 0, ie.,

(4.27)

Up — U+ ut(x —yh) +u? (2 — yn). (4.28)
From , we obtain
T (un) = T (@) + Tey (u') + Tea (u®) + 0n(1). (4.29)

Then the Lemma is proved for k = 2 follows from (4.24)), (4.25), (4.28)), (4.29)) and
(@26).
If 22 4 0 in E, we just repeat the argument.

Step k: By J (un) = «7(@)+Z§:1 Je. (uh)+0,(1), since Tz, (u?) > c., > min{cy, co}

and J(uy,) is bound, the iteration must stop at some finite index k. The proof is
complete. ([

Proof of Theorem[I.3 In view of Lemma there exists a bounded (PS). se-
quence {ug} C M such that J(ur) — m and J'(ux) — 0 as k — 4o00. Since {uy}
is bounded in E, going to a subsequence if necessary, still denoted by {uy}, we can
suppose that there exists & € E such that uy — @ in E. With m < min{m,, ma}, by
Lemma if ug, /4 u, we can show that k& > 1 and nontrivial solutions u!, u?, ..., u’
of J, with g; = {1,2} satisfy

k
m= lim J(ux)=2Z(u)+ Z T, () > kmin{my,ms} > min{my,ms},
k—+o00 =
which contradicts m < min{ms,mo}. Thus, uy — 4, and then J(4) = m and
J' (@) = 0. Obviously, @& # 0. Therefore, @ is a ground state solution of .
Considering @y = ||, it is easy to check that J(dg) = J(4) = m and 49 € M
. From standard arguments, we infer that J'(dg) = 0. Thus, g is a non-negative
solution of system . Furthermore, the strong maximum principle implies that
Gp > 0 in R3, and thus, o is a positive ground state solution of system . [l

Proof of Theorem[1.]} We just study the case of m; < ma since the case ms < my
is analogous.

Let v; € M1 C E be a positive ground state for the purely periodic problem for
(1.16]) with ¢ = 1. We can see from Lemma that there exists § > 0 satisfying
Sv; € M. Then, from the assumption of Theorem and Corollary we have

m S j(évl)

52 5 36 &P
= Sl + T [ uloaf do = Flunlly - -l

52 st 36 ASP 52
= Sl + 5 [ oulonPde = Flalp - 2 ulg+ 5 [ 0a-Viptds
82

:ﬂ@m+%/(%—mw%x
RS
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< Ji(v1) = myq,

which implies that m < my. Thus, m < min{m;,ms}. O
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