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Abstract

A method for the generation of quasi-isometric boundary-fitted curvi-
linear coordinates for arbitrary domains is developed on the basis of the
quasi-isometric mappings theory and conformal representation of spher-
ical and hyperbolic geometries. A one-parameter family of Riemannian
metrics with some attractive invariant properties is analytically described.
We construct the quasi-isometric mapping between the regular computa-
tion domain R and a given physical domain D that is conformal with
respect to the unique metric from the proposed one-parameter class. The
identification process of the unknown parameter takes into account the
high parametric sensitivity of metrics to the parameter. For this purpose
we use a new technique for finding the geodesic quadrangle with given an-
gles and a conformal module on the surface of constant curvature, which
makes the method more robust. The method allows more direct control
of the grid cells size and angle over the field as the grid is refined. Illus-
trations of this technique are presented for the case of one-element airfoil
and several test domains.

1 Introduction

1.1 Quasi-isometric grids

The generation of a 2-D quasi-isometric grids in a given physical region D (a
curvilinear quadrangle with interior angles βi, 0 < βi < π, i = 1, . . . , 4, and a
conformal modulusM) may be considered as a problem of construction of the
mapping

X = X(ξ, η), Y = Y (ξ, η) (1.1)

between points (ξ, η) of the computational region

R = {(ξ, η) : 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1}
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56 Harmonic Parameterization of Geodesic Quadrangles

and points (X,Y ) ∈ D such that (1.1) is the unique solution of the following
boundary value problem (BVP): given a quasi-isometric mapping between ∂R
and ∂D to extend the mapping inside R as a quasi-isometric solution of the
appropriate Beltrami system

√
g11(ξ, η, r)g22(ξ, η, r) − g212(ξ, η, r) Xξ = −g12(ξ, η, r) Yξ + g11(ξ, η, r) Yη,

(1.2)√
g11(ξ, η, r)g22(ξ, η, r) − g212(ξ, η, r) Xη = −g22(ξ, η, r) Yξ + g12(ξ, η, r) Yη.

The coefficients of the system (1.2) contain one unknown parameter r, restricted
to the interval (rmin, rmax), which is to be found in the process of solving the
BVP.

In the capacity of the boundary conditions in this BVP we can also choose
so-called ”free” conditions, under which grid points on the boundary of the
physical region D are not fixed and can move along ∂D.
As it is shown in [3], the linear elliptic system (1.2) can be treated as a

condition for conformality of the mapping (1.1) with respect to the following
Riemmanian metric defined on R:

ds2 = g11(ξ, η, r)dξ
2 + 2g12(ξ, η, r)dξdη + g22(ξ, η, r)dη

2. (1.3)

Suppose the functions gik(ξ, η, r) satisfy the inequality

g11(ξ, η, r) + g22(ξ, η, r) ≤ Q
√
g11(ξ, η, r)g22(ξ, η, r) − g212(ξ, η, r), (1.4)

and are continuously differentiable in R. Then the mapping (1.1) has non-
vanishing Jacobian in R and is called Q-quasiconformal. That means that the
singular values ν1 = ν1(ξ, η) and ν2 = ν2(ξ, η) of the matrix

J =

[
Xξ Xη
Yξ Yη

]
,

being enumerated in decreasing order, satisfy the condition ν1(ξ, η)/ν2(ξ, η) ≤ Q
for all (ξ, η) ∈ R. The least possible number Q with such property is called the
coefficient of quasi-conformality of the mapping (1.1) in the domain R. Clearly,
a 1-quasiconformal mapping is conformal.

Note that the angle α between the grid lines is defined by the formula cosα =
g12(g11g22)

−1/2, and the ratio of lengths of cell sides is (g22/g11)
1/2. Thus,

since every solution of the Beltrami system (1.2) generates a metric conformally
equivalent to (1.3), we are able to control the grid angle and the cell sides ratio
by defining the coefficients gik of the metric (1.3) manually. In order to have
better control of the size of cells as the grid is refined, we want to define gik
in such a way that the solution of the corresponding Beltrami system (1.2) is
µ-quasi-isometric.
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• A mapping (1.1) is called µ-quasi-isometric if there exists a constant µ ∈
[1,∞) such that

µ = max

{
sup

(ξ,η)∈R
ν1(ξ, η), sup

(ξ,η)∈R

1

ν2(ξ, η)

}
.

The constant µ is called the coefficient of quasi-isometricity of the mapping
(1.1) in the domain R.

Under a µ-quasi-isometric mapping an infinitesimal square will go over into
a parallelogram and the ratio of the lengths of any side of the parallelogram and
a corresponding side of the square will be bounded by 1/µ and µ. If µ = 1 then
(1.1) is an isometric mapping. It is clear that µ-quasi-isometric mapping will
also be µ2-quasiconformal. Note that the relation (1.4) and the system (1.2)
imply that the mapping (1.1) is quasi-isometric in any sub-region of R. As a
rule a quasiconformal mapping is not quasi-isometric, that is, function ν1(ξ, η)
or 1/ν2(ξ, η) is not bounded.
Nevertheless use of quasiconformal mappings combined with conditions of

existence of bounded derivative of a holomorphic function provides the key to
the generation of quasi-isometric coordinate systems.
Several attempts were made in that direction. If we put g11 = 1/r, g12 = 0,

g22 = r, we get the quasi-conformal grid generation problem posed by Godunov
and Prokopov in [11, 13]. The development of the Godunov-Prokopov method
is precisely described in [13] and [24]. In a recent paper Khamayseh and Mastin
[17] have extended this method to surface grid generation. For various concepts
from tensor analysis and differential geometry applicable to the generation of
curvilinear coordinate systems we refer to [25], [9] and [23].
The orthogonal mapping technique has been investigated in recent works

[16] and [8], [21] from different points of view.
In [1] Belinsky et. al. proposed to consider the special class of quasi-conformal

mappings by defining g11 = e
2q(ξ), g22 = e

2p(η), g12 =
√
g11
√
g22 cos[β(η)−α(ξ)].

In other words, the proposed metric contained four arbitrary functions of either
ξ or η. This metric was obtained as a result of the Chebyshev mapping R onto
a plain curvilinear parallelogram. In a similar way in the paper [12] for the pur-
pose of construction of structured multi-block quasi-conformal grids in complex
domains it was proposed to use a certain class of functions gij depending on ξ, η
and an unknown vector of parameters r. The metric was obtained by mapping
a computational domain that consisted of several squares onto a figure made of
several parallelograms.
In order to obtain the unique quasi-isometric solution to the grid generation

problem, a special one-parameter family of metrics was closely studied by one of
author in papers [5, 6]. In a later paper by Godunov et. al. [10] it was proposed
to study a five-parameter family of metrics.
The main goal of the present work is to describe analytically several types of

one-parametric families of metrics for which the posed BVP has a unique quasi-
isometric solution. The metric coefficients gik will be obtained via mapping the
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computational region R onto a special class of geodesic quadrangles on surfaces
of constant curvature. We start by investigating some basic properties of one-
parameter families of such geodesic quadrangles with given angles.
After the basic concepts are introduced, we give several different quasi-

isometric parameterizations of geodesic quadrangles, that is, quasi-isometric
mappings

x = x(ξ, η, α, r), y = y(ξ, η, α, r) (1.5)

between R and the geodesic quadrangle P . These parameterizations have two
vectors of parameters: interior angles α = (α1, . . . , α4) and so-called Euclidean
lengths of sides r = (r1, r2, r3, r4) in the parametric plane (x, y). The plane
itself which conformally represents spherical or hyperbolic geometries according
to whether the angle defect of P

δ∗ = α1 + α2 + α3 + α4 − 2π

is positive or negative. The mapping (1.1) generates the metric tensor gij ,
coefficients of which are to be used as coefficients of the Beltrami system (1.2).
In [7] the authors proposed several basic parameterizations of a geodesic

quadrangle P , and the method for finding the parameter r was described. All
parameterizations were obtained by means of using geodesic bundles in order
to build vertical and horizontal families of grid lines. In this paper we continue
with the subject.
Use of geodesic bundles for parameterizations of P provides a way to con-

struct a mapping (1.1) which maps uniform grid in the unit square on (ξ, η)-
plane into a grid in P that is invariant under rotations. By rotation we mean
the motion that places another vertex of the geodesic quadrangle at the origin of
the parametric plane, and “invariant under rotations” means that rotations and
the grid generation process commute. In this case the grid lines appear to be
level lines of some harmonic functions, consequently, the geodesic grids in P can
be treated as a variant of the Winslow grids [26] with an advantage that in our
case the grid in P can be defined explicitly. These kinds of two-dimensional har-
monic mappings have non-vanishing Jacobian, as it was shown in [20] and [13].
In particular, we describe a parameterization (1.1) which generates a metric
with coefficients gik(ξ, η, α, r) that have the following properties:

g11(ξ, η, α, r)

g22(ξ, η, α, r)
=
g22(1− η, ξ, σ(α), σ(r))

g11(1 − η, ξ, σ(α), σ(r))
, (1.6)

g12(ξ, η, α, r)√
g11(ξ, η, α, r) g22(ξ, η, α, r)

(1.7)

=
−g12(1− η, ξ, σ(α), σ(r))√

g11(1− η, ξ, σ(α), σ(r)) g22(1− η, ξ, σ(α), σ(r))
.

where σ(1, 2, 3, 4) = (4, 1, 2, 3).
From equalities (1.6) and (1.7) it follows that all elements of vectors α and

r are equivalent parameters and consequently any five of these parameters may
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be used as characteristic invariants of P . In particular, we shall fix angles
α1, . . . , α4 and study a set of geodesic quadrangles depending on the parameter
M for the interval 0 <M < ∞. In capacity of the parameterM we pick the
conformal module of P .
We define the conformal module as follows. For every geodesic quadrangle

P with vertices zi, i = 1, . . . , 4, there exists a unique M ∈ (0,∞) such that
there exists a conformal mapping of P onto the rectangle

{(ξ, η) : 0 ≤ ξ ≤ 1, 0 ≤ η ≤M}

under which the vertex z1 is mapped at the origin, and the other vertices of P
go over into vertices of the rectangle.
The additional parameters r1, . . . , r4 are then to be determined as monotonic

functions ri(M) of the fundamental parameterM. Later we are going to use
one of ri as or main parameter for finding the geodesic quadrangle P with given
angles α1, . . . , α4 and given a conformal moduleM. Thus we want to develop
the technique for finding such geodesic quadrangle P that takes into account
the high parametric sensitivity of M to changes of the parameters ri. For
this purpose we shall introduce positive numbers rmini , r

max
i such that for all

possible values ofM parameters ri stay within the boundaries r
min
i , and r

max
i

for i = 1, . . . , 4. We also will need the derivatives drj(M)/dri(M).
In later sections we describe a procedure of finding the mapping f(z), z =

x + iy, by which the geodesic quadrangle P is mapped conformally onto the
physical domain D; such conformal mapping exists uniquely by virtue of the
Riemann Mapping Theorem [15]. It is important to know how the module of
the derivative of the conformal mapping behaves on the boundary of P , because
it can affect the grid cell size near the boundary of the domain when the grid is
refined.
Suppose we fix a point b on a boundary of D. Then by virtue of the unique-

ness of the conformal mapping of P onto D there exists a unique proimage z of
the point b on boundary of P . Consequently, we allow boundary points of P to
move; we call such boundary conditions free on P , and fixed on D. Similarly,
if we allow points of D to move along one of the boundaries, and fix boundary
points of P on the corresponding boundary, we call such boundary conditions
free on D and fixed on P .
In order to construct a quasi-isometric grid we should take into account well-

known conditions of the existence of the boundary derivative (see [19], [18] and
[14]):

• If the boundary ∂D is twice continuously differentiable in some neighbor-
hood of the point w0 = f(ζ0) and ζ0 is not a corner point of P , then the
derivative f ′ can be continuously extended in certain part of the boundary
∂P , containing ζ0, in such a way that f ′(ζ) 6= 0.

• If ζ0 and w0 = f(ζ0) are the corner points of P and D respectively and
two twice continuously differentiable boundary arcs of D join in the point
w0 at the same angle as do the corresponding arcs of P in the point ζ0,
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then f ′(ζ) does not equal 0 and is bounded in a certain neighborhood of
ζ0.

Thus, in order to use the proposed method for construction of a quasi-isometric
grid in D, the following conditions should be satisfied:

1. The boundary ∂D of the domain D must consist of four twice continuously
differentiable curves;

2. The sought geodesic quadrangle P is to be chosen in such a way that the
angles α1, . . . , α4 of P should coincide with the angles β1, . . . , β4 of the
domain D, and the conformal modules of P and D must be the same.

It was proved in [10, 5] and [6], respectively, that under the restriction

δ∗ < 2αi, i = 1, . . . , 4, (1.8)

a geodesic quadrangle P satisfying the second condition does exist uniquely in
both cases of the negative and positive angle defect δ∗.

The sought mapping (1.1) is the superposition of two quasi-isometric map-
pings mentioned above, and it is to be found as the solution of a variational
problem of minimizing a functional of Dirichlet type.

To illustrate the effectiveness of the method, numerical examples of quasi-
isometric grids with different boundary conditions are presented.

f(ζ
0
)

Fixed

Fixed

Fixed

Free

Figure 1a.
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ζ
0

Free

Free

Free

Fixed

Figure 1b.

In the Figure 1a we show a test domain D with a quasi-conformal grid
in it, and Figure 1b represents the geodesic quadrangle with same angles and
conformal module as of the test domain. If boundary points on D are fixed,
then boundary points of P are free, and vice versa.

Note that the Figure 1 illustrates the case when the conditions 1 and 2 are
not satisfied, that is, one side of the physical domain is not a C2-curve. We can
treat it as a violation of the condition 2. Let the point f(ζ0) split the boundary
of D into two C2-curves that intersect at the angle β = b · π, b ∈ [0, 1]. Then
for the conformal mapping f : P → D normed such that ω0 = f(ζ0) = 0 in
neighborhood of ζ0 we have

f(z) = a(z − ζ0)
b + o(|z − ζ0|

b), f ′(z) = ab(z − ζ0)
b−1 + o(|z − ζ0|

b−1),

where a 6= 0. In particular, it follows that at the point ζ0 the derivative f ′

becomes infinite, and because of that the grid points next to f(ζ0) will not be
close to f(ζ0) as the grid is refined. Examples of quasi-conformal grids with
singularities of such kind can be found in the book [23].

In conclusion we would like to say that from our point of view Riemannian
metrics that have properties (1.6) and (1.7), and in particular, the metrics
induced by the harmonic parameterization, are more efficient for the generation
of grids through the solution of the Beltrami system (1.2) with ”free” boundary
conditions. We used the harmonic parameterization to generate the distribution
of boundary points on the right side of the physical domain in the figure 1.
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2 One-parameter families of convex geodesic
quadrangles

2.1 Geodesic lines and bundles on surfaces of constant
curvature

Consider the surface of constant curvature K = 4δ as the (x, y)- parametric
plane with the following metric:

ds2 =
dx2 + dy2

[1 + δ(x2 + y2)]2
, (2.1)

where δ is a real number [4]. If δ is positive, the metric (2.1) is defined for
every x and y including infinite, and we obtain a representation of spherical
geometry. If δ is negative, then in the disk x2 + y2 + δ < 0 we obtain the
Poincare representation of Lobachevsky geometry, or hyperbolic geometry. In
the case δ = 0, the metric (2.1) is the Euclidean metric on the plane (x, y).
Let q = ax + by + c[1 − δ(x2 + y2)]. Then geodesics in the metric (2.1) are

curves defined by the equation q = 0. Note that for every δ 6= 0 circles of the
form q = 0 are orthogonal to the circle 1 + δ(x2 + y2) = 0 which is called the
absolute.
Each of three types of non-Euclidean spaces of a constant curvature indicated

above admits the continuous group of isometric mappings, that is, motions. If
we denote x+ iy by z, then every motion has the form

w(z) = eiω
z − ζ

1 + δζz
, (2.2)

where ω ∈ R. The complex number ζ must satisfy the condition |ζ| < |δ|−1/2

in case δ < 0.
Let s1 and s2 be two distinct geodesics defined by equations q1 = 0 and

q2 = 0 respectively. The family F of geodesics orthogonal to s1 and s2 is called
a geodesic bundle. The geodesic bundle F⊥ in which s1 and s2 can be embedded
is called orthogonal to F .

2.2 Family of geodesic quadrangles with given angles

Let P be a quadrangle whose sides are geodesics. We assume further that the
vertices zi = (xi, yi), i = 1, . . . , 4 of the quadrangle P are enumerated counter-
clockwise. Let us denote sides of P as Ai = zizi+1, angles between Ai−1 and
Ai as αi, i = 1, . . . , 4, (assume z5 = z1 and A0 = A4). Let ϕi = αi − π/2,
i = 1, . . . , 4.
It is possible to standardize a geodesic quadrangle P by motions (2.2) in

such a way that two of its sides on the (x, y)-parametric plane will be linear
segments, as shown on the figure 1. In order to do that it is sufficient to move
one vertex of P (say, z1) to the origin by an appropriate transformation (2.2).
Then by rotation we can place the side A1 on the x axis so that the vertex z2
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has positive x-coordinate. Denote by r1 the Euclidean length of the segment
A1. The invariance of the metric (2.1) under the motions (2.2) implies that we
can associate with every Ai its unique Euclidean length ri.
In order to construct a geodesic quadrangle P it is sufficient to have five pa-

rameters defined. We shall fix angles α1, . . . , α4 and study one-parameter fami-
lies of geodesic quadrangles PM, Pm or Pr1 , where in the capacity of varying pa-
rameters we can choose the conformal moduleM, parameterm = (r1r3)/(r2r4),
or a Euclidean side r1.
From the results presented in [5, 6] it follows that if we consider a one-

parametric family PM then invariants m(M) and ri(M) depend monotonically
on the conformal module M, which ranges from 0 to ∞. In other words, the
following theorem holds.

Theorem 1 Let PM and PM be two geodesic quadrangles with the same angles
and conformal modules M and M, respectively. If M =M then PM = PM;
ifM >M then m(M) > m(M), ri(M) > ri(M) and ri+1(M) < ri+1(M) for
i = 1, 3.

Below we provide some examples of convex geodesic quadrangles PM with
same angles and different conformal modules.
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Figure 2. Geodesic quadrangle PM with

same angles and various conformal moduleM.
Note that the parameter r1(M) varies in the range from rmin1 = r1(0) = 0

to rmax1 = r1(∞) <∞ asM varies from 0 to ∞ which leads to high parametric
sensitivity of conformal moduleM to r1. WhenM is close to zero, practically
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we have a geodesic triangle with a polar coordinate system (Figure 2a ). It is
the topological limit of the geodesic quadrangle PM as M → 0. In Figure 2d
we see that r1(M)→ rmax1 and r2(M)→ 0 asM→∞.

2.3 Boundaries for Euclidean lengths

Since we are going to consider Euclidean lengths as our main parameters, one
of our tasks is to develop a technique for finding the geodesic quadrangle PM
by given conformal module M, which takes into account the high parametric
sensitivity ofM to ri.
First of all for this purpose we shall find positive numbers rmini and rmaxi

such that ri(M) belongs to the interval (rmini , rmaxi ) for allM, and rmini = ri(0),
rmaxi = ri(∞) for i = 1, . . . , 4. As it was shown in ([7]), we can calculate rmini
and rmaxi using the special function B(ψ1, ψ2, ψ3, ψ4, δ) given by

B(ψ1, ψ2, ψ3, δ) =

√
sinψ cos(ψ − ψ3)

δ cos(ψ − ψ2) sin(ψ − ψ2 − ψ3)
, (2.3)

where ψ = (ψ1+ψ2+ψ3+π/2)/2. It is convenient for us to fix δ = sinγ, where
γ = (ϕ1 + ϕ2 + ϕ3 + ϕ4)/2.
Let us denote by l(P) the number of sides of P the sum of whose adjacent

angles is not less then π. The value of l(P) can be 0, 1, 2, 3 and 4. Let us
consider each case separately. Let Σ4 be the cyclic subgroup of the permutation
group S4, generated by the element

σ̄ ∈ S4, σ̄ =

(
1 2 3 4
2 3 4 1

)
,

Let l(P) = 0, then for all σ ∈ Σ4

rminσ(1) = B(ϕσ(1), ϕσ(2),−π/2, δ), rmaxσ(1) = B(ϕσ(1), π/2, ϕσ(4), δ),

rminσ(2) = B(ϕσ(2), ϕσ(3),−π/2, δ), rmaxσ(2) = B(ϕσ(2), π/2, ϕσ(1), δ),

rminσ(3) = B(ϕσ(3), ϕσ(4),−π/2, δ), rmaxσ(3) = B(ϕσ(3), π/2, ϕσ(2), δ),

rminσ(4) = B(ϕσ(4), ϕσ(1),−π/2, δ), rmaxσ(4) = B(ϕσ(4), π/2, ϕσ(3), δ),

Let l(P) = 1, and σ ∈ Σ4 be such that ϕσ(1) + ϕσ(2) ≥ 0. Then the
boundaries will be as follows.

rminσ(1) = 0,

rmaxσ(1) = B(ϕσ(1), π/2, ϕσ(4), δ),

rminσ(2) = B(ϕσ(3), ϕσ(2),−π/2, δ),

rmaxσ(2) = B(ϕσ(1) + ϕσ(2) − π/2, ϕσ(3), ϕσ(4), δ),

rminσ(3) = B(ϕσ(3), ϕσ(4), ϕσ(1) + ϕσ(2) − π/2, δ),

rmaxσ(3) = B(ϕσ(3),−π/2, ϕσ(2), δ),

rminσ(4) = B(ϕσ(1), ϕσ(4),−π/2, δ),

rmaxσ(4) = B(ϕσ(1) + ϕσ(2) − π/2, ϕσ(4), ϕσ(3), δ).
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Consider now the case l(P) ≥ 2. There always exist such σ ∈ Σ4 that

ϕσ(1) + ϕσ(2) ≥ ϕσ(3) + ϕσ(4), ϕσ(1) + ϕσ(4) ≥ ϕσ(2) + ϕσ(3)

holds. Then the boundaries for rj will be as follows:

rminσ(1) = 0,

rmaxσ(1) = B(ϕσ(1) + ϕσ(4) − π/2, ϕσ(2), ϕσ(3), δ),

rminσ(2) = B(ϕσ(2), ϕσ(3), ϕσ(1) + ϕσ(4) − π/2, δ),

rmaxσ(2) = B(ϕσ(1) + ϕσ(2) − π/2, ϕσ(3), ϕσ(4), δ),

rminσ(3) = B(ϕσ(3), ϕσ(4), ϕσ(1) + ϕσ(2) − π/2, δ),

rmaxσ(3) = B(ϕσ(1) + ϕσ(4) − π/2, ϕσ(3), ϕσ(2), δ),

rminσ(4) = 0,

rmaxσ(4) = B(ϕσ(1) + ϕσ(2) − π/2, ϕσ(4), ϕσ(3), δ).

2.4 Relations between Euclidean lengths

The relations rσ(4)(rσ(1)) and drσ(4)/d(rσ(1)) for all σ ∈ Σ4 can be obtained
from the following equation which involves parameters rσ(1), rσ(4), ϕ1, ϕ2, ϕ3,
ϕ4 and δ:

Cσ(3)S0 = δCσ(2)Sσ(23)r
2
σ(1) + δCσ(4)Sσ(34)r

2
σ(4) (2.4)

+2δDσrσ(1)rσ(4) − δ
2Cσ(1)Sσ(24)r

2
σ(1)r

2
σ(4),

where

S0 = sin γ, Dσ = cosϕσ(2) cosϕσ(4), Ci = cos(γ − ϕi),

Sij = sin(γ − ϕi − ϕj), σ(ij) = (σ(i), σ(j)) , i, j = 1, . . . , 4.

It follows from (2.4) that for δ ≥ 0:

rσ(4)(rσ(1)) =
1

B +
√
B2 + C

, (2.5)

where

B =
rσ(1)Dσ

Cσ(3) − r2σ(1)Cσ(2)Sσ(23)
, C =

r2σ(1)Cσ(1)Sσ(24)δ − Cσ(4)Sσ(34)

Cσ(3) − r2σ(1)Cσ(2)Sσ(23)
.

In the case δ < 0 we have to take as rσ(4) the root of (2.4) that belongs to
the interval (rminσ(4), r

max
σ(4)).

Thus given rσ(1) and four angles α1, . . . , α4 we are able by means of (2.4)
to determine the function rj = rj(ri), and its derivative with respect to ri
for i, j = 1, . . . , 4. In order to do that it is sufficient to find the derivative of
rσ(4)(rσ(1)) with respect to rσ(1):

drσ(4)(rσ(1))

drσ(1)
= −

Cσ(2)Sσ(23)rσ(1) +Dσrσ(4) − δCσ(1)Sσ(24)rσ(1)r
2
σ(4)

Cσ(4)Sσ(34)rσ(4) +Dσrσ(1) − δCσ(1)Sσ(24)r2σ(1)rσ(4)
. (2.6)
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3 Quasi–isometric parameterizations of
geodesic quadrangles

It should be noted that any five parameters from vectors α = (α1, . . . , α4)
and r = (r1, r2, r3, r4) may be used as characteristic invariants of a geodesic
quadrangle P . We shall now suppose that parameters ϕ1, ϕ2, ϕ4, r1 and r4 are
given.

3.1 The simplest quasi–isometric parameterization

Consider P as an intersection of two geodesic bundles, which are described by
the following algebraic equations

(cosϕ1 + ξa1)x + (sinϕ1 − ξb1)y − ξc1[1− δ(x2 + y2)] = 0, ξ ∈ [0, 1],(3.1)

ηa2x− (1 + ηb2)y + ηc2[1− δ(x2 + y2)] = 0, η ∈ [0, 1], (3.2)

where

a1 = cosϕ2(1 − δr21)− cosϕ1, b1 = sinϕ2(1 + δr
2
1) + sinϕ1,

c1 = r1 cosϕ2, a2 = sin(ϕ1 + ϕ4)− δr24 sin(ϕ1 − ϕ4),

b2 = cos(ϕ1 + ϕ4)− δr24 cos(ϕ1 − ϕ4)− 1, c2 = r4 cosϕ4.

Let us denote by

P (ξ) = c2 cosϕ1 + ξ(a1c2 + a2c1),

Q(ξ, η) = ξc1 − ηc2 sinϕ1 + ξη(b1c2 + b2c1),

F (ξ, η) =
1

2
[cosϕ1 + ξa1 + η(a2 sinϕ1 + b2 cosϕ1) + ξη(a1b2 − a2b1)] ,(3.3)

2W (ξ, η) = F (ξ, η) +
√
F (ξ, η)2 + δ(Q(ξ, η)2 + η2P (η)2),

then by virtue of the relations (3.1)-(3.2) we can obtain the following mapping
of the unit square R onto the geodesic quadrangle P :

x(ξ, η) =
Q(ξ, η)

2W (ξ, η)
, y(ξ, η) =

η · P (ξ)

2W (ξ, η)
. (3.4)

Note that if the intersection of geodesic bundles (3.2) and (3.1) is a geodesic
convex quadrangle then for all ξ ∈ [0, 1] the inequality P (ξ) > 0 holds and the
mapping (3.4) is a quasi-isometric one.
From (3.4) we have by differentiation

xξ = A[(1 + ηb2)W + δη
2c2P ]z, xη = P [(b1ξ − sinϕ1)W − δξηc1P ]z,

yξ = η · A(a2W − δc2Q)z, yη = P [(cosϕ1 + ξa1)W + δξc1Q]z, (3.5)

where P = P (ξ), Q = Q(ξ, η), F = F (ξ, η) and W = W (ξ, η) were defined by
(3.3) and

A = c1 cosϕ1 + η [(a1c2 + a2c1) sinϕ1 + (b1c2 + b2c1) cosϕ1] ,

4z =W−2[F 2 + δ(Q2 + η2P 2)]−1/2.
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We should mention that the mapping (3.4) generates a class of conformally
equivalent Riemannian metrics. Since any two conformally equivalent metrics
lead to the same Beltrami system, we can take in the capacity of a representative
the metric with following coefficients

g11 = A2{[(1 + ηb2)W + δη2c2P ]2 + η2(a2W − δc2Q)2}, (3.6)

g22 = P
2{[(b1ξ − sinϕ1)W − δξηc1P ]2 + [(cosϕ1 + ξa1)W + δξc1Q]2},

g12 = AP{[(1 + ηb2)W + δη2c2P ][(b1ξ − sinϕ1)W − δξηc1P ]

+η2(a2W − δc2Q)[(cosϕ1 + ξa1)W + δξc1Q]}.

Below we provide the examples where we used the simplest quasi-isometric
parameterization in order to construct a grid inside four geodesic quadrangles
on the surface of the positive constant curvature with the same angles and
conformal moduleM, but with different enumerations of the sides and angles.
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Figure 3. The simplest quasi-isometric parameterization of P

3.2 “Even” quasi-isometric parameterization

Note that in the transformation (3.4) we can take in the capacity of ξ and η
two arbitrary monotonically increasing functions ξ(ξ1) and η(η1) satisfying the
conditions ξ(0) = η(0) = 0 and ξ(1) = η(1) = 1. In particular, we can choose
ξ = ξ(ξ1) and η = η(η1) in such a way that under the mapping (3.4) the uniform
distribution of points on the lower and the left sides of the unit square holds,
i.e., the distribution of points on sides A1 and A4 of the geodesic quadrangle P
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Figure 4. The “even” quasi-isometric parameterization.

is also uniform in a sense of the Euclidean distance. In order to obtain such a
mapping it is sufficient to choose ξ(ξ1) and η(η1) as follows:

ξ(ξ1) =
ξ1r1 cosϕ1

c1(1−δξ21r
2
1)−a1ξ1r1

,

η(η1) =
η1r4 cosϕ1

c2(1−δη21r
2
4)−η1r4(a1 sinϕ1+b2 cosϕ1)

.

Examples of curvilinear coordinate systems in the geodesic quadrangle on a
surface of the constant negative curvature generated by means of “even” quasi-
isometric parameterization are given below.

Figure 4 represents four geodesic quadrangles with the same angles and
the same ”Euclidean” lengths of sides and, consequently, the same conformal
moduleM. In the Figure 4a is shown the geodesic quadrangle with parameters
(ϕ1, ϕ2, ϕ3, ϕ4) = (0.5,−1.0,−0.8,−1.0).

Note that the grids in the geodesic quadrangle P constructed by the “even”
and the simplest parameterizations are not invariant under the cyclic permuta-
tion vertices of P in the origin by means of the motion group. If one wants to
obtain the grid that is invariant under the motion group, one can look below in
the next two sections where we describe the harmonic parameterization.
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3.3 The harmonic parameterization of P on the Euclidean
plane

We now obtain parameterizations which are based upon geodesic bundles and
have the invariant properties (1.6)-(1.7). We first consider the case ϕ1 + ϕ2 +
ϕ3 + ϕ4 = 0, that is, δ = 0, so that geodesics in the metric (2.1) are straight
lines defined by the equation ax+ by + c = 0. Consider P as an intersection of
two bundles, which are described by the following equations:

x cos[ϕ1 − ξ(ϕ1 + ϕ2)] + y sin[ϕ1 − ξ(ϕ1 + ϕ2)]− r1 cos(ϕ2)
sin[ξ(ϕ1+ϕ2)]
sin(ϕ1+ϕ2)

= 0

0 ≤ ξ ≤ 1, (3.7)

x sin[η(ϕ1 + ϕ4)]− y cos[η(ϕ1 + ϕ4)] + r4 cosϕ4
sin[η(ϕ1+ϕ4)]
sin(ϕ1+ϕ4)

= 0

0 ≤ η ≤ 1 (3.8)

In order to solve the system (3.7)–(3.8) we denote by

u(ξ, η) =
r1 cosϕ2

cos[ϕ1 − ξ(ϕ1 + ϕ2)− η(ϕ1 + ϕ4)]

sin[ξ(ϕ1 + ϕ2)]

sin(ϕ1 + ϕ2)
, (3.9)

v(ξ, η) =
r4 cosϕ4

cos[ϕ1 − ξ(ϕ1 + ϕ2)− η(ϕ1 + ϕ4)]

sin[η(ϕ1 + ϕ4)]

sin(ϕ1 + ϕ4)
, (3.10)

then

x(ξ, η) = u(ξ, η) cos[η(ϕ1 + ϕ4)]− v(ξ, η) sin[ϕ1 − ξ(ϕ1 + ϕ2)], (3.11)

y(ξ, η) = u(ξ, η) sin[η(ϕ1 + ϕ4)] + v(ξ, η) cos[ϕ1 − ξ(ϕ1 + ϕ2)], (3.12)

is the solution.
From (3.11)–(3.12) we have by differentiation

xξ =
V (η) cos[η(ϕ1 + ϕ4)]

cos2[ϕ1 − ξ(ϕ1 + ϕ2)− η(ϕ1 + ϕ4)]
,

xη = −
U(ξ) sin[ϕ1 − ξ(ϕ1 + ϕ2)]

cos2[ϕ1 − ξ(ϕ1 + ϕ2)− η(ϕ1 + ϕ4)]
,

yξ = −
V (η) sin[η(ϕ1 + ϕ4)]

cos2[ϕ1 − ξ(ϕ1 + ϕ2)− η(ϕ1 + ϕ4)]
,

yη =
U(ξ) cos[ϕ1 − ξ(ϕ1 + ϕ2)]

cos2[ϕ1 − ξ(ϕ1 + ϕ2)− η(ϕ1 + ϕ4)]
,

where

U(ξ) = r1(ϕ1 + ϕ4) cosϕ2
sin[ξ(ϕ1 + ϕ2)]

sin(ϕ1 + ϕ2)

+r4 cosϕ4 cos[ϕ1 − ξ(ϕ1 + ϕ2)]
ϕ1 + ϕ4

sin(ϕ1 + ϕ4)
, (3.13)

V (η) = r1 cosϕ2 cos[ϕ1 − η(ϕ1 + ϕ4)]
ϕ1 + ϕ2

sin(ϕ1 + ϕ2)

+r4(ϕ1 + ϕ2) cosϕ4
sin[η(ϕ1 + ϕ4)]

sin(ϕ1 + ϕ4)
. (3.14)
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It can happen that one obtains an indeterminate expression of the form
sin[ξ(ϕ1 + ϕ2)]/ sin(ϕ1 + ϕ2) as ϕ1 + ϕ→ 0 which is evidently equal to ξ.
It is easily seen that for all (ξ, η) ∈ R the inequalities U(ξ) > 0 and V (η) > 0

hold and the mapping (3.11)–(3.12) is a quasi-isometric transformation R onto
P . This mapping generates a class conformally equivalent Riemannian metrics.
In the capacity of a representative of the class of metrics we can take the metric
with the following coefficients:

g11 = V
2(η), g22 = U

2(ξ), (3.15)

g12 = U(ξ)V (η) sin[−ϕ1 + ξ(ϕ1 + ϕ2) + η(ϕ1 + ϕ4)].

Let us have a uniform grid in ξ, η− plane, where n,m− are the total num-
bers of grid points to be used in ξ, η directions. Then the harmonic parame-
terization has a property that under the cyclic permutation (m,n) → (n,m),
(ϕ1, ϕ2, ϕ3, ϕ4) → (ϕ4, ϕ1, ϕ2, ϕ3), (r1, r2, r3, r4) → (r4, r1, r2, r3), the transfor-
mation (3.11)–(3.12) results in the same grid in P .
The metric (3.15) by virtue of its simplicity can be used for the generation

of quasi-conformal grids in the physical domain D with the angles satisfying the
inequality α1 + α2 + α3 + α4 6= 2π as well. For this purpose it is sufficient to
substitute in (3.13)—(3.15)

ϕi = αi −
α1 + α2 + α3 + α4

4
, i = 1, . . . , 4.

3.4 The harmonic parameterization of P on a surface of
constant curvature

Let P be a geodesic quadrangle on a surface of the constant curvature K = 4δ,
where δ = sin[(ϕ1 +ϕ2+ϕ3+ϕ4)/2]. Let us define for i = 1, 2 the angles wi of
the intersection of sides Ai and Ai+2 of the geodesic quadrangle P , constants
∆i and functions SH(ξwi), CH(ξwi):

ωi =

{
arccot(di/bi), if li ≥ 0,
coth−1(di/bi), if li < 0,

∆i =

{
+1, if li ≥ 0,
−1, if li < 0,

SH(ξωi) =

{
sin(ξωi), if li ≥ 0,
sinh(ξωi), if li < 0,

CH(ξωi) =

{
cos(ξωi), if li ≥ 0,
cosh(ξωi), if li < 0

(3.16)

where li = a
2
i + 4δc

2
i and

a1 = − sin(ϕ1 + ϕ2) + δr21 sin(ϕ1 − ϕ2),

a2 = sin(ϕ1 + ϕ4)− δr24 sin(ϕ1 − ϕ4),

b1 =
√
|l1| sign δ, b2 =

√
|l2| sign δ,

c1 = r1 cosϕ2, c2 = r4 cosϕ4,

d1 = cos(ϕ1 + ϕ2)− δr21 cos(ϕ1 − ϕ2),

d2 = cos(ϕ1 + ϕ4)− δr24 cos(ϕ1 − ϕ4).
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Here we suppose that sign δ = 1 if δ = 0.
Consider P as an intersection of two geodesic bundles

C(b1, a1, ξω1)x− S(b1, a1, ξω1)y + c1SH(ξω1)[1 − δ(x2 + y2)] = 0,

0 ≤ ξ ≤ 1, (3.17)

a2SH(ηω2)x− b2CH(ηω2)y + c2SH(ηω2)[1− δ(x2 + y2)] = 0,

0 ≤ η ≤ 1, (3.18)

where

C(b1, a1, ξω1) = −b1 cosϕ1CH(ξω1) + a1 sinϕ1SH(ξω1), (3.19)

S(b1, a1, ξω1) = b1 sinϕ1CH(ξω1) + a1 cosϕ1SH(ξω1). (3.20)

Introducing functions

C̄(b2, a2, b1, a1, ξw1, ηw2) = b2CH(ηw2)C(b1, a1, ξw1)

−a2SH(ηw2)S(b1, a1, ξw1), (3.21)

S̄(b2, a2, b1, a1, ξw1, ηw2) = b2CH(ηw2)S(b1, a1, ξw1)

+a2SH(ηw2)C(b1, a1, ξw1). (3.22)

we can write the desired parameterization of P in the form

x(ξ, η) (3.23)

=
2c2SH(ηw2)S(b1, a1, ξw1)− 2c1b2SH(ξw1)CH(ηw2)

C̄(b2, a2, b1, a1, ξw1, ηw2) + ∆0
√
C̄2(b2, a2, b1, a1, ξw1, ηw2) + 4δh(ξ, η)

,

y(ξ, η) (3.24)

=
2SH(ηw2)[c2C(b1, a1, ξw1)− c1a2SH(ξw1)]

C̄(b2, a2, b1, a1, ξw1, ηw2) + ∆0
√
C̄2(b2, a2, b1, a1, ξw1, ηw2) + 4δh(ξ, η)

,

where we have set

∆0 = sign {SH(ηw2)[c2C(b1, a1, ξw1)− c1a2SH(ξw1)]} ,

h(ξ, η) = c21SH
2(ξw1)[a

2
2SH

2(ηw2) + b
2
2CH

2(ηw2)]

+c22SH
2(ηw2)[a

2
1SH

2(ξw1) + b
2
1CH

2(ξw1)]

−2c1c2SH(ξw1)SH(ηw2)S̄(b2, a2, b1, a1, ξw1, ηw2).
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Figure 5. An example of “harmonic” parameterization.
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3.5 Riemannian metric of the harmonic parameterization
of P

The calculation of xξ and yξ is based on the relationships:

∂

∂ξ
C(b1, a1, ξw1) = w1S(a1, b1,∆1ξw1), (3.25)

∂

∂ξ
S(b1, a1, ξw1) = −w1C(a1, b1,∆1ξw1),

∂

∂ξ
C̄(b2, a2, b1, a1, ξw1, ηw2) = w1S̄(b2, a2, a1, b1,∆1ξw1, ηw2),

∂

∂ξ
S̄(b2, a2, b1, a1, ξw1, ηw2) = −w1C̄(b2, a2, a1, b1,∆1ξw1, ηw2),

∂

∂η
C̄(b2, a2, b1, a1, ξw1, ηw2) = −w2S̄(a2, b2, b1, a1, ξw1,∆2ηw2). (3.26)

We use the abbreviations

C̄ = C̄(b2, a2, b1, a1, ξw1, ηw2), S̄ = S̄(b2, a2, b1, a1, ξw1, ηw2),

h = h(ξ, η), C̄1 = C̄(b2, a2, a1, b1,∆1ξw1, ηw2),

C̄2 = C̄(a2, b2, b1, a1, ξw1,∆2ηw2), z0 = ∆0
√
C̄2 + 4δh,

S̄1 = S̄(b2, a2, a1, b1,∆1ξw1, ηw2), z1 = C̄ + z0 ,

S̄2 = S̄(a2, b2, b1, a1, ξw1,∆2ηw2),

and find

∂

∂ξ
[C(b1, a1, ξw1)/z1]

= w1
[
S(a1, b1,∆1ξw1)C̄ − C(b1, a1, ξw1)S̄

]
/(z1z0)

+2δ
[
2w1hS(a1, b1,∆1ξw1)− hξC̄(b1, a1, ξw1)

]
/(z21z0),

∂

∂ξ
[SH(ξw1)/z1] = w1

[
CH(ξw1)C̄ − SH(ξw1)S̄1

]
/(z1z0)

+2δ [2w1hCH(ξw1)− hξSH(ξw1)] /(z
2
1z0),

∂

∂ξ
[S(b1, a1, ξw1)/z1]

= −w1
[
C(a1, b1,∆1ξw1)C̄ + S(b1, a1, ξw1)S̄1

]
/(z1z0)

−2δ [2w1hC(a1, b1,∆1ξw1) + hξS(b1, a1, ξw1)] /(z
2
1z0).

It is easily seen that

S(a1, b1,∆1ξw1)C̄ − C(b1, a1, ξw1)S̄ = −a1b1a2SH(ηw1),

CH(ξw1)C̄ − SH(ξw1)S̄1 = b1C(b2, a2,−ηw2),

C(a1, b1,∆1ξw1)C̄ + S(b1, a1, ξw1)S̄1 = a1b1b2CH(ηw2),
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and we therefore have

xξ (3.27)

= −2b1b2w1CH(ηw2) [c1C(b2, a2,−ηw2) + c2a1SH(ηw2)] /(z1z0)

+4δ

{
2w1h[c1b2CH(ξw1)CH(ηw2) + c2C(a1, b1,∆1ξw1)SH(ηw2)]

+hξ[−c1b2SH(ξw1)CH(ηw2) + c2S(b1, a1, ξw1)SH(ηw2)]

}
/(z21z0),

yξ = −2a2b1w1SH(ηw2) [c1C(b2, a2,−ηw2) + c2a1SH(ηw2)] /(z1z0)

−4δSH(ηw2) { 2w1h[c1a2CH(ξw1)− c2S(a1, b1,∆1ξw1)]− (3.28)

−hξ[c1a2SH(ξw1)− c2C(b1, a1, ξw1)]} /(z
2
1z0),

where

hξ = 2w1

{
c21SH(ξw1)CH(ξw1)[b

2
2CH

2(ηw2) + a
2
2SH(ηw2)]

+c22SH
2(ηw2)SH(ξw1)CH(ξw1)[a

2
1 −∆1b

2
1]

−c1c2SH(ηw2)[CH(ξw1)S̄1 − SH(ξw1)C̄1]

}
.

Next we calculate xη and yη. Using (3.26) we find

∂

∂η
[SH(ηw2)/z1] = w2

[
CH(ηw2)C̄ + SH(ηw2)S̄2

]
/(z1z0)

+2δ [2w2hCH(ηw2)− hηSH(ηw2)] /(z
2
1z0),

∂

∂η
[CH(ηw2)/z1] = −w2

[
∆2SH(ηw2)C̄ − CH(ηw2)S̄2

]
/(z1z0)

−2δ [2∆2w2hSH(ηw2) + hηCH(ηw2)] /(z
2
1z0).

It is also clear that

CH(ηw2)C̄ + SH(ηw2)S̄2 = b2C(b1, a1, ξw1),

∆2SH(ηw2)C̄ − CH(ηw2)S̄2 = −a2S(b1, a1, ξw1),

and we therefore have

xη = 2b2w2S(b1, a1, ξw1)[−c1a2SH(ξw1) + c2C(b1, a1, ξw1)]/(z1z0) (3.29)

+4δ{2w2h[∆2c1b2SH(ξw1)SH(ηw2) + c2S(b1, a1, ξw1)CH(ηw2)]

+hη[c1b2SH(ξw1)CH(ηw2)− c2S(b1, a1, ξw1)SH(ηw2)]}/(z
2
1z0),

yη = [c2C(b1, a1, ξw1)− c1a2SH(ξw1)]

{
2b2w2C(b1, a1, ξw1)/(z1z0)

+4δ[2w2hCH(ηw2)− hηSH(ηw2)]

}
/(z21z0), (3.30)
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where

hη = 2w2

{
c21SH

2(ξw1)SH(ηw2)CH(ηw2)[a
2
2 −∆2b

2
2]

+c22SH
2(ηw2)CH(ηw2)[b

2
1CH

2(ξw1) + a
2
1SH

2(ξw1)]

−c1c2SH(ξw1)[CH(ηw2)S̄ + SH(ηw2)C̄2]

}
.

Thus, introducing functions (3.16)–(3.20) and (3.21), (3.22) we have found
xξ, xη, yξ, yη and therefore coefficients of the metric tensor

g11 = x
2
ξ + y

2
ξ , g22 = x

2
η + y

2
η, g12 = xξxη + yξyη (3.31)

for all (ξ, η) ∈ R.

3.6 Fixed boundary points

Consider a geodesic quadrangle P with sides Ai, i = 1, . . . , 4 and its four bound-
ary points (xd, yd) ∈ A1, (xr , yr) ∈ A2, (xu, yu) ∈ A3 and (xl, yl) ∈ A4 such
that A4 or A1 will not contain both points (xd, yd) and (xl, yl).
Then equations of the geodesics passing through (xd, yd) and (xu, yu), and

through (xl, yl) and (xr , yr) respectively, are as follows:

avx+ bvy − [1− δ(x
2 + y2)] = 0, (3.32)

ahx+ bhy + [1− δ(x
2 + y2)] = 0. (3.33)

Now we will find the point x = xvh, y = yvh of intersection of (3.32) and
(3.33). Denoting

a =
ahbv − avbh

2
, b = (ah + av)

2 + (bh + bv)
2,

we find:

xvh =
−(bh + bv)

a+
√
a2 + δb

, yvh =
ah + av

a+
√
a2 + δb

. (3.34)

In order to calculate the coefficients gik of the metric tensor of the mentioned
quasi-isometric transformation (3.34) that maps R onto P we can use different
explicit formulas. For this purpose we place one of the vertices of a cell of the
grid in the origin by means of the motion group (2.2) and use formulas (3.6) or
(3.27)—(3.28), (3.29)—(3.31).

4 Variational method for the generation of

quasi-isometric grids

4.1 A certain class of Riemannian manifolds

Consider a geodesic quadrangle P with given angles α1, . . . , α4 and sides of
Euclidean lengths r1, . . . , r4. Let σ ∈ Σ4, α = (ασ(1), . . . , ασ(4)), and r =
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rσ(1). Consider one-parameter family of geodesic quadrangles Pr with angles
ασ(1), . . . , ασ(4) and parameter r ∈ (r

min
σ(1), r

max
σ(1)). Every mapping of the form

(3.4), (3.23)–(3.24) or (3.34) of the unit square R onto a quadrangle Pr has the
following form:

x = x(ξ, η, r), y = y(ξ, η, r), (4.1)

and the mapping generates the class of conformally equivalent metrics. Let the
following metric be a representative of the class:

ds2 = g11(ξ, η, r)dξ
2 + 2g12(ξ, η, r)dξdη + g22(ξ, η, r)dη

2. (4.2)

So we can define the Riemannian manifold N (gij(ξ, η, r),R) with the coor-
dinate domainR, the metric tensor gij and the parameter r. Then the Riemann
mapping theorem implies the unique existence of the parameter r∗ such that
the Riemannian manifold N (gij(ξ, η, r∗),R) can be mapped onto given curvi-
linear quadrangle D conformally with respect to the metric (4.2). The mapping
is quasi-isometric if all sides of D are smooth enough (belong to C2) and in
addition Pr∗ and D have the same angles [19, 14].
Thus the main problem consists of finding the parameter r∗ and a mapping

X∗(ξ, η), Y ∗(ξ, η) such that this mapping is conformal with respect to the metric
(4.2) with metric tensor gij(ξ, η, r

∗).

4.2 Functional Φ

Using the the class of functions gij = gij(ξ, η, r) we can define the class of
admitted functions A = A(ξ, η, r), B = B(ξ, η, r), C = C(ξ, η, r), where

A(ξ, η, r) = g22(ξ,η,r)
g , B(ξ, η, r) = g12(ξ,η,r)

g ,

C(ξ, η, r) = g11(ξ,η,r)
g , g2 = g11g22 − g212 .

Let us also introduce the class of admitted mappings X = X(ξ, η), Y =
Y (ξ, η) of the computational region R onto D that has the following properties:

1. X(ξ, η), Y (ξ, η) define a quasi-isometric correspondence between ∂R and
∂D;

2. X(ξ, η), Y (ξ, η) can be continued inside R in such a way that the func-
tional

Φ(X,Y, r) =

1∫
0

1∫
0

A(ξ, η, r)[X2ξ + Y
2
ξ ]− 2B(ξ, η, r)[XξXη + YξYη]

+C(ξ, η, r)[X2η + Y
2
η ] dξ dη , (4.3)

is bounded.

The minimum value of the functional is equal to the area SD of the domain
D, as it was shown in [10]. Functions X∗(ξ, η), Y ∗(ξ, η) from the described class
and the number r∗ that provide the minimum of the functional Φ, give us the
desired mapping of the Riemannian manifold N (gij(ξ, η, r),R) onto D.
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4.3 The variational principle

In order to find X∗(ξ, η), Y ∗(ξ, η) and r∗ we will construct a minimizing se-
quence {Xn, Y n, rn} that has the following property:

Φ(Xn+1, Y n+1, rn+1) < Φ(Xn, Y n, rn), lim
n→∞

M(Prn) =M(Pr∗) =M(D).

To begin the minimization process we assume that the functions Xn(ξ, η),
Y n(ξ, η) and rn are known to us.
On the first step, using the Montel variational principle from the conformal

mapping theory, we obtain rn+1 such that

Φ(Xn, Y n, rn+1) < Φ(Xn, Y n, rn).

In particular,

rn+1 = rn +
Λ(Xn, Y n, rn)− V (Xn, Y n, rn)

νΛ(Xn, Y n, rn) + µV (Xn, Y n, rn)
, (4.4)

where

Λ2(X,Y, r) =

1∫
0

1∫
0

A(ξ, η, r)[X2ξ + Y
2
ξ ] dξ dη,

V 2(X,Y, r) =

1∫
0

1∫
0

C(ξ, η, r)[X2η + Y
2
η ] dξ dη.

Then we calculate the new coefficients of the functional

A = A(ξ, η, rn+1), B = B(ξ, η, rn+1), C = C(ξ, η, rn+1).

In (4.4) we can use µ = 1/
√
g11(1, 0, r) and ν = −

drσ(4)
dr /

√
g22(0, 1, r) [7].

On the second step for computation of new approximationXn+1, Y n+1 such
that

Φ(Xn+1, Y n+1, rn+1) < Φ(Xn, Y n, rn+1),

we use obtainedA, B, C as coefficients of the elliptic equations that represent the
variational Euler – Lagrange equations for the functional (4.3) being minimized
on X and Y :

−
∂

∂ξ
A
∂X

∂ξ
−

∂

∂η
C
∂X

∂η
+

(
∂

∂ξ
B
∂X

∂η
+

∂

∂η
B
∂X

∂ξ

)
= 0, (4.5)

−
∂

∂ξ
A
∂Y

∂ξ
−

∂

∂η
C
∂Y

∂η
+

(
∂

∂ξ
B
∂Y

∂η
+

∂

∂η
B
∂Y

∂ξ

)
= 0. (4.6)

The solution of the system (4.5)–(4.6) with appropriate boundary conditions
can be used as a new approximation Xn+1, Y n+1
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Figure 6. Figure 7.

Figure 8. Figure 9.

Steps 1 and 2 are to be repeated till the desired accuracy of determining the
solution of the variational problem is achieved.

Note that the formula (4.4) is invariant with respect to the metric chosen,
i.e., the iteration process does not depend on the way the metric depend on
the varying parameter. This feature is one of major developments in our paper
comparing with works [10, 5].

5 Grid examples

In Figure 6, the boundary points are free on the straight boundaries, fixed on
the outer half-circle and ”same as opposite” on the wing surface. In figure 7,
all boundary points are fixed. In figure 8, the grid is nearly orthogonal. And
figure 9 demonstrates that the grid cells remain parallelograms near corners as
the grid is refined.
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