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GLOBAL GRADIENT ESTIMATES FOR SHEAR
THINNING-TYPE STOKES SYSTEM ON NON-SMOOTH
DOMAINS

NAMKYEONG CHO

ABSTRACT. This article presents global L? estimates for the weak solution of
the steady p-Stokes equations, which describe the motion of shear-thinning
flow under the nonslip boundary condition. We focus on non-smooth domains
whose boundaries extend beyond the Lipschitz category, with coefficients be-
longing to the BMO (Bounded Mean Oscillation) space having a sufficiently
small BMO semi-norm.

1. INTRODUCTION

The Navier-Stokes equations with shear-dependent viscosity are extensively stud-
ied in the literature. The stationary generalized Navier-Stokes equations with shear-
dependent viscosity are expressed as

div T (u,m) — (u-V)u = f,

1.1
divu = 0, (1.1)
where
1
T(u,m) = —nl +vr(u)Du and Du:= §(Vu + vul). (1.2)
Here, Vu € R"*" denotes a matrix-valued function where (Vu);; = d;u?, and

MT € R™*" represents the transpose of the matrix M € R™™. If vp(u) =
(|Du| + )", where > 0 and p # 2, then equations and are referred
to as the p-Navier-Stokes equations. Ladyzhenskaya’s fundamental works initiate
the systematic study of the p-Navier-Stokes equations [25],26]. For further details on
the p-Navier-Stokes equations, readers are referred to [27), [I7, [3T] and the references
therein.

To simplify the problem, we shall consider the p-Stokes equations, which are
the equations without the convection term in . A systematic study of the p-
Stokes equations is meaningful because, in many cases, the regularity of a solution
to the p-Stokes equations is closely related to the regularity of a solution to the
p-Navier-Stokes equations.
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The interior regularity results for p-Stokes equations are well-established in many
cases. However, when we want to extend the regularity results up to the boundary,
the problem becomes more difficult. The difficulty arises from the existence of a
pressure term and the fact that the equation depends only on the symmetric part
of the gradient Du and not on the full gradient, Vu. This may lead to the loss of
regularity in reconstructing the normal derivatives.

To simplify the boundary value problem, a cubical domain is considered for shear
thickening and shear thinning cases in [2, [3], respectively. These papers study the
reconstruction of the normal direction derivative. These results are extended to
C?1 domains in [4] for the shear thickening fluid and in [6] for the shear thinning
fluid. In [5 3], the shear thinning case p < 2 is considered, but the range of
p is restricted to be greater than 3/2 because of the technical issue. Later, this
restriction is removed, and the full range p € (1,2) is considered in [6]

This article studies gradient L? estimates of the shear-thinning fluid with the
nonslip boundary condition.

In addition, we assume that the domain 2 belongs to the §-Reifenberg flat do-
main and that the BMO semi-norm of the coefficients is sufficiently small. The
global gradient LY estimates on non-smooth domains are initiated in [9] for linear
elliptic equations. Other types of equations on non-smooth domains have been
studied subsequently. For instance, the linear Stokes equations are explored in
[8, 18], p-Laplacian type equations are studied in [7], and shear-thickening p-Stokes
equations are studied in [12].

The problem under consideration is the stationary Stokes equations

div A(z, Du) — Vr = div (" (|F|)F) inQ,
divu=0 in Q, (1.3)
u=0 on J9,

where ¢ € C?(R") is a function defined as

t
o(t) ::A (u+s)p72sd8—|—%t2. (1.4)

for some constant ko > 0, p € (1,2) and p € (0,1). In particular, if n = 2, we
restrict the range of p to p € (4/3,2). It is readily checked that the following
properties hold:

to’ (t)
©'(t)
¢"(0) = pP~? + Ky > 0,

" (t) is a decreasing function.

p—1<

S 17
(1.5)

We shall denote by RIX™ the class of symmetric matrices and 0 as the zero

Sym
matrix. For A,B € R™ ", we denote A : B = Z?jzl A;jB;j. The nonlin-
earity A(z, P) : Q x REM — REXT is a given matrix-valued function such that

A(z,-) € CO(REX™) N CH (R \ {0}) for each z € Q and satisfies the following

Sym Sym



EJDE-2024/47 SHEAR THINNING FLUIDS 3

basic structural conditions
" OA(x, P
S 2P G Qu = v (PR,
. 0Py
1,7,k =1
|0k Aij(x, P)| < Lo" (| PY),
A(z,0) =0,

(1.6)

for all P, € R?*"™ and for some 0 < v < L.

sym

Definition 1.1. For F' € L?(f2), we say that (u,7) € Wy'¥() x L# (Q) is the
weak solution pair to ((1.3]) if

/QA(x,Du):Dfda:—/Qﬂ'divfdz:/gcp”(\F\)F:D{d:z:,

for all € € Wg""(ﬂ). Here, ¢* is the conjugate function of ¢, and the details of the
Orlicz functions and related function spaces shall be specified in Section [2.1

For each open set U C €2, let us denote the integral average by
1
(fu= ][Uf(ﬂb“)dﬂlj = 7/ f(z) da.
Ul Ju
For notational convenience, we write

A, B, = () ,
B( (¥)) PER;;%?\{O} 2P

where B,.(y) is the ball of radius r centered at y. By (1.6, we obtain
|B(A, B (y))| < ¢:=c(L,p). (L.7)

We assume the domain 2, is a bounded §-Reifenberg flat domain for a small é €
(0,1/16). We further assume that A has a small BMO (Bounded Mean Oscillation)
semi-norm. The precise assumptions are stated below.

Assumption 1.2. (i) There exist Ry > 0 and § € (0,1/16) such that for all
x € 9Q and for all r € (0, R1], there exists a coordinate system (21, 22, . .., 2p,)
which depends on r and x so that in this coordinate system, x is the origin
and

B, (0)N {2, > 0} C Bo(0) NQ C B(0) N {20 > —0r}.

(ii) There exists R < R; such that for all z € 9Q and for all r € (0, Rs], there
exists a coordinate system (z1, za, . . ., 2, ) which depends on r and « so that
in this coordinate system, x is the origin and

B,.(0)N{z, >0} C B.(0)NnQ C B-(0)N{z, > —dr},
and

sup sup ][Br(y)/)’(/l, Br(y)) dx < 6, (1.8)

0<r<Ry y€R"

where § is the same as the one chosen in (i).
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In this work, 6 > 0 only shows the flatness of {2 and the smallness of the BMO
semi-norm of A in this paper. The detailed reason for imposing two separate
assumptions on the domain and coefficients shall be specified later in Remark

For simplifying the notation, let us introduce the maximal exponent §, depending
on n, ke and p, as

(1.9)

_ {any number in (1,00) ifn=2and 3/4 <p <2,

n itn > 3.

We are ready to state our main results.

Theorem 1.3. We assume that p € (1,2) if n > 3 and p € [%,2). Let A satisfy
, Q be a bounded open set, ke > 0 and q € [1,3) with ¢ as in . Suppose
that o(|F|) € L1(Y). There exists a 6 > 0 depending only on |Q|, R1,q,n,v,L,p
and ko such that if A and 2 satisfy Assumption[I.3, then the weak solution pair to

, (u,m) € Wol"p(Q) x L¥" (Q), satisfy
/ (| Dul)? dz + / o () de < e / P(F)) + 1dz
Q Q Q

where the constant ¢ only depends on w,v, L, p, k2, ||, Ry and q.

This article is organized as follows. Section 2 provides the required preliminary
materials. Section 3 presents the regularity results of the p-Stokes equations on the
local flat boundary. Section 4 presents comparison estimates. Finally, Section 5
has the proof of our main theorem.

2. PRELIMINARIES

This section consists of preliminary materials and notation. Throughout this
paper, the universal constant ¢ may vary from line to line, but it only depends on
the data,

data := {n,v, L,p, Ry / diam(Q)}.

If there exists a universal constant ¢ := ¢(data) > 1 such that %f < g < cf, then
we shall denote f ~ g. When the constant depends on other quantities, we shall
specify them. In this paper, ¢ > 0 is a small number, and instead of writing ce,
we shall denote it as e. When it is clear from the context, we shall not distinguish
between scalar, vector-valued, or tensor-valued functions and their function spaces.
If w € R™ and v € R™, then u ® v € R™*" is defined as (u ® v);; = u;v;.

2.1. Function spaces. Let us introduce the definition of the Orlicz spaces and
Sobolev-Orlicz spaces. A convex function G : Rt — R™ is an N-function if G'(t) is
a non-decreasing function, lim; ., G(t)/t = co and lim;_,o G(t)/t = 0. For a given
N-we function, we define a conjugate of G by

G*(t) := sup{st — G(s)}.
5>0
For all ¢ > 0, we uniformly
G*(G'(t)) ~ G(¢t). (2.1)
Let us define Ay(G) by the smallest constant M > 0 satisfying
G(2t) < MG(t) forallt > 0. (2.2)
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If such a M > 0 does not exist, we denote Ag(G) = co. If Ay(G), A2(G*) < oo, we
define the Orlicz space by

LO(Q) = {f € L'(2) / G(|f]) dz < oo},
Q

equipped with the Luxemburg norm

o = i3> 05 [ G ar <.
If Ay(G), Ax(G*) < o0, we have
tG'(t) ~ G(t) and tG"(t) ~ G'(t), (2.3)
and for each € > 0, we have
st <e.G(s)+eG*(t) and st < c.G*(s) +eG(t) (2.4)

for some constant ¢. > 0 depending only on As(G), Ax(G*) and ¢ > 0. By the
convexity of G and (2.2]), there exists a constant ¢ > 0 depending only on As(G)
and Aq(G*) satistying

G(tl + tQ) S CG(tl) + CG(tQ) for all tl,tg Z 0, (25)
A shifted N-function is of G is defined by

t
! R !

G, (t) =G (a + t)ia 7 for a > 0. (2.6)
For the shifted NV function, we have

Gip|(t) < c.Gig|(t) + G p|(|P — QJ), (2.7)
for the details, we refer to [28]. The Sobolev-Orlicz space W1:¢ () is defined as

WhE(Q) = {f e WHH(Q) « |f],|Vf] € LE(2)}

equipped with the norm

I fllwre) = IfllLe@) + IVFllLew)-

Let us present the Poincaré inequality in the setting of the Orlicz space.

Lemma 2.1. Let G be an N-function with Az(G), A2(G*) < oo. Then for all
v € WhE(B,), there exists 0 < 6 < 1 depending only on Aa(G) and Ax(G*), such

that
][BTG(W_;M) dz < c<][BTG(|Vv|)0 dm)l/e. (2.8)
Furthermore, if Z = {x € B, : v(x) = 0} has a positive measure satisfying
2] > colB,| (2.9

for some constant ag € (0,1), then we have

][BTG(@) dx < c(co)(][BrG(Wvl)e dw)l/e. (2.10)

Proof. The proof of (2.8)) can be found in [I4, Theorem 7]. For second term, (2.10)),
we proceed as in [22] Theorem 2.5]. Since v = 0 on Z, we have

|Z|G(@) :/ZG(lv_Sf’)B) dz < /BG(W) dr,  (2.11)
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which implies

G(I(le,. ) < % BTG(|U_§:U)BT

Using the convexity of G and (2.12]), we have

/G('%)dmgc/ G('z}_(:])BT')danc/B G(@)dz

<c(1+ @’“") /BG(W_S’)B) da.

) dz. (2.12)

Inequality (2.10) holds by (2.11)), (2.9) and (2.8). |
From assumptions (1.4)) and (1.5]), the following inequalities are well-known:
min(A% A\P)p(t) < p(At) < max(\?, \P)p(t), (2.13)
min(A2, A7 T )" (t) < o*(At) < max(A2, 7T ) (¢). (2.14)
From inequalities (2.13]), (2.14]) and (2.3)), it is straightforward to check that
o(t) 2 9 (1)
tP < +1 and t* < + 1. 2.15
o) ) 219
From (2.15))1, it follows that
4 t \1/p
(1) < (—) Y 2.16
0= (5 (216)
Now, let us denote
¢'(1Pl)
V(P) = P,
1P|

then the following estimates are known:
(A(z, P) = A(z,Q)) : (P = Q) ~¢"(IP| +|P - Q)P - Qf (2.17)
~ [V(P) = V(Q)P, '

and
|A(z, P) — A(z, Q)| < ¢|p|(IP = Q) ~ ¢"(IP| + [P - Q)|P - Q. (2.18)

We refer to [23] for a proof of the relations above. Furthermore, we have the
following result, since ¢’ (t) is a decreasing function.

Lemma 2.2. For ¢ defined in , we have
¢(IP = Q) < ce|V(P) = V(Q)* + ep(IQ)). (2.19)

Proof. We use ([2.3]), the increasing property of ¢’ (t), Young’s inequality, (2.17) and
decreasing property of ¢”(t) to have

e(IP=Ql) < ep'(|P = QNP - Q|
<cp'(IP = QI+ 1QNIP - Q|
< e”(|P = QI+ QNP - QF +1QIIP - Q)
< c"(IP = QI +1QN)(ce| P — QI +¢€lQP)
< | V(P) = V(Q)I* + 9" (1QD)IQI
< c|V(P) = V(Q)I +eo(IQI)- =
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The subscript “div” implies an additional divergence-free condition. For exam-
ple, we have:

Cooain () = {u € C°(Q) : divu =0 in Q},
Wol,gv(g) ={ue Wol’G(Q) cdivu=0 in Q}.

The subscript “0” with Orlicz spaces and Lebesgue spaces implies that additional
integral zero condition holds, that is,

L) = {f € (@) : [ fdz o),
Q
L§(Q) = {f € LE(Q) : / fdr =0}
Q
2.2. Existence and uniqueness of the solution. The existence and uniqueness

of the solution pairs of (|1.3) shall be studied in this subsection.

Lemma 2.3 (|29, Theorem 2.2]). Let V be a separable reflexive Banach space
and F € V*, the dual space of V. Assume that T' : V. — V* is monotone and
demicontinuous. We further assume that there exists p > 0 such that T'(v)(v) >
F(v) for allv € V with ||[v|| > p. Then there exists u € V satisfying T'(u) = F.

Remark 2.4. By setting V = Wol”(fiv(Q) and using Lemma [2.3] it is a standard

process to show the existence and uniqueness of u € WO1 ¥ () satisfying

(A(x, Du), D) = (¢"(|F|)F, V),

for all & € Wy, (Q) if F € L#(Q). Next, by testing (L3) with the function
u € Wy'f, (), we find

(A(z, Du), Du) = (¢"(|F|) F, Vu).
Using (2.4), (2.17), (2.1) and Korn’s inequality (2.22]), we discover that

1 * 1
[ etipuyde < 5 [ o(9ude+e [ o (" (FDIF) de
1
< g0 [ ovubde+e [ o) do

1
<5 [etpuydste [ e(F) iz,
2 Q Q
which implies
/@(\Du|)dm < c/ o(|P)) da. (2.20)
Q Q

Let us define a linear functional F : W, #(Q) — R by
F(&) = / A(z, Du) : D¢ dx —/ O"(|F|)F : VEdr VE € WP (Q).
Q Q

By [20, Theorem IIL.5.3] and Lemma there exists a unique function = € L§ Q)
satisfying

]—'(f):/ﬂwdivgdx VE € WP (Q).
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2.3. Known results in a John domain. A John domain is a very generalized
domain. In particular, it is well-known that (1/600, R;)-Reifenberg flat domain
is an « John domain for some a = a(R;/diam(Q?)); see [1, 24] for details. Any
two points in a John domain can be connected by a curve that is not too close
to the boundary, see Definition This subsection introduces the definition and
auxiliary results of an o John domain.

Definition 2.5 ([I5]). A domain ©Q C R™ is called an « John domain, for some
a > 0, if for all z,y € ), there exists a rectifiable path ¥ such that

&mwmmnzémmmwm—ﬂ vt € [0, 1],

Here, we assume that 7 is parameterized by its arclength. We also emphasize that
« is a scaling invariant.

For each open set €2, there exist an universal constants k1 = k1 (n) and ko = ka(n)
satisfying 1 < k1 < ko, a positive number N = N(n) > 0 and a family of cubes
{Q;};jen such that

(C1) Q= Ujenk1Q; = gcupjen2k1Q;,
1
(C2) §k1 diam(Q;) < dist(Q;,99Q) < ky diam(Q;),

(C3) > Xomae, < Nxa.
jeN

(2.21)

We refer to this decomposition as a Whitney covering of 2. We present a decom-
position theorem in an « John domain.

Lemma 2.6 (Decomposition Theorem). Let @ C R™ be an o John domain and
1 < g <oo. Let us denote 2 := {W; := 3k1Q;} where Q; is a Whitney covering
of Q. Then there exists a constant k = k(a)) > 0 and a family of continuous linear
operators T; : LE(2) — LE(W;) satisfying the following:

(1) For each i € N, we have |T; f| < ckoxw,M [ almost everywhere, where M f
is a mazimal function of f.
(2) For all f € LE(Q), we have

f=Y_Tif in L{Q).
ieN
This series converges for every permutation of the sequence.
(3) There exists ¢ = c(ko) such that

1 1/q
Ml < (I lawy) < ellfllzocay.
€N
4) If f=0in W, then T;f =0.

Proof. Statements (1)-(3) follow from [I5 Theorem 4.2]. Statement (4) follows
from the construction of T; f in [15], (4.9)-(4.14)], i.e., we have

Tif] < o /Wi ldz) Xt —o,
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Lemma 2.7 ([16, Theorem 4.2]). Let & C R™,n > 2, be a bounded o John domain
and G be an N-function with As(G), Ay(G*) < co. For each f € L§ (), there

exists at least one v € Wol’G(Q) satisfying

divv=f and /G(\Vv|)dw§c/ G(|f]) dz,
Q Q

for some ¢ = c(a, A2(G), A2 (G*)) > 0.

Next, we present Korn’s inequality in the Orlicz spaces whose proof can be found
in [I5] Theorem 6.10, Theorem 6.13].

Lemma 2.8. Let Q2 C R™ be a bounded o John domain and G be an N-function
with Ag(G), Az(G*) < 00. Then for all u € WOI’G(Q)”, we have
/G(|Vu\)dx < c/ G(|Dul) dz, (2.22)
Q Q

; G(|Vu — (Vu)ql)dz < ¢ A G(|Du — (Du)gq|) dz (2.23)

for some ¢ = ¢(a, As(G), Ay(G*)) > 0.
The proof of the next lemma can be found in [16, Lemma 4.3].

Lemma 2.9. Let Q be an o John domain and let G be an N-function satisfying
As(G), Ao(G*) < oo. Then for all m € L§ (Q) there exists a constant c, :=
cx(a, Ao(GQ), Ag(G*) > 0 such that

7l Lo~ (o) < cx sup  (m,divE)
1611416 0y <1
and
1
/G*(|7r|)dx§ sup (/ m divEdr — —/ G(\Vﬂ)dx). (2.24)
@ gewy C(@) 1/ & Jo

Remark 2.10. For the solution pair (u,m) € W1#(Q) x Lg*(ﬂ), we use (2.17)),
(2.4), (2.5) and (2.1)) to have

/Wdivﬁdx:/A(x,Du):Dﬁdm—&—/@”(|F|)F:D§dx
Q Q Q

<e / o/ (|Dul)|DE| d + ¢ / o (|F))| D€ dx

(2.25)
1
<de) [ ¢ (£ 1Du) + (D) do+ = [ olve da
1
<cler) [ D)+ olIF)d+ - [ o(9el) de
for all £ € W'¥(Q). Using and (2:20), we have
1
divéde — — V) dx < Dul)d Fl)d
[ maiveds— = [ oqvenar < [ opu)dae [ o) ds -

<c [ p(F)ds, vEe W),
Q
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Finally, by (2.24]) and (2.26)), we obtain
1
[eahars sw ([ raiveds—— [ o(ve)as)
Q Q Cx JQ

EEW, ¥ (Q)
<e / o(FI) de.
Q

2.4. Technical lemmas. In this subsection, we present auxiliary lemmas. Let us
begin with the following scaling property in the Reifenberg flat domain.

Lemma 2.11 ([13| Lemma 3.1)). Let (u, ) be the solution pair of satisfying
(1.4) and . Suppose that Q satisfies Assumption (z) for some 6 and Ry
and A satisfies Assumption (u) for some § and Ry. For A\ >0, M >0, r >0,
P e R™™ and x,y € €, denote

) = M) gy Frr)
o) = TUEN g T2V ),
Ao, p) = 2AWETEAD) gy 200,

Then the following statements hold:
(1) We have Az (p) = Az(p) and Az (p™) = Az(57).

(2) A satisfies (1.6) with ¢ replaced by @.
(3) Q satisfies Assumption (i) with & and £
(4) A satisfies Assumption (ii) with § and B2,
(5) (a,7) is the solution of
div A(z, Dit) — Vi = div @”(\F\)F) in Q,
divi=0 inQ,
@=0 on 0.

Lemma 2.12 ([9]). Let C and D be a measurable sets with C C D C Q. Assume
that Q is (9, 1)-Reifenberg flat for some small 6 > 0. Furthermore, assume that
following two conditions are satisfied.

First, there exists € > 0 such that

IC N By(z)| < €| By]- (2.27)
Second, for all x € Q and r € (0,1),
|C N B.(z)| > €¢|B.(x)| implies B,(x)N§QCD. (2.28)

Then, there exists Cy := C(n) satisfying

20
| < (1 _5>€|D| = Che[D).

We would like to mention that (J, R)-Reifenberg flat domain has a measure
density condition, see [9]:

1B (y)| 20 \"
sup su < . 2.29
0<T£Ry68 QN B, (y)| ~ (1—6) ( )
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3. REGULARITY OF THE LIMITING SYSTEM UP TO THE BOUNDARY
In this section, we focus on the following limiting equations:
div A(Dw) — Vr, =0 in By,
divw =0 in By, (3.1)
w=0 on {z,=0}NBs,
where
A() = ][B;A(x, ) da.
In this section, we revisit the method outlined in [6], providing additional details
for the sake of completeness. Throughout this section, we shall assume that n €
C>®(Bg) is a cut-off function satisfying
XB4(x) < n(x) < xBe(2) and || + |[Vn| + V| <, (3.2)

for some ¢ = ¢(n) > 0. We denote 0,w for the derivative in the tangential direction.
For x = (2/,2,) € R" ! x R and h € R""! with 0 < |h| < 1/16, we denote the
tangential translation by
fr(@) =f(@&" +han) = f(&' 2n) and  for(z):= f(a'—h,an) = f(2,2n),
and the difference operator by
Atfi=fr—f and ATfi=f —f
and the difference quotient by

_ATf .. _Af
d+f.—W and d”f:= W

For all g € WhY(BY), we have d*g — 0,9 as h — 0 almost everywhere in By .
Moreover, using the difference quotient method presented in [I9, Chapter 5.8.2], we
have

1%l o5, < IVl o (33)
Conversely, if supp(g) C By and |\d+g\|Lq(BS+) < ¢ for all h € R"! satisfying
|h| € (0,1/2), then
HargﬂLq(B;) <ec

For any real-valued functions f, g satisfying supp(f)Usupp(g) C By with 0 < |h| <

1/2, we have
/ dt fgdx :/ fd”gdzx. (3.4)
B Bf

8
During the process of the proof, we occasionally use specific numbers such as

©(1),¢"(0) or ¢*(1). By the definition of ¢ in (1.4) and (1.5]), these constants
depend only on ks, u, p and n. Now, let us begin with the following lemmas.

Lemma 3.1. Let w € WH¥(BY) be a weak solution of (3.1). Then,

/B+ o(n|d* Dwl) dx < c/+n2\d+V(Dw)|2dx+c/+@(\Vw\)das, (3.5)

8 B8 BS

Vwl)
2 < o]
/B+ |70 | dmC/B;rgo*(l) + 1dz. (3.6)

8



12 N. CHO EJDE-2024/47

Proof. 1t is directly checked that the following inequalities hold:

p(nld" Dw|) "< epipu|+ja+pw|(nld” Dw]) + cp(|Dw| + [AT Dw)

¥ o)
INg NG

P Dl +|a+ pw) (NdT Dw|)iP|d* Dw|? + ep(| Dw| + |A Duwl)
e’ (|Dw| + |AT Dw| + n|d* Dw|)n?|d™ Dw|?
+ co(|Dw| + |AT Dw))

< ¢ (|Dw| + |A* Dw|)?|d* Dw[? + ep(|Dw| + |A* Du))

el , . 2 +
< en®|dTV(Dw)|? + cp(|Dw| + |AT Dwl).

Integrating on both sides over By, we have (3.5).
Next, we proceed as in Remark [2.4] and Remark to find

/B+ ©*(|mw]|) dx §c/+4p(\Vw\)dx. (3.7)

8 BS

Using ([2.15)), and (3.7)), we find
/ |7rw|2dm§c/ M—i—ldmﬁc/ M—i—ldm,
B B #*(1) B ¢*(1)
which implies (3.6]). a

Next, we present the anisotropic embedding theorem whose proof can be found
in [4, Theorem 2.1] and [30].

Lemma 3.2. Suppose that F € WYY(B{) and supp(F) C supp(n) N By . Let
0, F € L%(BY) and 0,F € L(BY) for some q1,q2 > 1. Then F € L9 (BF) with
n n—1 1
1+ — = + =
a3 Ua 42

and the inequality

n—1

1]l poa < c(I0rFllim + |Flpn) = (10F |1 + [Fllza)"™,

holds.

3.1. Regularity in tangential direction. This subsection presents the regularity
results in the tangential direction near the boundary.

Proposition 3.3. Suppose that w € W% (BY) is a solution of (3.1) and the
inequality (3.29)) holds. Then

| ewo.pupdrs [ o vowfdze [ e(vehi @)
B B BF

8 8

1
287w2dx<c<”0 ++1>/ Vuwl|) + 1da. 3.9
[ lomatar e (0 + 1) [ evu) (39)
Proof. By testing d~(ny) to the (3.1) and using (3.4)), we find
/ dt A(Dw) : D(n) dx = / T div (d~ () da. (3.10)
B Bf

8 8
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Now, taking 1) = ndTw and using (3.4)), we have

/ P2ldV (Dw)[? dz
.

By

S/ n*dT A(Dw) : d* Dw dx
By

(3.11)
= A(Dw) : d~(2nVn ® dtw) da:—|—/ Twd ™ (20V7 - d*w) dx
B B
=: 11 + 12.
We estimate the first term as
Lo< e / ADw)d~ (V0 & d*w)|dz
- sym
/ (D)) (0 B dtw)|de
() N sym
< / SUvuhy+e [ pla@vn S drw)) da
g ’ sym (3.12)
<o [ oI e [ evaenE ) ds
S

c / C@Te) e [ (DY E d o)) da
BB

By

=S
INELE]

‘. / (V) + ¢ / (| D w]) da
B B

8 8

For the second term I, we use (2.4)), (2.22) and (3.3)) to find that for any £ > 0,

I, < / |Tw||d™ (2nVn - dTw)| dz

\

)

omalydo e [ (V@) do
B

+
B 8

o lmal)do e [ (D@t w))do (313
B

8

8 8

/B
/ ©*(|Twl) dm—i—s/ <p(|d+w|)dx+€/ o(nld™ Dw|) dx
Bf Bf Bf

) dm—l—a/ <p(|Vw|)da?+5/ o(n|d+ D)) dz
BF BF

8 8

Using (3.5} (|3.11|)7 (3.12)) and (3.13)), we have

[ etmlatvul) + it vDw) P ds

8

< c/ 772|d+V(Dw)\2dx+c/ o(|Vw|) dz
Bf Bf

8

gc/ <p(|Vw|)dx+€/ w(n\d*Vwa:c—i—cE/ o () do
Bt + +

8 BS BS
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Now, we take ¢ = 1/2 and then use (3.7)) to find

/ o(nld* Duwl) + 72|d" V(Dw)[? da
.

Bg

< c/ <p(|Vw|)da:+c/ o (7] da
Bt Bt

8 8

< c/ o(|Vw|) dx.
BT

8

Finally, (3.8) holds by (3.14]) and different quotient argument.
Let us present the estimate of 0,m,,. Rewriting (3.10)), we have

/ nd ", div do

B

_ / nd* A(Dw) : Dbde+ | d*A(Dw): Vi ® vde
B B

_ / rod™ (V- ) de,
o

(3.14)

(3.15)

for all ¢ € W, ¥(By). By Lemma there exists ¢ € W,y'¥(By) satisfying

divep = ndtm, — (ndﬂrw)B; and
||v¢||L2(BS+) < c|lnd "y — (77d—~_7"'w)1§;;r ||L2(BS+)'
Testing v to (3.15]) yields
+ + 2
/B; Ind* 7y, — (nd WM)B; |“ dx

_ / nd* A(Dw) : Dt da + / At A(Dw) : Vi @ o da
BY B
- / Twd (V- ) dx
B
=J1+Ja + Js.
By (2.18), Young’s inequality, (1.5) and (3.16)), we have

< [ ng(1Dul+ A" Dupla* Dul| DY da
8

3
" (0)

3

cp”(0)
g

< E/ n*¢" (|Dw| + |A+Dw|)2|d+Dw|2dx—|—5/ |Vo|* dz
By By

IN

/ n2|d+V(Dw)|2da:+e/ |Vo|? da
By By

IN

/ n*|d TV (Dw)|? dx
By

-|-€/B+ Ind* my, — (nd+7rw)BS+ | d.

8

(3.16)

(3.17)

(3.18)
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For the second term, Jo, we use (3.4)), (1.6))2, Young’s inequality, Poincaré inequal-
ity, (3.3), (3.2)), (2.3), (1.5) and (3.16) to find

2l < [ D (9 @) ds

8

<c [ Du)id (Vnew)lde

8

IN

G(Dulfdote [ |4 (Ve 0 da
B,

I s
J

GDuldate [ 0F+ Vo do
8

IN

/ (3.19)
dﬂDwDMMMﬂﬂQEDdx+5/LJV¢Fdx
BS

C

6/19; |Dw|
C

),

PIDue (Duldo e [ (Vi do

IN

< 2
< /B; <p(|Vw|)d:E+5/Bg |V|© dx

/1 O
< ( )/ (p(|vw|)dx+€/ Ind*my — (nd*mw) 51 | da.
+ B 8

By

Similarly, we use Young’s inequality, (3.3)) and Poincaré inequality to find

\J3|Ss/ |d*<v77~w>\2dz+f/ o ? d
B+ I B;

8

C
Ss/ |V¢\2dz+7/ 7| da (3.20)
B € JBf

c
< 6/ Indtm, — (nd+7rw)B+ |2 dx + 7/ |7Tw|2dx.
Bt 8 13 Bg—

8

Combining (3.17) ~ (3.20), we have

/B* Ind* Ty, — (nd*’ww)B; | dx

8
e (0)
g

cp” (0)
g

< / 2 dHV (Dw) [ dz + / p(Vul)de  (3.21)
B B

8 8
C

+ */ |7rw|2da:—|—5/ [nd*m, — (nd+7rw)B+ |2 dx.
€ JB By ®

Taking € = 1/2, the last term in the right hand side of (3.21]) can be absorbed to
the left hand side. Consequently,

/+ Ind*m, — (UdJer)B; | da

Bg

<o) [ laT VD) ds

+c<p"(0)/ @(\Vw|)d:c+c/ |Tw|? da.
B BF

8 8
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By (3.8]), we have

/Bg' Ind*my, — (ﬁdJer)B; |2 dx

(3.22)
gcgo”(())/ cp(|Vw|)d:E+c/ |7 |2 dez.
Bf By
By a direct calculation, it is clear that
/ 02 d 7, |* de < 2/ Indtm, — (77d+77w)3+ ? dx
+ + 8
Bs Be (3.23)

—|—c|/ nd* 1, dm|2.

B+

Using (3.4), Hélder’s inequality (3.3)) and (3.2), we have
|/ nd* 1, dx| = ’/ d™nmy dx| < c/ 70| de. (3.24)

Combining (3.22)), (3.23), (3.24]) and (3.6]), one finds that

1
2dtmy|? de < el " / dr +1
[l e < o0+ 1) ([ evuar 1)
which implies (3.9). O

Remark 3.4. Proceeding as in the Proposition the interior regularity holds

| etlvDuhds+ [ OVDwRde <) [ pl(Vul)de

8 BS BS
where n € C§°(By) with supp(n) CC By . Therefore, VV (Dw) belongs to L% (By ).

Remark 3.5. As a result of Proposition[3.3, we have the following inequalities:

/ o (1]0, V) dz < / SV (Bw)] + V1|0 0]) de
B

!/ \Vnaw\>dx+c/ o (Vo) d

?c/ oIV (00 w)\)dx—l—c/+ (V) da

BS BS

oo d (3.25)
= /B (1D (ndw))) “C/B; (Vo) da

B2)

(12.5)

C

w(n|Dorwl) dx + C/ ) o(|Vw|) dx
BS
(

B,

J
5./

ot

NG

o(|Vw|) dz.

+
8
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3.2. Regularity in the normal direction. For simplicity of notation, we use D

instead of Dw. Rewriting (3.1]) for each « =1,...,n — 1, we have
n
- Z 85¢1a5(D) = 8aﬂ'w a.e. in B;
B=1
From a direct calculation, we have

- Z aij./zlaﬁ(D)agDij = 8a7rw
i,5,8=1
For brevity of notation, let us use
Aja = anjfioma bj = anDnj

n—1

fa = aaﬂ-w + annAan(D)anDnn + Z azjvzlom(D)anng

ij=1

n—1 n—1

+2 ) 0inAap(D)0sDin + Y 0ijAap(D)0sDi;.

i,8=1 1,5,8=1
Since both A and D are symmetric, we find that

n—1

23 Ajabj = fo ae. in Bf

j=1

fora =1,...,n— 1. Multiplying by b, on both side and then taking a summation

from o = 1 to n — 1, we obtain

n—1

A" (IDDIB? <2 Y Ajabjba <|f[b] ae. in BY.

a,j=1
Using the divergence-free condition on w, we have

n—1
OnDpp = 0, 0pwy, = Z OnOjw;.

i=1
From the structural condition (1.6)), we find that
|f] < cl0rmw| + " (ID])]0- V]

Using the divergence-free condition on w again, we have
1 1 n—1

ba = 50nOntwa — 5 > Oadswg.
B=1

Denoting bo = OnOnWwe, it is readily checked that

21b| > |b| — |[VO,w| and |VZw| < ¢(|b| + |VO,w)).

Let us now assume that
[ etvuds <k
B

for some constant K > 1.

(3.26)

(3.27)

(3.28)

(3.29)
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From a direct calculation, we have

629,
P"(IDDIVZwl* "< v (IDD(bI? + [VOrwl?)

= | 116l + e (1D]) [V, w]?

&2
< cl0rmullb] + e (| D)0 Vol [b] + e (ID])| VO, w]?

Young's c
< 1o mwl? + e1/b”

+5wwm@wm+@wmmw
+ (D) VOrwl?

< i\aﬂrwﬁ + 1| V2w

+ " (IDDI0-Vul? + e (D) V*wl’

+e"(|D])| VOrw|?.
Now, we take e2 = 5 to find that

v Cc
2#"(IDDIVZwl* < glaﬂrwﬁ +e1|V2wl? + e (ID)) |0, Vwl*.

Then we use (1.4) and take e; = “72 to obtain

”“2|v2 2 < 7|a |2 + e (|D])|0-Vw|?  ae. in BY. (3.30)

We multiply both sides by 7%, defined as in (3.2]) and then take an integral on the
both side of (3.30]) to find

/ | Viw]? de < — / n?0.7|* dx
By B (3.31)
_|_7/ 20" (|Dw))|0- Vw|? de.

By (3.9) and (3.29), we have

=/, n?0-m|* dw < c(p, ko) K. (3.32)
2 J B
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For the second term, we have
—/ 20" (|Dw|)|0, Vw|? dx

B ()

K2

/ n?10,Vw|* dx
+

BS
s (0
=l )/B+ " (00 V)0, Vw|* de
8

K3

(3.33)
(0
2O oo vul)ar
ka  JB{
(0
<20 [ p(vaas
K/z B
(B-29)
< c(p, ke)K.
From the estimates (3.31]), (3.32)) and (3.33]), one can see to it that
/+ | V2w|? de < c(p, ko) K. (3.34)
B

8

When n > 3, we use the Poincaré-Sobolev inequality, (3.34) and (3.29)), to find

2n n;z
(n|Vwl|)»-2 dx) < c/ 772|Vw|2dx+c/ n?|Vw|? dx
</B; B B (3.35)
< C(/,L, K’Q)K'
Using Holder’s inequality and the fact that K > 1, one has
pn = 2n p(giz)
([ @veh=as) ™ < ([ @ve)®=ar) ©
By By
p (3.36)
< C(Ma HQ)Ké
< C(/J’a KQ)K‘
Using ([2.13), (3.35)) and (3.36)), we have
n—2
([ etvun=sds) "
B
o (3.37)

< C<p(1)(/B+(77|Vw|)f%2 da:+/B+(n|vw|)% dx)

< C(/va KQ)K'
If n = 2, the above inequality holds with ¢ for all 1 < ¢ < co instead of n/(n — 2).

3.3. Conclusion. In this subsection, we conclude the results in the previous sub-
sections.

Theorem 3.6. Suppose that (w,m,) € is a solution pair of (3.1) satisfying (3.29).
Let ¢ > 1 be a constant as in (1.9). Then there exists a constant depending only on
© >0, G and data satisfying

/+ P(|Vw)?dr < e(u, ko, ) K. (3.38)

By
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4. COMPARISON ESTIMATES NEAR THE BOUNDARY

To prove the main theorem, we need comparison estimates between the solution
of the localized original problem and the solutions of the associated homogeneous
problems. The arguments in this section are similar to those in [12]. However, we
have provided detailed explanations to make this document self-contained. Let us
introduce some notation:

Q, = B,(z0) NQ, B;r(:co) = {z € B,(xg) : z,, > 0},
0wy (z0) = By(x0) N0Q, T, :={z € By(xo) : 5, = 0},
where, as usual, B,,(xo) is the ball with center zo € R™ and radius p > 0. We shall

omit a point xg when it is clear from the context. For simplicity, assume that we
are under the following geometric setting:

B;% - QlG C BigN {xn > 7325}

Without further clarification, we assume that the constants in the rest of this article
also depend on R;. We specify issues regarding dependency later in Remark
Let us introduce the localized original equations and the corresponding homoge-
neous equations as follows:
div A(z, Du) — Vr =div (¢"(|F|)F) i nQye,
div=0 in 9167 (41)
u=0 on 0y,Qs,
and
div A(z, Dv) — Vm, =0 in {6,
divv=0 1in Qlﬁ, (42)
v=u on 0.
To introduce the limiting equations, we introduce auxiliary functions. Let ¥s =
Ys5(xy) € C°(RT) be a smooth cut-off function satisfying
(ii) ¥s(zn) =1 on [24,8],
(i) [Ves| < 3,
(iv) ¢s(zn) =0 on [0,4].
Next, we choose & € W, ¥ (Bg) that satisfies

divéy = —Vbs ~’U+][Bgrv¢5 -vdx.

The existence of &, follows from Lemma [2.7] with the estimate

/B+ o(|IVéo|) dz < C/+80(\V¢5 -vl) dr < 0/ ED de.  (4.3)

4 (’ 5
8 By B n{z, <28}

We next define h(z) as h(z) = (0,0,...,— (Vs - v) B+ TnX{z,>0}). From a direct
4 >
calculation, we have
IVh(z)| < ¢|Vps - v] < ¢ %\ (4.4)
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Now, let us introduce the limiting system by
div A(Dw) — Vr, =0 in By,
divw =0 in By, (4.5)
w=1Ysv+& +h onaBg'.
We shall start with the standard estimates for and .
Lemma 4.1. Let (u, ) be a solution of and (v, m,) be the solution of (4.2)).

Then we have the estimate

Foue D) do < ¢ o, p(1Du) de
Proof. We test (4.2]) with u — v to have

A(z,Dv) : Dvdzr = A(xz, Dv) : Dudzx.
Q16 6

By (2.17) and (2.4)), we find that
/ <p(|Dv\)d:c§c€/ @(|Du|)dx+s/ o(|Dv]) da.
QIG Qlﬁ

Q16

Taking € = %7 we complete our proof. ([l

Next we present a higher integrability result of ¢(|Vv|) near the boundary. We
are motivated by the arguments presented in [I0, Theorem 5.5].

Lemma 4.2. Let (v,7,) be the solution of (4.2)). Then there exists 0 > 1 such that
1/6
(fowr(velas) " < fae(vel)aa.

Proof. Let us extend v to be zero on Bjg \ Q16 and still denote it as v. We intend
to show

1/o
Fontane(19e o < o fa,e(1Tee do) " da (16)

holds for all By,(z) C Bs and for some o € (0,1). Once inequality holds, we
use Gerhings Lemma, |21, Proposition V.1.1] to complete our proof.

First, we consider interior case Ba,(x¢) CC 2s. Now choose a cut-off function
n € C§°(Bzy) where n =1 on B, and |Vn| < ¢/p. We define

f(.’IJ) = pnp—lvn : (U - (U)BQP(IO)) - ][B2p($o)pnp_lvn : (U - (U>B2p(fro)) dx
= pnp_lvn . ('U - (U)sz(fo))'
Using that 7 = 0 on 0By, (x0), divv = 0 and Gauss-Green theorem, we have
/ pnP IV - (v — (U)BQP(IO)) dx = / div(nP (v — (U)B2p(m0))) dr = 0.
Bz (o) B2y (o)
(4.7)
By Lemma there exists ¢ € Wy*?(Ba,(20)) satisfying dive = f in Ba, (o) and

/ oIVl de < c / o(|f) da
B2p($0)

B2p($0)

B (4.8)
cof Oy,
Ba,(z0) p
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Testing (4.2) with & =n(v — (v)B,, (x)) — ¥ gives
/ n? A(z, Dv) : Dvdx
Q6
B sys
— Az, Dv) : (pP~'Vn & (v— (V) Bap (o)) — DY) da.

Q16

Now, we use (2.17)), (2.18]), (2.4) and (4.8) to find

/ (| Du]) dx
Bp(-'l"())

< c/ nP A(z, Dv) : Dvdz
B2y (z0)

sys

= —c/ ( )A(:v,Dv) C(pnPTIVn @ (v — (V) By (o)) — D) dz
ng o

<c[ gl
Ba, (x0)

v = (9) By, (o)
e/ cp(|Dv|)d:r+cg/ o CO) + (V) da
B2y (z0) B2y (z0) p
)

v— (v
s ppiarte [ oMl
Bav (o) Bay (o) p

)(|v—(vLBQp(xo)| +|V¢|) L

IN

Taking € = 3 and using (2.8)), we have

JZB o(|D l v — (U)B2p 20)]
p(0) (| U|)d.r <c sz(z0)§0<—()) i

< o frstanel1ol) ds)

Next consider the case when Ba,(z0) Q. If By ,(z0) CC (s, then we proceed
as in the interior case. If Bz (xo) ¢ s, we may further assume thatB,(zo) ¢
Bs \ Q5. Otherwise, (4.6) holds, and there is nothing to show. Because of (2.29)),
we can guarantee that

[B2,((#0)) \ O

Bap(ao)] =

Now, we take pg < m, where ko = ky(n) is a universal constant in
(2:21). We assume that 0 < p < po. If Ba,(zo) N W; # 0 for some W; € 20,
then dist(z,W;) < 4po. By (C2)-(2:21)), diam(W;) < 4poks. Therefore for all
1 € Byy(xo) and z9 € W;, we have dist(z1,22) < 16(1 + k2)po < ﬁ Thus,
W; C Bi(zg) and W; C Bjs. Since W; C , it is clear that W; C Q4. Note that
the choice of pg only depends on n. Now, we denote

f(x) =ppP~ Vv - ][szuo)pn”‘lvn vde =pnP~'Vn v in Byy(z0) N Qs.

We extend f(z) = 0 in Ba,(x¢) \ Qs. Proceeding as in ([4.7), we have f € L§ ().
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Using Lemma [2.6}(2) and Lemma [2.6}(3), we can decompose f = > T; f, where
T:f € L3(W;) and

1
E||f||%2(sz) <D NTf 1wy < ellf 1720 (4.10)
ieN
Now, for each T; f, we choose 1); € VVO1 P(W;) satisfying
divy;, =T;f inW,; and HwZHWl B( < CHT f||Lp(W) (4.11)

By Lemma (4), W; N By, = 0 implies T;f = 0 and again by (4.11] -, we have
1; = 0. After prolongation by zero outside W;, we may assume that ; € VVO1 P(Q12)
from the choice of py, W; N By, # 0 implies W; C Qi, if not ¢, = 0. Let
P = Zg‘eN ;. By (4.11) and (4.10), the summation converges and therefore
¥ € WyP(Qy2). Moreover, we have

diviy = diVZl/Ji = ZdiV1/Ji = ZTlf =7

€N €N €N

HV?N@(Q) < Z ||v¢zHLp(W) = CZ ”TfHLp(W) = CHfHLp(le)

€N i€EN

The rigorous verification of these inequalities can be found in [I5, Theorem 5.2].
So we can choose £ = nPv — 9 as a test function, to find

/ o(|Dv|) dx < c/ n? A(z, Dv) : Dvdx
By(wo)

B2p(x0)

= —c/ A(z, Dv) : (pnP~tVn ® v D) dx
BQp(mO)

<[ o) (' oy |v¢|)
BZP(ZU)

[ pupare [ o) s pvunar
Ba,(z0) B2y (z0) P

Taking € = 1/2 and using (4.8]) and (2.10]), we find that

1/o

FouwoeDude < ][szuw(' o <o fao(velran). @)
To conclude, we use ([4.9) for interior case and use (4.12), to find

][Bpm)souw) do<ec fBQp@o)so(wv — (V) eol) o+ e (V) )

< ¢ e #l1D0 = (DO)s, o i+ 0 (V)5 0,))

C][sz(mo)¢(|DU|) dz + cp ((VU)BQP(IO))

(L1907 )+ o (Vo) )

Let ®(t) := ¢(t)” where o € (0,1) is a small number defined in Lemma [2.1] which
is chosen so that that ®(¢) is also an N-function. Then by the Jensen’s inequality,

90(][32;)(900)|vv‘ d‘T) <o (I)_l(][Bb(ﬂﬁo)(I)('VUD d:C)

IN

IN

IN
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= (foaanetvel) @)’

Combining the last two inequalities, we have (4.6) and complete our proof. (]

Lemma 4.3. Let (v,m,) be the solution of (4.2)) and (w,m,) be the solution of
(4.5). We shall extend w by zero on g\ Bg and still denote it as w. Then, we

have
/ o(|Dw|) dz §c/ gp(\Dv|)dx+c/ o(|V|) dz. (4.13)
Qs Q6 QieN{z, <20}

Proof. We may assume that w is also defined on {lg by the zero extension. Test
(4.5) with w — 1sv — &y — h to have the equality

A(Dw) : Dwdx = / A(Dw) : D(3sv + D&y + Dh) dx.
Bf Bf

We use (2.17)), properties of ¢, Young’s inequality, (1.6), (4.3) and (4.4) to discover

that

+
mb?\\_\
pN

(Dw) : D& dx Jr/ A(Dw) : Dhdz,
B (4.14)
< E/QS o(|Dw|) dz + c. /Qg o(|Dv|) dz + c. /QS o(jv ® Vips|) do

e /Q (Vo] dr + . /stawh)dx

< wipuharte [ pqpeparte [
s Qs QsN{z, <26}

Consequently, after taking e = 1/2, we have

/ o(|Dwl) dx < c/ <p(|Dv|)dx—|—c/ gp(m) dz. (4.15)
Qg Qg Qgﬁ{l’n§25} (5

We need to estimate the last term. Using Jensen’s inequality, we have the following

inequalities
v
/ go( ‘5|) dx
Qgﬂ{wnSQ(S}

(X[
/frlsﬂ{xn<2§} Z
/ @(c ][_235|Vv(x', 0l dy) dz,, dz’, (4.16)

Qsn{z, <26}
/ Frae1Voa' ) dyda,do'
Qsn{z, <26}

/ P(IV0]) da
QsN{z, <26}

M) dx.

‘ dy) dx,dz’,

IN

IA
o

IA
o
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By (4.15) and (4.16]), the required estimate (4.13) follows. O

Lemma 4.4. Let (u,7) be a solution of (4.1) and (w, ) be the of solution of
(4.5), we then discover

Fawo(Vul)do < ¢ o, 019l da.
Proof. By (2.22) and similar calculation as in (4.14)), we see that
Fouo(vul)da

< c][W(ww — V(v + & + b)) do + c][gzggo(w(%v + &+ R)|) da,
(4.17)

<e ][sto(ww — D(ehsv + 6o + ) da + ¢ fﬂsw(lv(%v &+ b)) da,

0]

< cfgwcp(|Vv|) dr + C][an{xnggé}go(?) d.
Following the same procedure by , we have
][me{mngg(;}np(%') dr < cfgwcp(|Vv|) dx. (4.18)
By , Lemma and we achieve
][Qggo(\VvD dz < c][gzggo(\Vv — Vul) dx + cfgscp(|Vu|) dz,

< c][gggo(\Dv—Du|)dw+c][98gp(|Vu|)dw, (4.19)

< Cf915@(‘vu‘) dz.

Combining (4.17), (4.18) and(4.19)), the lemma is proved. O

The following lemma states the regularity of the limiting system near the bound-
ary, which is the result of Theorem [3.6

Lemma 4.5. Let (u, ) be the solution of (4.1) with

wi(p(|Vu|)da: < cK.
Let (w, ) be the solution of (4.5)). For q, as in (1.9), we have
Fape(Vul)ds < c(u ) K7

For the rest of the paper, we extend (w, 7, ), the solution pair of (4.5)), to be zero
on Qg \ By, and we still denote it as (w,m,) for simplicity of the notation. Since
a Reifenberg flat domain is an extension domain, we have (w,m,) € W1H%(Bg) x
L¥"(Bg). Also, we shall assume that K > 1.

Lemma 4.6. Suppose that Q is a (8, Ry)-Reifenberg flat domain, (v, m,) is the weak
solution of (4.2) and the following inequalities hold:

][Qlew(\VuD de <K and ][QIGB(A, Big) dz < 6. (4.20)



26 N. CHO EJDE-2024/47

Then for any 0 < € < 1, there exists a sufficiently small § = 0(e, data, Ry) > 0 such
that if (w,my,) is the weak solution of (4.5), then we have

][98|V(Dw) —V(Dv)]?dr < eK. (4.21)
Proof. We first test w — (¢¥sv + & + h) with and . Then, we obtain
0= fQS (A(Dw) — A(z, Dv)) : D(w — (Ysv + & + h)) da.
From a direct calculation, we find that

fQS (A(Dw) — A(Dv)) : (Dw — Dv) dz
_ ][QS (A(Dw) — A(Dv)) : D((tbs — 1)) dx
+ fou (ADw) = D) s D& + 1) da

— ][Qs (A(Dv) — A(z, Dv)) : D(w — thsv — & — h) dz
=1+ 11+ 1I1I.
With the help of Lemma [2.17} one has
1

C

][98 |V(Dw) — V(Dv)|[*de < T+ 11+ 1I11.
For the first term 7, we have
I= ][ (A(Dw) — A(Dv)) : D((5 — 1)v) da,
= ]lﬂ (A(Dw) = A(Dv)) : (s — 1) Vo + v ® V) da.

By Young’s inequality, properties of ¢ and (|1.6)) we find that

€1 |v]

< — o(|Vo|) + p(—) dx,
19| Jogniz, <261 98| Jogn{z, <26} (Ve (5)

for some €; > 0. Applying (4.16), Lemma Lemma and (4.20) in order

provides

Ce,

o(|Dw|) dx +

I< K+ ~a

o(|Vv|) dz.
19| Jagniz, <261 (Ve

For the second term, we apply (2.4), (4.3), (4.4) and Jensen’s inequality to obtain
11 < 1 fao(IDol) + ol|Dul) d + co, fapllo- Toul) do,
and then we follow the same process as in estimate of I, to derive

Ce
IT<egK+— (V) dx.
98| Jogn{z, <26}

From Definition [T.2] and properties of 1, we have

117 < ][Qsﬁ(A, Bg)(p’(|Dv|)|Dw —Dv—D((Ws —1)v+& + h)| dz,
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< ][Qsﬁut, Bs)¢'(IVo)) (V| + [Vo]) da

Cc

T B(A, B)e! (Vo)) (IVel + | 5] + Vol + | VhI) d

= III, + I11,.

Using Young’s inequality and (2.17)), we obtain
1L < e, ][985(,4, Be)o(|Vo]) dz + €1 ][98/3(,47 By)o(|Vaw]) da.

Using Hoélder’s inequality, (1.7), Lemma (4.20), Lemma Lemma and

Assumption [1.2] we have

6—1

0-1 1/0
115 < ][QSB(A, By dr) © ][gswﬂwf ar) " +ak.
S (0615 + El)K.
For the second term, we apply Young’s inequality, (4.4)), (4.3) and (1.7) to obtain

111, < o(|Vv]) dx. (4.22)

|QB| Qgﬁ{mn§26}

Combining the previous inequalities, we derive

][98|V(Dw) —V(Dv)|*dx < (e; + 6)K + _—— e(|Vv|) dz,
|QS| Qgﬁ{z,LSQKs}
. (4.23)
<20K + — o(|Vvl]) dx
by taking e; = §. We are left to show that
/ o(Vol) dz
Qgﬂ{wn§25}
can be sufficiently small if we choose § > 0 small enough.
Using Lemma [4.2] Lemma [£.4] and Holder’s inequality, we discover that
/ P(IV0]) da
QsN{z, <25}
1/6 01
<(/ o(el)’ dz) 05 1 < 28)] T
Qsn{z, <26} (4.24)

< C6%F |By|e / (V) d,

8

< 67 | Bs|°K,

for some constant ¢ = ¢(0, n). We first combine (4.23]) and (4.24]), then choose § > 0
small enough depending only on € > 0 and data to reach (4.21)). a

Lemma 4.7. Suppose that (u,7) is a weak solution of (4.1) with the following
normalization condition and the small BMO condition:

wiap(|Vu|) de <K and ][Qwﬁ(/l, Big)dr <6 (4.25)
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where Q is a (§, Ry)-Reifenberg flat domain. Then, for any 0 < e < 1, there exists
a sufficiently small 6 = 0(e, data, Ry) > 0 such that if (w,my) is the weak solution

of (4.5)), we have
][QS\V(DU) —V(Dw)|[*dz < €K + ¢, ][916¢(\F\) dx. (4.26)
Proof. We subtract (4.2)) from (4.1]) to obtain the following:
div(A(z, Du) — A(z, Dv)) — V(r — m,) = div(¢”(|F|)F) in Qs

div (u—v) =0 in Qg,
u—v=0 on 0.

We test u — v with previous system of equation, then use (2.17)), (2.4)), (4.25) and
Lemma to have

V(D V(DO dr < ey o olIFI) dr + e foe(Dul
fs fo fs o

<cq ][gmwndwem

for any ¢; > 0. By Lemma there exists 0(es,data) > 0 and the solution of
(), (w, m) satisfying

fQSW(Dw) —V(Dv)]*dr < e2K. (4.28)

provided that Q is a (d, R)-Reifenberg flat for such §. Combining (4.27)) and (4.28]),

we have
][Q8|V(Du) —V(Dw)|*dx
< C o |V(Du) — V(Dv)? dz + C o, |V (Dv) — V(Dw)|? dz,
< C +a,|V(Du) — V(D)2 dx + C 4, |V(Dv) — V(Dw)|? dz,
<Coy fap(Fldo+ (@ + ),

By taking e; = €3 = § > 0, we obtain (4.26) with some small § = d(data,e) > 0. O

To establish a global Calderén-Zygmund estimate, we need a comparison es-
timate of full gradients of the localized original solution, (4.1)), and the limiting
system, (4.5]), rather than just the symmetric gradient.

Lemma 4.8. Under the assumptions in Lemma[{.7, we have
fgscp(|Vu—Vw|)d:E <eK +c. wi(p(|F|)d:1c. (4.29)
Proof. By (2.22]), we find that

Foue(i9u - ul)do

< c][gsgo(Wu — Vu|)dx + c][ggw(WU — V(w —sv — & — h)|) dx
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+e fanp(V((s = Dot o+ W) do

< C][Q16@(|Du — Du|)da + c][98<p(|Dv — D(w+ v + o + h)|) da
e a9 (s = Do+ &+ ) da

< c][Qw(pﬂDu — Dv|)dz + c][gggoﬂDv — Dw)|) dx

be ][Qgsouv«wé — v+ & + b)) da
= I+ I1T+1II.

Now, using (2.19)), (4.25) and (4.27), we have following estimates

I<ec. wiW(Du) - V(Dv)|2 dx + 5][916@(\Du|) dx

< (cee1 +e)K +ce, ][916¢(|F|) dx.
We choose €1 > 0 small enough so that c.e; < £ we have
I <eK+ec. ][ngp(\F\)d:c.
Similarly, we use (2.19)), (4.21)), Lemma and to discover
II<c. ]198|V(Dv) —V(Dw)*dx + EJZQS@(|DU|) dx

<(cee1+e)K < 2K

after choosing €7 > 0 small enough so that c.e; < . For the last term 111, we
proceed as in (4.22) to discover

¢ E23)

1171 < — o(|Vu])de < eK.
|Qg| Qsﬂ{xn§26}
Combining estimates for I, I1 and I11, we have (4.29)). O

Remark 4.9. (Dependency of the constants and the regularity of the coefficient)
We want to end this section with an important issue regarding the dependency of
the constant. The constants in Lemma [2.7] and Lemma [2.8] depend on the domain
Q and §, and again, the choice of § depends the on constants ¢ in Lemma [2.7]
and Lemma [2.8] This implies that there is a circular reasoning in choosing §.
As a consequence, the class of the coefficient of A(-, P) is restricted, and even a
continuous coefficient may not be allowed. Thus we need an additional assumption
on the coefficient.

Note that if 2 is a (J, R)-Reifenberg flat domain, the constants in Lemma
and Lemma [2.8] are decreasing functions of § and increasing functions on R. Now,
to overcome such a dependency issue in our Assumption (1) and Assumption
[1.2}(ii) have different radii, Ry and R;. Then § may depend on R; but does not
dependent on Ry. After § is chosen, we choose Ry small enough to satisfy . In
this way, we can include the wider class of the coefficients of A(+, P). This argument
follows from [18, Remark 2.3].
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Remark 4.10. For simplicity, we only presented estimates near the boundary.
With the same procedure, we have similar results.

Suppose that Big CC Q and u € Wol,’(‘ﬁv(fl) is a solution of (1.3). We then
consider the following equations:

div A(z, Dv) — Vr, =0 in Big,
dive =0 in BI16,
v=u on 0B,
and
div A(Dw) — Vr, =0 in B,
divw =0 in By,
w=wv on 0Bxs.
Then there exists 0 = d(e, data) such that if

][BMQOOVU'D dr < K and Bwﬁ(-A, 316) dr <6
holds, then
[ el19u=Vul)ds < ek + o o 1P do fpp(Vuldo < el ) K

for g defined in (1.9).
5. PROOF OF THE MAIN THEOREM

The following lemmas were originally introduced in [II, Lemma 2.7] and [9].
Since we are considering a very general system with a pressure term, we do not have
a Lipschitz regularity of the limiting equations, . Moreover, the equations only
depend on the symmetric gradient, which makes the problem harder. Thus, we
need some modification. The comparison estimate in Section 4 shall carry out the
proof of the main theorem, the scaling argument, Lemma and a Vitali-type
covering lemma, Lemma [2.12| To do this, let us begin with the definition of the
Hardy-Littlewood maximal function, which is defined below:

Mmm:mﬁmmm
rxeB

where B represents a ball. We drop out the index 2 when it is clearly from the
context.
Now let us define the sets

C={yeQ: M(p(|Vul)) > K'},
D={ycQ: Mp(Vul)) > K yu{z e Q: M(o(|F|) > K"}
We need to verify that assumptions of Lemma [2.12] are satisfied for C and D.
Lemma 5.1. Let (u,m) € Wol”:fiv(Q) x L¥"(Q) be a solution of and 0 < e < 1.
Then there exists 6 = d(data,e) > 0 so that if Q and A satisfies Assumption

with some Ry > Ry = 128, there are some large number K = K(data,e, Ry) > 1
and some small number o = o(data, €) > 0 such that the following holds:

IC N B, (2)] > €|B.(z)] implies B,.(2)NQ CD
whenever z € Q and 0 < r < 1.
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Proof. We prove this lemma by contradiction. If the statement is not true, we have

|IC N B.(2)| > €|B-(2)] (5.1)
and (B, (2) Q) \ D # 0. Then one can find a point z; € (B,(z) NQ) \ D such that
M(p(IVul))(z1) < K and - M(p(|F])) (1) < oK' (5.2)

Let M*(|f]) := M(XB,,(-)nlf]). Then by (5.2)), we have
M ((|Vul)) (y) < max {M* (2(|Vul)) (v), 128”} for all y € B (2).  (5.3)

We need to consider two cases: the interior case and the boundary case.
Assume first that Big.(2) C Q. As 21 € Big,(2), we have

Jrumee(Tubde <K and - fn, elF)de <oKL (5
We then define the functions
i(z) = u(ermc), s+ ra) = 7r(z+rx),
r r

Az, P) = A(z +rz,P), F(z)=F(y+rz), @) =e(t).

Then by Lemma (@1, 7) is a solution of (1.3) with @, 7, F, A and @ replacing
u, 7, ) A and ¢. Then, by (5.4]), we have

wa@(\vaDd:c <K,

Then one can see that we are under the hypotheses of Remark along with the
scaling invariant property. We discover that there exists a § = 0(€, Ry, data) such
that if A is (0, 128)-vanishing, then we can find w € Wol’(fiV(BwT) satisfying

][387 o(IVu — Vul|) de < (EK* ][Bla,,,(z)¢(|F|)d$) < (€4 ceo) K,
(5.5)
][B4r(z><ﬁ(|Vw|)‘7dx <K' (5.6)

for small €, 0 > 0, which shall be determined precisely in Remark For K > 128",
we have

{y € Br(2) : M(p(|Vul)) > K'}|

2l € Bo(2): M (p(IVal) > K'Y

< [{u € Brle) 0" (@190 = Tu) + 219D > .
<HyeB M*((|Vu — Vuw)) TH
+HyeBr(z):M*(¢(\va) H T IT.

By weak (1,1) estimate and (5.5)), we obtain

I< i /Sr(z) o(|Vu — Vwl|) dz < %(€+0g0)|BT|, (5.7)
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where Cy = Cy(data). We use Chebysebev inequality, strong (g, q) estimates and

(5.4) to discover that
q K q
11 < ]{ € B,(2): M ( (vu)” > (23p> il
= Kai |Vw|)>
ne (5.8)

< — o(|Vw|)? dz,

q B4T(Z)
) Cs(p, )
< 07 | Byl

Note that the constant C's depends only on data, p and q.

Combining (5.7) and (5.8)), one obtains
Co, Cs
< <|(—= ¢ e < .
CAB) < T+11 < (S22 +Ceo) + 25 ) 1Bo| < e|By, (5.9)

by taking K > 128" large enough and o, > 0 small enough; see below Remark

Thus we obtain a contradiction to ([5.1)).

Now, let us consider the boundary case when B, ¢ €. First, we choose yo €
00 N Bigr(2) and by the definition of (4, 128)-Reifenberg flatness of 2, there exists
a new coordinate, (Z1,Z2,...,Z,), depending on yo and r, so that origin is y; :=
Yo + 12877y for some inward unit vector 7ig. Also, we have

By, C Qasy C {Z, > —256r6}
and

][legrﬁ(-Aa BIQST) dz < 6.
Since 0 < § < 1/32, from a direct calculation, we have that z; € Qg4,. Thus by

(5.2), we have

| 128r| n rri—
oo s9ude < 22 Lo oVl do < 25
‘ 64r|
Let us consider the functions
_ o uly 4 4ra) 7y 4 4rd)
U(l‘) - 2”(4’]") ’ 7T(.’I/') - Ar ’
. . F 4rE
A(#,P) = A(y, + 4r3,2"P), F(z) = W

As in the interior case, one can see that we are under the hypotheses of Lemma
Again, we discover that there exists a § = §(€, Ry, data) such that if A and Q
satisfies Assumption with § and R = 128, then we can find w € Wol)’c‘ﬁv(ﬂgr)
satisfying for a given € > 0,

fQSTgDﬂVU — Vwl|)di <eK! 4 ¢, fQIGT@(|F|) di (5.10)
fQS7,§0(|VU}|)qdi‘ <cK*™ ' and ][981,<p(|Vw|) dz < cK 1. (5.11)

Combining (5.10) and (5.4), one can see that

][924T<p(|Vu — Vwl|)dz < (€—|— ce fQ64T@(‘F‘) d:c) < (€—|— Cgo’)Ki_l. (5.12)
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Once we obtain ([5.11)) and (5.12), we follow similar steps done in the interior case
p-1)

to reach a contradiction to (5.1 ([

Remark 5.2. To prove our main result, Theorem we need to specify the
constants K, € and 0. We want to mention that Cy and Cj differ in the interior
case and the boundary case. We shall choose a bigger one and then choose

2Ca - -
K= 2[%]1/‘1. (5.13)
After that, we choose € small enough so that
K >128" and CieK9=21C e~ 7(205)77 < 1. (5.14)
It is possible since 1 < g < . Then choose € > 0 and ¢ > 0 small enough to obtain
C}?(e+ca) % (5.15)
Combining ([5.13)) and ( -, we have
C’g C

which is (5.9). Here, we remark that C7, Cy and C5 depend only on data, q, Ry, i, 2
and €, so are K, 0, €.

We are now in a position to prove our main theorem.

Proof of Theorem[1.3. We intend to apply Lemma For a non-negative func-
tion g, we denote a upper level function by

Uy(t) = [{z € @ M(lg]) > t}]

In view of (5.7), (5.8) and Remark we obtain |C N By(z)| < €|By|, which
implies (2.27)). On the otherhand one can obtain 8)) by Lemma Therefore,
according to Lemma 2] and the fact that v = 1, we have

Up(vu)) (K7) < Clﬁ( o(vul) (K1) +U¢(\F|)(0K”*1)),

As a consequence, we have

Usp(jvu)) (K )<Clﬁ< (| vul) (K H%(\FD(UKH)),

< (C16) Us(rvup ( +Z Cre) (Uprp (oK),
and

Z K Up(vup (K')

(K9C1e)U, (v (1 +ZZK(I(1 ]) chl‘f) o)) (0K j)?

=1 5=1

Mg

ﬁ
Il
-

oo

(K1C1) Upqzuy (1) + Y (K?Cre)’ ZinUsa<|F|>(0Ki)-

Jj=1 =]

[N

ﬁ
Il
-
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(5.14), we have Y ;2 (C1eK9)" < oo and by the classical measure theory, we

can compute as follows:

S = Zinu¢(|v“|)(K"),

=1
< C|Q| + CZinuSDUF\) (O’Ki)
i=J

< Q] —|—c/ || de.
Q

Next, we have

/ o(|Vu|)lde < c|Q|+ S < c/ |F|?7 4+ 1dx.
Q Q

By (2.22)), we have

/ o(|Du)?dx < c/ |F|9 4+ 1dx
Q Q

for a constant ¢ = c(kqg, 1, q,data). We use Lemma with G*(t) = ¢*(¢)? and
following the procedure of Remark

/ o ()i de < / P(IVul)? + (| FI) do < ¢ / S(F)T +1dz
Q Q Q

where ¢ = ¢(ke, p, ¢, data), which completes the proof. O
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