
A Bifurcation Result 109

Differential Equations and Computational Simulations III
J. Graef, R. Shivaji, B. Soni, & J. Zhu (Editors)
Electronic Journal of Differential Equations, Conference 01, 1997, pp.109–117.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp 147.26.103.110 or 129.120.3.113 (login: ftp)

A BIFURCATION RESULT FOR STURM-LIOUVILLE
PROBLEMS WITH A SET-VALUED TERM

Georg Hetzer

Abstract

It is established in this note that −(ku′)′ + g(·, u) ∈ µF (·, u), u′(0) = 0 =
u′(1), has a multiple bifurcation point at (0,0) in the sense that infinitely many con-
tinua meet at (0,0). F is a “set-valued representation” of a function with jump dis-
continuities along the line segment [0, 1] × {0}. The proof relies on a Sturm-Liouville
version of Rabinowitz’s bifurcation theorem and an approximation procedure.

1. Introduction

Of concern is

−(ku′)′(x) + g(x, u(x)) ∈ µF (x, u(x)) x ∈ (0, 1) a.e. (1)

u′(0) = 0, u′(1) = 0 ,

under hypotheses motivated by the situation found for Budyko-North type energy
balance climate models (cf. [5, 6, 7, 8, 9] and the references therein). In particular,
the set-valued right hand side arises from a jump discontinuity of the albedo at
the ice-edge in these models. By filling in such a gap (this is the solution concept
we adapt), one arrives at the set-valued problem (1). We are here interested in a
considerably simplified version as compared to the situation from climate modeling,
e.g. a one-dimensional regular Sturm-Liouville differential operator substitutes for
a two-dimensional Laplace-Beltrami operator or a singular Legendre-type operator,
and the jump discontinuity is transformed to u = 0 in a way, which resembles only
locally the climatological problem. The latter suffices for our purposes, since the
global structure has already been investigated in [8] and [3], where the existence of
an S-shaped principal solution branch is established. Computer simulations actu-
ally suggest that the branch structure of the original problem is very different from
what we obtain for (1) in this paper. Here the effect of the discontinuity at zero
is a solution branch which consists of infinitely many subbranches all meeting in
(0,0). Two subbranches are distinguished by the number of zeroes of the respective
solutions. Thus, one would expect such a “multiple” bifurcation to occur on the
relevant segment of the principal solution branch in the climatological setting, too.
Unlike in our case, the subbranches would however be bounded (mushrooms in the
sense of [13]). An example in Appendix B of [16], a Sturm-Liouville problem of
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Budyko type with infinitely many solutions, seemingly supports such a conjecture.
But, numerical computations do not reveal any bifurcation point on the principal
branch, rather the branch structure resembles that for Sellers-type models (continu-
ous setting, cf. [10, 12] and [11] for a survey). Thus, our results are to be understood
as an incentive for further investigations in order to clarify this issue.

Let us illustrate what is going on by means of the following simple example

−u′′ + bu ∈ µ sgnu on [0, π]a.e. (2)

u′(0) = 0 u′(π) = 0 ,

with b > 0 and

sgn(y) =

{
{y/|y|} y ∈ R \ {0}
[−1, 1] y = 0.

Assume that one approximates sgn by a sequence of functions hj ∈ C∞(R) satisfying
hj(0) = 0, hj

′(0) = j, hj |(−∞,−1/j] ≡ −1, hj |[1/j,∞) ≡ 1, hj
′(y) > 0 for y ∈

(−1/j, 1/j) and (hj)j∈N uniformly convergent on (−∞,−r) ∪ (r,∞) for r > 0 to
y 7→ y/|y|. Then results of Rabinowitz and Crandall and Rabinowitz ensure that
µj,n := (n

2 + b)/j is a bifurcation point for n ∈ Z+ of

−u′′ + bu = µhj ◦ u on [0, π]a.e.

u′(0) = 0 u′(π) = 0,

that the branch Sj,n emanating from (µj,n, 0) is unbounded in R+ × C([0, π]) and
that (µ,w) ∈ Sj,n implies that w has exactly n zeroes, which are all simple. Letting
j → ∞ yields µj,n → 0 uniformly for n in any finite subset of Z+, hence any finite
number of bifurcation points comes arbitrarily close to 0 for a sufficiently large j ∈ N,
thus one expects infinitely many curves of solutions of (2) bifurcating from (0, 0). In
fact, these subbranches can be described explicitly as curves µ 7→ (|µ|, uµ,j) (µ ∈ R),
where uµ,0 ≡ µ/b (no zeroes),

uµ,1(x) :=



µ
b

[
1− cosh(

√
bx)

cosh(
√
bπ/2)

]
if x ∈ [0, π/2]

−µ
b

[
1− cosh(

√
b(x−π))

cosh(
√
bπ/2)

]
if x ∈ (π/2, π]

(one zero) or

uµ,2(x) :=




µ
b

[
1− cosh(

√
bx)

cosh(
√
bπ/4)

]
if x ∈ [0, π/4]

−µ
b

[
1− cosh(

√
b(x−π/2))

cosh(
√
bπ/4)

]
if x ∈ (π/4, 3π/4]

µ
b

[
1− cosh(

√
b(x−π))

cosh(
√
bπ/4)

]
if x ∈ (3π/4, π]

(two zeroes) and so on.

The same structure has been observed in another context by [2; Theorem 2.1.] for
a similar reason. The paper deals with a quasilinear Sturm-Liouville problem; the
differential operator is the radial part of a p-Laplacian and the right hand side
vanishes at zero with a slower rate than |x|p−1, thus the “derivative” is infinite
relative to the intrinsic scaling associated with the nonlinear diffusion.
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Of course, the use of approximating branches is standard in numerical bifurcation
theory, and limiting processes for sets go back at least to the work of Kuratowski.
Nowadays, the technical tool for the latter is a so-called Whyburn Lemma, which
will be stated in Section 3. It should be mentioned that the approach outlined above
has been used in [2].

Our findings are also related to results in [4, 15], where bifurcation from intervals
was investigated. In a sense, here the real line is the bifurcation interval, and
therefore the (extended) Rabinowitz alternative established in these papers becomes
meaningless.

We have not attempted in this note to strive for generality, but shall present the
method for the case we are interested in. Obtaining other versions is then a matter
of routine. The precise result is stated in the next section, proofs are given in Section
3, which is followed by a concluding remark.

2. The Bifurcation Result

Throughout we assume:

(H1) k ∈ C1([0, 1]), inf k > 0;

(H2) g ∈ C([0, 1] × R), g(x, ·) strictly increasing for x ∈ [0, 1], g1(x) := lim
y→0

g(x, y)

y
exists uniformly for x ∈ [0, 1];

(H3) f+ ∈ C([0, 1]×R+, (0,∞)), inf f+ > 0, f− ∈ C([0, 1]×R−, (−∞, 0)), sup f− < 0.

Let F in (1) be given by

F (x, y) :=



{f+(x, y)} x ∈ [0, 1], y > 0,
[f−(x, 0), f+(x, 0)] x ∈ [0, 1],
{f−(x, y)} x ∈ [0, 1], y < 0

and set S := {(µ,w) ∈ R × W 2,∞([0, 1]), (µ,w) solves (1)}. Throughout S will
be considered as subset of the Banach space Y := R × C1([0, 1]) under the norm
‖ · ‖Y : (µ,w) 7→ max{|µ|, ‖w‖∞, ‖w′‖∞}. It is useful to note:

Remark 1. The hypotheses (H1)–(H3) imply that

S ∩
(
(−∞, 0]× C1([0, 1])

)
= (−∞, 0] × {(0,0)} .

In fact, denoting by u+ and u− the positive and negative parts of u, respectively,
one gets for (µ, u) ∈ S with µ ≤ 0 that

∫ 1
0

[k(x)u′(x)2 + g(x, u(x))u(x)]dx

= µ

∫ 1
0

[f+(x, u(x))u
+(x) + |f−(x, u(x))|u

−(x)]dx ≤ 0,

i.e. u ≡ 0 in view of g(x·) strictly increasing and g(·, 0) ≡ 0.

Our main result is.
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Theorem. Let (H1)–(H3) be fulfilled. Then there exist sequences
(
C±n
)
n∈Z+

of

unbounded, closed, connected subsets of S with (0,0) ∈ C±n and the property that
u has exactly n zeroes, which are all simple, if (µ, u) ∈ C±n \ {(0,0)}. Moreover,
u is positive (negative) on an interval (0, x̃) for some x̃ ∈ (0, 1], if (µ, u) ∈ C+n
((µ, u) ∈ C−n ) and u 6≡ 0.

Actually, such continua can be obtained as upper limits in the sense of Kuratowski
of sequences of solution continua from associated continuous problems. To this end
one sets df := min{inf f+, inf |f−|} and selects an approximation sequence (fl) ∈
C([0, 1] × R,R)N of F satisfying

(A1) fl(x, y) = ly for x ∈ [0, 1] and y ∈ [−
df
2l ,

df
2l ];

(A2) fl(x, y) × sgn(y) ≥
df
2 for x ∈ [0, 1] and |y| ≥

df
2l , fl ≤ f+ on [0, 1] × [

df
2l ,

df
l
],

fl ≥ f− on [0, 1] × [−
df
l
,−df

2l
];

(A3) fl(x, y) = f+(x, y) for x ∈ [0, 1] and y ≥
df
l
; fl(x, y) = f−(x, y) for x ∈ [0, 1]

and y ≤ −df
l
;

(A4) (fl(x, y))l∈N nondecreasing for (x, y) ∈ [0, 1] × (0,∞) and nonincreasing for
(x, y) ∈ [0, 1] × (−∞, 0).

It is easy to see thanks to (H2) and (A1) that

−(kv′l)
′(x) + g(x, vl(x)) = µfl(x, vl(x)) x ∈ [0, 1] (3l)

v′l(0) = 0 v′l(1) = 0 .

falls into the scope of the Sturm-Liouville version of the celebrated Rabinowitz bi-
furcation theorem (cf. [14] for a more general, but somewhat different setting).

Indeed, denote the strictly increasing sequence of simple eigenvalues of

−(kψ′)′ + g1ψ = λψ on [0, 1] (4)

ψ′(0) = 0 ψ′(1) = 0

by (λn)n∈Z+ and set µn,l := λn/l. Then (µn,l,0) is a bifurcation point of the solution
set of (3l) for every n ∈ Z+, and for each (n, l) ∈ Z+×N there exist two unbounded
closed connected subsets C±n,l of the solution set of (3l) with

• C+n,l ∩ C
−
n,l = {(µn,l,0)}. Moreover, (µn,l,0) is the only bifurcation point con-

tained in C±n,l;

• If (µ, ϑ) ∈ C+n,l and ϑ 6≡ 0, then ϑ possesses exactly n simple zeroes (and no
multiple zeroes) in (0, 1) and is positive on (0, δ) for some δ > 0;

• C−n,l fulfills the previous statement in case that positive on (0, δ) is replaced by
negative on (0, δ).

Utilizing a so-called Whyburn Lemma [17] we establish.

Lemma 1. Let (H1) - (H3) and (A1)–(A4) be satisfied and Br denote the ball with
center (0,0) and radius r in Y . Then continua C±n fulfilling the properties stated in

the Theorem can be constructed as C±n =
⋃
j∈N

(
lim sup
l→∞

(
C±n,l ∩ Bj

))
.
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3. Proof of Main Result

The proof is given for C+n . Recall Kuratowski’s notion of lower and upper limits
of sequences of sets.

Definition 1. Let X be a metric space and (Zl)l∈N be a sequence of subsets of
X. lim sup

l→∞
Zl := {x ∈ X : lim inf

l→∞
dist(x,Zl) = 0} is called the upper limit of the

sequence (Zl), whereas

lim inf
l→∞

Zl := {x ∈ X : lim
l→∞

dist(x,Zl) = 0}

is called the lower limit of the sequence(Zl).

Whyburn’s result tells us that

Lemma 2. lim sup
l→∞

Zl is nonempty, compact and connected provided that X is

complete, lim inf
l→∞

Zl 6= ∅ and
⋃
l∈N

Zl is relatively compact.

Fixing n ∈ Z+ and r ∈ (0,∞) we are going to apply this lemma to (C
+
n,l∩Br)l∈N.

Since ϕ 7→ −(kϕ′)′ + (g1 + 1)ϕ for ϕ ∈ C2([0, 1]) with ϕ′(0) = 0 = ϕ′(1) has a com-
pletely continuous inverse from C([0, 1]) into C1([0, 1]), the relative compactness of
∪l∈N(C

+
n,l∩Br) in Y follows by standard arguments. Moreover, (0,0) ∈ lim infl→∞

(C+n,l∩

Br) holds because of liml→∞ µn,l = 0. Thus, C
+
n (r) := lim supl→∞(C

+
n,l ∩ Br) is

nonempty, compact and connected in Y . Setting C+n :=
⋃
j∈N C

+
n (j) we claim that

C+n has the properties as stated in the Theorem.

Lemma 3. C+n is unbounded, closed and connected in Y and contains (0,0).

The proof or the above lemma is an easy exercise!

Lemma 4. If (µ, u) ∈ C+n , then (µ, u) is a solution of (1) and u ∈W
2,∞([0, 1]).

Proof. By definition there exist sequences (κl) ∈ NN strictly increasing, and(
(νκl , vκl)

)
∈ Y N with (νκl , vκl) ∈ C+n,κl for l ∈ N and (νκl , vκl) → (µ, u). Since(

fκl(·, vκl(·))
)
l∈N
is uniformly bounded, we can assume after passing to a subse-

quence, if necessary, that it converges weakly in L2([0, 1]) to some φ. We claim that
φ(x) ∈ F (x, u(x)) a.e. on (0, 1).

Let x0 ∈ (0, 1) with u(x0) > 0. Then there exist ρ > 0 and δ ∈ (0,min{x0, 1 −
x0}) with u(x) > ρ for all x ∈ (x0 − δ, x0 + δ), hence there is an l0 ∈ N with

vκl(x) >
ρ
2
for all l ≥ l0 and x ∈ (x0 − δ, x0 + δ). Choose l1 > l0 with

df
κl1

< ρ
2
.

Then fκl(x, vκl(x)) = f+(x, vκl(x)) for all l ≥ l1 and all x ∈ (x0 − δ, x0 + δ), which
yields φ(x) = f+(x, u(x)) for x ∈ (x0 − δ, x0 + δ) a.e.. Likewise, the case u(x0) < 0
is treated.

Next, let Ξ := {x ∈ (0, 1):φ(x) > f+(x, 0)}. Suppose that meas(Ξ) > 0. Then
ε :=

∫
Ξ
[φ(x) − f+(x, 0)]dx > 0, and one finds η ∈ (0,∞) with meas(Ξ)|f+(x, y) −
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f+(x, 0)| ≤
ε
2 for x ∈ [0, 1] and y ∈ [0, η]. Choosing l2 ∈ N with ‖vκl − u‖∞ < η for

l ≥ l2 and observing that fκl(·, y) < 0 if y < 0, one obtains for l ≥ l2:

∫
Ξ

[φ(x)− fκl(x, vκl(x))]dx =

∫
Ξ

[φ(x)− f+(x, 0)]dx

+

∫
Ξ

[f+(x, 0) − fκl(x, vκl(x))]dx

≥ε+

∫
Ξ

[f+(x, 0) − fκl(x, v
+
κl
(x))]dx

≥
ε

2
,

which contradicts fκl(·, vκl(·))
L2⇀ φ. Thus, meas(Ξ) = 0.

Likewise, one derives φ(x) ≥ f−(x, 0) for almost every x ∈ [0, 1] with u(x) = 0,
hence φ(x) ∈ F (x, u(x)) holds for x ∈ [0, 1] a.e..

Now, let A be the closed linear operator in L2([0, 1]) defined by dom(A) := {ϕ ∈
W 2,2([0, 1]) : ϕ′(0) = 0 = ϕ′(1)} and Aϕ := −(kϕ′)′. Clearly, νκlfκl(·, vκl(·)) −

g(·, vκl(·)
L2⇀ µφ − g(·, u(·)), hence vκl → u and the fact that A is weakly closed

yield Au = µφ − g(·, u(·)), i.e. Au + g(·, u(·)) ∈ F (·, u(·)) a.e.. Finally, note that
u ∈W 2,∞([0, 1]) thanks to the uniform boundedness of u and assumptions (H2) and
(H3).

Let Zu := {x ∈ [0, 1] : u(x) = 0} denote the set of zeroes of u for u ∈ C([0, 1]) and
SZu := {x ∈ Zu : u′(x) 6= 0} the set of simple zeroes of u for u ∈ C1([0, 1]).

Lemma 5. Let (µ, u) ∈ S, u 6≡ 0 and Zu \ SZu 6= ∅. Then SZu is an infinite set.

Proof. Note that u 6≡ 0, hence µ > 0 by Remark 1. Let ẑ ∈ Zu \SZu be a boundary
point of Zu. Consider the case ẑ > 0 and assume that there is an ε ∈ (0, ẑ) with
(ẑ − ε, ẑ) ∩Zu = ∅. Then either Zu ∩ [0, ẑ) = ∅, and one sets z = 0 or there exists a
z ∈ [0, ẑ − ε] with u(z) = 0 and (z, ẑ) ∩ Zu = ∅. Let σ := sgn(u|(z,ẑ)), v := σu and
ȳ := inf{|y| : y ∈ R, |g(x, y)| ≥ df}, where df has the same meaning as in Section 2.
It follows from (H2) and (H3) that ȳ > 0. Setting

ς :=
{
+ if σ = 1
− if σ = −1

and ρ := ‖g(·, u)‖∞/ȳ, one obtains

µσfς(x, σv(x)) − σg(x, σv(x)) + ρv(x) ≥ 0 for x ∈ [z, ẑ] a.e..

Hence v satisfies −(kv′)′ + ρv ≥ 0 on (z, ẑ) and either v′(z) = 0 = v(ẑ) or v(z) =
0 = v(ẑ). Moreover, the fact that v(x) > 0 for x ∈ (z, ẑ) allows us to assume that
v ∈ C2((z, ẑ)), thus the strong maximum principle yields v′(ẑ) < 0, a contradiction.
Consequently, ẑ is a accumulation point of (0, ẑ) ∩ Zu, and one finds a strictly
increasing sequence (zj)j∈N such that zj → ẑ, (z2j−1, z2j) ∩ Zu = ∅ and u(zj) = 0.
The same argument as above shows u′(zj) 6= 0, and SZu is an infinite set. The other
cases are treated likewise.
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Remark 2. Let (µ, u) ∈ C±n . By construction, one finds a sequence (vj)j∈N with

Zvj = SZvj for j ∈ N, SZvj contains n elements and vj
C1

→ u, hence u cannot
have more than n simple zeroes, consequently Lemma 5 implies u ≡ 0 in case that
Zu \ SZu 6= ∅.

The following lemma excludes this latter possibility if µ > 0. In order to state
it, we introduce the following notation. The principal eigenvalue of

−‖k‖∞ψ
′′ + ‖g1‖∞ψ = νψ on (0,

1

n+ 1
) (5)

ψ(0) = 0 ψ(
1

n + 1
) = 0

will be denoted by ν?(n).

Lemma 6. Let (H1)–(H3) and (A1)–(A4) be fulfilled, n ∈ Z+, µ ∈ (0,∞) and
l0 ∈ N with µl0 > ν?(n). Then there exists a δ > 0 such that ‖u‖∞ ≥ δ for all

(µ, u) ∈ C+n,l with µ ≥ µ and l ≥ l0.

Proof. (cf. [2] for a similar reasoning) Let ε ∈ (0, 12 (µl0 − ν
?(n))) and choose δ ∈

(0,
df
2l0
)] with |g(x, y) − g1(x)y| ≤ ε|y| for all x ∈ [0, 1] and |y| ≤ δ. Let l ∈ N with

l ≥ l0 and (µ, u) ∈ C
+
n,l with µ ≥ µ. Let us fix ideas by considering the case, where

one can find x, x̄ ∈ (0, 1) with x̄ − x ≥ 1
n+1
, u(x) = 0 = u(x̄) and u(x) > 0 for

x ∈ (x, x̄).

Assume that u(x) ≤ δ for x ∈ (x, x̄). Noting that (A1) and the first part of

(A2) guarantee that |fl(x, y)| ≥ l0|y| for all x ∈ [0, 1], |y| ≤
df
2l0
and l ≥ l0, one

obtains:

−(ku′)′(x) + g1(x)u(x) = µfl(x, u(x) −
(
g(x, u(x)) − g1(x)u(x)

)
≥ µl0u(x)− εu(x)

>
1

2
(µl0 + ν

?(n))u(x)

> ν?(n)u(x)

for x ∈ (x, x̄). The principal eigenvalue ν0 of

−(kψ′)′ + g1(·)ψ = νψ on (x, x̄) (6)

ψ(x) = 0 ψ(x̄) = 0 .

satisfies ν0 ≤ ν?(n) in view of x̄− x ≥
1
n+1 , k ≤ ‖k‖∞ and g1 ≤ ‖g1‖∞, hence

ν0

∫ x̄
x

y(x)u(x) dx =

∫ x̄
x

[−(ky′)′(x) + g1(x)y(x)]u(x)] dx

=

∫ x̄
x

[−(ku′)′(x) + g1(x)u(x)]y(x)] dx

>ν0

∫ x̄
x

u(x)y(x) dx
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for any nonnegative principal eigenfunction y of (6) which is a contradiction, and
‖u‖∞ > δ is established in that case.

The case u(x) < 0 on (x, x̄) can be handled by dealing with −u as above.
If there is no such interval (x, x̄) of length at least 1/(n + 1), one finds either an
x̄ ≥ 1/(n + 1) such that u has no zero in (0, x̄) or an x ≤ 1 − 1

n+1 such that u has
no zero in (x, 1). Noting that the principal eigenvalue of (6) becomes smaller, if one
replaces ψ(x) = 0 by ψ′(0) = 0 or ψ(x̄) = 0 by ψ′(1) = 0, one can use the same
reasoning for these two cases, too.

Now, we can finish the proof of the theorem. It follows from Lemma 4 that
C+n ⊆ S. Moreover, Lemma 6 shows that (µ,0) ∈ C+n implies µ = 0. Remark 2
therefore implies that given (µ, u) ∈ C+n \ {(0,0)}, u has only finitely many zeroes
which are all simple. The construction of C+n and the fact that the zero number
is constant in a C1-neighborhood of a C1-function with finitely many simple zeroes
imply therefore that u has exactly n simple zeroes.

4. Concluding Remark

We have focused in this paper on a class of Sturm-Liouville problems with some
special features that were suggested by Budyko-North type energy balance climate
models. Of course, one can also deal by this technique with other boundary con-
ditions and nonlinearities and can allow nontrivial solutions for negative parameter
values. Furthermore, it is possible to consider radial solvability of second order el-
liptic boundary value problems including degenerate cases similar to [2]; roughly
speaking, the approach works whenever one has sufficient regularity of the solutions
and nodal properties as in the Sturm-Liouville case. One challenge ahead is to come
up with substitutes for this nodal properties (e.g. Morse indices etc.) in order to
address general second order elliptic boundary value problems. The other central
issue is to analyze the more complex situation arising from the climate model.

Acknowledgment. It is a pleasure to thank a referee for suggesting a simplification
in the proof of Lemma 6 and for pointing out several misprints.
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