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Numerical studies of vertically propagating

acoustic and magneto-acoustic waves in an

isothermal atmosphere ∗

H. Y. Alkahby & F. N. Jalbout

Abstract

In this paper we investigate numerically the effect of viscosity and New-
tonian cooling on upward and downward propagating magneto-acoustic
waves, resulting from a uniform horizontal magnetic field in an isother-
mal atmosphere. The results of the numerical computations are compared
with those of asymptotic evaluations. It is shown that the presence of a
small viscosity creates a layer which acts like an absorbing and reflecting
barrier for waves generated below it and that the presence of the magnetic
field produces a reflecting layer only. The addition of Newtonian cooling
affects mainly the lower region in which it produces waves attenuation and
alters the wavelength. If the Newtonian cooling coefficient is large com-
pared with the frequency of the waves, the temperature in the lower region
evens out and the wave motion approaches an isothermal one. This elimi-
nates the attenuation in the wave amplitude since the isothermal region is
dissipationless. This problem is solved analytically and numerically. The
results of the numerical computation are in a complete agreement with
the analytical results.

1 Introduction

The propagation of atmospheric waves, both in isothermal and in non-isothermal
atmospheres, has been investigated extensively in recent years. The discovery of
hydro-magnetic waves was followed by an extensive study of magneto-acoustic
waves in an isothermal atmosphere. Much of the motivation of these studies
comes from their relevance to phenomena in compressible ionized fluids, such as
solar, stellar, earth’s atmospheres and to certain phenomena in ocean dynamics
(see Alkahby [2]-[6], Yanowitch [9]-[11] for references).
It is well known that the solar corona is extremely hot, typical temperatures

are 106 K compared with 5 × 103 K in the photosphere. Consequently. ther-
mal energy must be continually supplied to maintain this temperature against
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94 Vertically propagating acoustic and magneto-acoustic waves

radiative cooling. Early theories of coronal heating were essentially based on
the dissipation of acoustic waves or shock waves. Recent theories involve mag-
netic energy dissipation as the source of thermal energy. These two questions
must be answered: how is magnetic energy supplied to the corona, and how
is it dissipated? To answer these questions, many mathematical models and
dissipative mechanisms are suggested (see Alkahby [1]-[8], Yanowitch [9]-[11] for
references).
The aim of this study is to obtain numerical data for the effects of the vis-

cosity, Newtonian cooling and magnetic field on the reflection and dissipation
of an upward and a downward propagating sound wave in an isothermal atmo-
sphere for practical purposes. To obtain a full understanding of the nature of
the waves propagation, reflection, the effect of Newtonian cooling on the waves
below the reflecting barrier and the nature of the reflecting layer, the values
of viscosity and magnetic field were taken to be small, arbitrary and positive.
The variation of the values of the Newtonian cooling coefficient allows us to
determine the maximum and minimum values of the attenuating factor in the
amplitude of the upward and downward propagating waves, maximum and min-
imum values of the reflection coefficient, the cutoff frequencies and the change
of wavelength from the adiabatic values to the isothermal ones. Upon using
central differences, the differential equation (3.14) is replaced by a difference
equation, which is solved by backward and forward integration. In the com-
putation process, the magnitude of the reflection coefficient is determined from
the ratios of the maximum with respect to the minimum values of the kinetic
and magnetic energies below the reflecting layer.
The results of the numerical computation are described in Section [5] by six

figures. The computation shows that: (a) when the viscosity dominates the
oscillation process, the maximum value of the reflection is exp(−πβa) and is at-
tained when the oscillatory process is adiabatic and the minimum is exp(−πβi)
and is attained when the Newtonian cooling coefficient is large compared with
the adiabatic cutoff frequency (Note that βa and βi are the adiabatic and isother-
mal wave numbers, with βi > βa and defined in Section [3]). If values of
the Newtonian cooling coefficient are small compared with the adiabatic cutoff
frequency of the wave, the magnitude of the reflection coefficient is less than
exp(−πβa) and greater than exp(−πβi); (b) when the magnitude field effect
dominates oscillatory process, below the reflecting layer, the magnitude of the
reflection coefficient is always one for all positive values of the Newtonian cool-
ing coefficient. Since the wave number changes from βa to βi, it follows from (a)
and (b) that the presence of small viscosity creates a reflecting and an absorb-
ing reflecting barrier. On the contrary, the presence of the magnetic produces
a reflecting layer only. This result is expected because of the dissipationless
nature of the magnetic field and that the change of the oscillatory process from
the adiabatic form to the isothermal one and vice versa do not influence the
nature of the reflection but affect only the reflecting layer produced by the ef-
fect of viscosity. In addition, the oscillatory process changes from the adiabatic
form to the isothermal one below the reflecting layer. This change can easily
be deducted from the change in the wavelength of the wave. Moreover, the



H. Y. Alkahby & F. N. Jalbout 95

computation shows that the resonance may occur for infinitely many values of
the magnetic field and the frequency of the wave. Finally, the asymptotic and
numerical results are almost in a complete agreement for 5 places.

2 Mathematical formulation of the problems

The hydro-magnetic equations of motion for pulsating stars consist of the mo-
mentum equation, the continuity equation, the induction equation, and the
pressure and energy equations, which can be written as follows:

ρ[
∂V

∂t
+ (V ·∇)] +∇P = ρ g +

4

3
µ∇2V +

1

4π
[∇xBxB] , (1)

ρt +∇(ρ · V ) = 0 , (2)

∂B

∂t
+∇x(V xB) = 0 , (3)

P = RρT , (4)

ρT
Ds

Dt
= −∇ · q − Lr +

j2

σ
+Hts . (5)

In the above equations (1–5), ρ means density, V is the fluid vertical velocity,
P is the pressure, g is the gravitational acceleration, µ is the dynamic viscosity
coefficient, B is the magnetic field strength, R is the gas constant, T is the
temperature, S is the entropy per unit mass of the plasma, q is the heat flux

due to partial conduction, Lr is the net radiation,
j2

σ
is the ohms dissipation,

and Hts represents the sum of all the other heating sources.
The equations of motion form a system of nonlinear partial differential equa-

tions which, in most cases, cannot be solved. For small-amplitude oscillations
the dependent variables can be written as the sum of a mean value and a small
perturbation. The equations are then simplified to a linear system by neglecting
all products of perturbation terms. Let P , ρ, V , T , and B be the perturbations
in the pressure. density, vertical velocity, temperature, and the magnetic field
strength and P0, ρ0, T0, B0 be the equilibrium quantities. Also we restrict our
investigation to an isothermal atmosphere permeated by an uniform horizontal
magnetic field and it has an infinite electrical conductivity. In addition, we
investigate small oscillations z ≥ 0. As a result of the above restriction, equi-
librium pressure, temperature and density satisfy the gas law P0 = Rρ0T0 and
the hydrostatic equation P ′0 + gρ0 = 0. Consequently, the pressure and density
are given by

P0(z) = P0(0) exp(−z/H),

ρ0(z) = ρ0 exp(−z/H),

where H is the density scale height and defined by H = RT0/g. Consequently,
the density scale height is not constant in the solar atmosphere, i.e., each region
has its own density scale height because of the change in the temperature and the
acceleration from one region to another. This observation also necessitates the



96 Vertically propagating acoustic and magneto-acoustic waves

study of the effect of the Newtonian cooling on the acoustic waves propagation
in the solar atmosphere and its influence on the heating mechanism. Moreover,

the linearized equations of motion can be written like

ρ0 Vt + Pz + ρg + (
B0

4π
Bz) =

4

3
µVzz , (6)

ρt + (ρ0V )z = 0, (7)

Bt +B0Vz = 0, (8)

P = R(ρ0T + T + T0ρ), (9)

cV (Tt + qT ) + gHVz = 0. (10)

The subscripts z and t denote the differentiation of the independent variables
with respect to z and t respectively, cV denotes the specific heat at constant
volume and q is the Newtonian cooling coefficient which refers to the heat ex-
change between hot and cold regions. We consider solutions which are harmonic
in time, i.e., V (z, t) = V (z) exp(−σt) and T (z, t) = T ∗(z) exp(−σt) where σ de-
notes the frequency of the wave. It is more convenient to rewrite the equation
of motion in dimensionless form: z∗ = z/H , σa = c/2H is the adiabatic cutoff
frequency, where c2 = γRT0 = γgH is the adiabatic sound speed V

∗ = V/c,
µ∗ = 2µ/3ρ0cH , σ

∗ = σ/σa, t
∗ = tσa, a1 = a

2
A/c

2, T ∗ = T/2γT0, q
∗ = q/σa,

a = a1 − iσ∗µ∗. The star can be omitted, since all variables are written in
dimensionless form from now on. Moreover, ρ, p, and B can be eliminated from
equation (6) by differentiating it with respect to t and substituting equations
(7–10) to obtain a system of differential equations from V (z) and T (z).

(D2 −D + γσ2/4)V (z) + γaezD2V (z) + iγ(D − 1)T = 0, (11)

DV (z) = γ(iσ − q)T (z)/(γ − 1) (12)

where D = d/dz. Moreover, V (z) can be eliminated from equation (11) to
obtain a second order equation for T (z).

[γσ(D2 −D + σ2/4) + iq(D2 −D) + γσ2/4)

+γ(σ + iq)aez(D2 +D)]T (z) = 0. (13)

In addition, the first two terms can be combined to give the following differential
equation

[(D2 −D +Qσ2/4) +Qaez(D2 +D)]T (z) = 0, (14)

where the parameter Q is defined by

Q = γ(σ + iq)/(γσ + iq).

It is clear that the parameter Q = 1 when q = 0 and Q = γ = 1.4 as q → ∞.
This must indicate some changes in the physical nature of the problem and these
changes will influence mainly the wavelength, the magnitude of the reflection
coefficient and the nature of the reflecting layer. These changes will be clear,
asymptotically and numerically, in the following sections.
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Boundary Condition: To obtain a unique solution for the differential equation
(13), physically relevant conditions must be imposed. When B = µ = 0, there
is no need for physical mechanism to be used to determine a unique solution.
In this case, the only boundary condition is the radiation condition which will
ensure a unique solution. When q = m = 0, the acoustic waves are only
influenced by the effect of the magnetic field. As a result, there is no dissipative
mechanization and the only condition which will be used to ensure a unique
solution is the magnetic energy condition. This condition can be expressed
mathematically in the following form:

∫ ∞
0

| Vz |
2 dz <∞ . (15)

Moreover, when q ≥ 0 and B 6= 0, the magnetic energy condition is still
the only upper boundary condition. When µ, the dissipative mechanism (?????
couldn’t read this word) because of the effect of the viscosity. As a result, a
unique solution is obtained from the requirement that the average (per period)
rate of energy dissipation in a column of fluid should be finite. Since the dissi-
pation function depends on the square of the velocity gradients, this implies

µ

∫ ∞
0

| Vz |
2 dz <∞ . (16)

Consequently, the energy condition and the dissipation conditions are mathe-
matically equivalent. It follows from equation (12) that

∫ ∞
0

| T |2 dz <∞ . (17)

It will be seen that the upper boundary conditions in connection with boundary
conditions at z = 0, determine a unique solution The boundary condition at the
ground can always be made T (0) = 1 by suitably normalizing T (0). Finally,
it has to be noted that the dissipation condition is necessary and sufficient
condition to determine a unique solution.

3 Solutions and some remarks about eqn. (14)

CASE ONE: In the lower region (i.e., region below the reflecting layer) where
|Qa | ez � 1, and small values of the Newtonian cooling coefficient q, the
solution of equation (14) can be approximated by the solution of the following
differential equation

4D2T (z)− 4DT (z) +Qσ2T (z) = 0 . (18)

Consequently, when q = 0, the solution which satisfies the radiation condition
(in this case the dissipation condition is not applicable because the atmosphere
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is considered to be inviscid) and the lower boundary condition can be written
as

T (z) = A1 exp[(
1

2
+ oβa)z] , (19)

where A1 is a constant and 2βq =
√
σ2 − 1 is the adiabatic wave number. This

is exactly the solution of the first term in the differential equation (13). When
q → ∞ and σ > 1/

√
γ, the solution which satisfies the radiation condition can

be written in the following form:

T (z) = A2 exp[(
1

2
+ iβi)z] , (20)

where A2 is a constant and 2βi =
√
γσ2 − 1 is the isothermal wave number.

As a result, one of the important effects of the heat radiation is to change the
oscillatory process from the adiabatic form, below the reflecting layer, to an
isothermal one.
When q is small compared with σ, the solution of the differential equation

(18) which satisfies the radiation condition can be written as:

T (z) = A3[(
1

2
− d(q) + iβ)z] (21)

where A3 is a constant, d(q) is the damping factor in the amplitude of the wave,
and β is the wave number for small values of q compared with σ. When q = 0,
we have d(q) = 0 and β = βa for σ > 1 (because Q = 1, when q = 0). On the
other hand, when q = ∞, i.e., q is large compared with σ, we have d(q) = 0,
β → βi, (because Q → γ when q → ∞). As a result, when q = 0 the cutoff
frequency of the wave σa equals to 1. When q → ∞, we have Q → γ and the
isothermal cutoff frequency σi equals 1/

√
γ. This indicates that we have three

ranges for the frequency of the wave,

σ : σa = 1, σ < σi = 1/
√
γ and σ1 < σ < σa . (22)

CASE TWO: When |Qa|ez � 1, the structure of the problem is completely
different mathematically and physically. To obtain a general solution of the
differential equation (14) which satisfies the prescribed boundary conditions, let

ξ = −e−z/qQ = − exp(−z − δ1 −Arg(aQ)) , (23)

where δ1 = ln |aQ|. The differential equation (14) will be transformed to

[ξ(1 − ξ)D2 − 2ξD −Qσ2/4]T (ξ) = 0 , (24)

where D = d/dξ and arg(−ξ) = arg(1/aQ). Equation (24) is a special case of
the hyper-geometric equation

[ξ(1− ξ)D2 + (c− (a+ b+ 1)ξ)D − ab]T (ξ) = 0 , (25)
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with c = 0, a+ b = Qσ2/4. Solving for parameters a and b, we have

a = (1 +
√
1−Qσ2)/2 =

1

2
− d(q) + iβ , (26)

b = (1 +
√
1−Qσ2)/2 =

1

2
− d(q)− iβ . (27)

Thus the differential equation (3.7) has three regular singular points as ξ = 0,
ξ = 1 and at infinity. The point ξ0 = −1/aQ = − exp[−(σ1 + Arg(aQ))]
corresponds to z = 0, and ξ = 0 corresponds to z =∝. The point ξ = 1
corresponds to δ1 = −Arg(aQ). This argument is valid because the problem is
in dimensionless form. Moreover, the differential equation (24) has two linearly
independent solutions which can be written in the following form

T1(ξ) = ξF (a+ 1, b+ 1, 2, ξ) , (28)

and

T2(ξ) = T1(ξ) log ξ + 1/ab+Σ
∞
k=1ckξ

k , (29)

where F (a + 1, b + 1, ξ) is the hyper-geometric function. It is evident that
T1(z) = O(e

−z) and T2(z) → (1/ab). It follows from equation (1) that Vz is
proportional to T , and this implies that T2(z) does not satisfy the dissipation
condition. The solution of the differential equation (24) is, therefore, a multiple
of T1(ξ).

To find the asymptotic behavior of the solution, Arg(aQ) must be deter-
mined. The maximum value of Arg(Q) is θ0 = (γ − 1/2)

√
γ, attained when

σ/q =
√
γ. Also Arg(a) (which is denoted by φ1) is −π/2 < φ1 ≤ 0. Conse-

quently, Arg(−ξ) = Arg(1/Qa) satisfies −φ0 < arg(−ξ) < π/2, and thus will
allow us to write the solution T1(z) (using the relation (23)) in the following
form

T1(z) = F (a+ 1, b+ 1, 2, ξ)

= Γ(b− a)/bΓ2(b)ξ(−ξ)−(1+a)F (a+ 1, a− 1, 2a, ξ−1)

+(Γ(a− b)/aΓ2(a)ξ(−ξ)−(1+b)F (b+ 1, b− 1, 2b, ξ−1). (30)

This argument is valid because −π < arg(−ξ) < π and has as |Qa| → 0, the
equation (24) can be written like

T (z) ∼ [Γ(b− a)/bΓ2(b)] exp[(
1

2
− d(q) + iβ)(z + δ1 +Arg(aQ))

+[Γ(a− b)/aΓ2(a)] exp[(
1

2
+ d(q)− iβ(z + δ1 +Arg(aQ)) . (31)

Equation (31) represents the solution of the differential equation (24) which
satisfies the prescribed boundary conditions. The first term on the right repre-
sents an upward propagating wave, its amplitude decaying exponentially with
the altitude as exp[−d(q)z]. The second term is a downward traveling wave
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decaying at the same rate. Moreover, the reflection takes place at the region
z = O(−δ1 − φ) where φ = φ0φ1 and (31) can be written as:

T (z) ∼ [Γ(b− a)/bΓ2(b)]{exp[(
1

2
− d(q) + iβ)z

+RC exp[(
1

2
+ d(q)− iβ)z]} , (32)

where RC denotes the reflection coefficient and it is given by

RC = Γ(a− b)/aΓ2(a) · bΓ2(b)/Γ(b− a) exp[(2d(q) − 2iβ)(δ1 + φ) , (33)

which can be rewritten in the following form:

RC = exp[(2d(q) − 2iβ)(δ1 + iArg(RC)) . (34)

4 Magnitude of the reflection coefficient

It is well known that the pressure of the viscosity creates an absorbing and
reflecting barrier. As a result, the atmosphere can be divided into two distinct
regions. The lower region is adiabatic (when q = 0) and in it, the solution, which
satisfies the upper boundary condition (15) can be written as a linear combi-
nation of an upward and a downward propagating wave. In the upper region,
the solution decays as exp(−z). As a result, the magnitude of the reflection
coefficient depends on the nature of the force which controls the oscillatory pro-
cess in the lower regions and on the values of the Newtonian cooling coefficient
compared with those of the frequency of the wave. Consequently, several cases
must be considered to obtain the magnitude of the reflection coefficient. First,
when the viscosity dominates the oscillatory process, (i.e., in the regions of the
solar atmosphere where the effect of the magnetic field is negligible), below the
reflecting barrier, we have the following cases:

(A) When q = 0 and σ > 1, we have a = 1
2 + iβa, b =

1
2 − iβa, and Arg(RC) =

−π/2. As a result, the magnitude of the reflection coefficient

|RC| = |RCa| = exp(−πβa) . (35)

(B) When q →∝, (i.e., when q is very large compared with the frequency
of the wave, σ), and σ > 1/

√
γ, one obtains a = 1

2 + iβi, b =
1
2 − iβi

and Arg(RC) = −π/2. Consequently, the magnitude of the reflection
coefficient

|RC| = |RCi| = exp(−πβi) . (36)

(C) When the values of the Newtonian cooling coefficient are not very large
compared with the frequency of the wave, we have

exp(−πβi) ≤ |RC| ≤ exp(−πβa) . (37)
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It is clear that the magnitude of the reflection coefficient is less than one.
Consequently, part of the energy is absorbed in the reflecting layer and this may
contribute to the heating of the solar atmosphere. The other part is reflected
downward.

When the magnetic field dominates the oscillatory process in the lower re-
gion, in the regions like the sun spots, we have the following case:

(D) When q = 0 or q → ∞, we have Arg(RC) = 0. Consequently, the
magnitude of the reflecting coefficient:

|RCa| = 1 . (38)

As a result, the magnetic field creates a non-absorbing reflecting layer be-
cause of the dissipative nature of the magnetic field. In addition, the change of
the oscillatory process from the adiabatic form to the isothermal one does not
influence the nature of the reflecting layer produced by the magnetic field, which
results from the dissipationless nature of the magnetic field. On the contrary,
the change in the oscillatory process, from the adiabatic form to the isothermal
one influences only the nature of the reflecting layer created by the effect of the
viscosity. These observations are based on the reduction in magnitude of the
reflection coefficient when the viscosity dominates the oscillatory process.

5 Computing scheme and results of computa-

tions

The results of the previous section are asymptotically valid as |a| → 0 or |Qa| →
0. In order to examine the nature of the reflecting layer and its influences on
the reflection process, the problem is solved numerically and the results are
compared with those of the previous sections. To obtain a reasonable result,
the value of |a| is taken to be a very small one in order to give a sufficient range
for the waves to propagate below the reflecting layer because the existence of
the lower region depends mainly on the range of |a|. Also to determine the
values of q for which the oscillatory process, in the lower region, changes from
an adiabatic form to an isothermal one. The boundary value problem is solved
numerically for several values of a, µ, and q. Using central differences, we can
replace the differential equation (24) by the difference equation

AnTj+1 +BnTj + CnTj−1 = 0 . (39)

Using the substitution

Tj−1 = an−1Tj + βn−1 , (40)

then equation (5.1) can be written as:

Tj = anTj+1 + βn , (41)
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where

an = −[Bn + Cnan−1]
−1An , (42)

βn = −[Bn + Cnan−1]Cnβn−1 . (43)

The system was solved on an interval 0 ≤ z ≤ L sufficiently large enough
to allow T to reach its limit values. The dissipation condition is replaced by
TN = TN−1, where N is the index of the point z = L. The problem was
solved by the standard method in which the Tj is computed from equation
(5.3) by backward integration, while an and βn in equations (5.4) and (5.5)
are computed by forward integration. The problem was solved for |a| = 1012

which is sufficiently small values to test the asymptotic formula, and for different
values of q, a1, µ, and of the wavelength 2π/β. A value of 30 or 40 was more
than enough for L. The results of the computations are shown in figures 1, 2, 3,
4, 5, and 6. Moreover, let M and m denote the maximum and minimum values
of the oscillation amplitude and d =

√
M/m, |RC| can be computed from

|RC| = (d− 1)/(d+ 1) . (44)

The numerical and asymptotic results are in agreement to five places.
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