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A one dimensional Hammerstein problem ∗

Jun Hua & James L. Moseley

Abstract

Nonlinear equations of the form L[u] = λg(u) where L is a linear
operator on a function space and g maps u to the composition function
g ◦ u arise in the theory of spontaneous combustion. If L is invertible,
such an equation can be written as a Hammerstein equation, u = B[u]
where B[u] = λL−1[g(u)]. To investigate the importance of the growth
rate of g and the sign and magnitude of λ on the number of solutions
of such problems, in this paper we consider the one-dimensional problem
L(x) = λg(x) where L(x) = ax.

1 Introduction

We wish to investigate the number of solutions (and their computation) to
problems of the form

L[u] = λg(u) (1.1)

where L : V →W is a linear operator and V and W are function spaces whose
domains are the same set, say D, and whose codomains are the real numbers
R. If u ∈ V and x ∈ D, then the value of the function g(u) at x is g(u(x))
where g : R→ R. Thus we use the symbol g for a real valued function of a real
variable as well as for the (nonlinear Nemytskii) operator from V to W that
this function defines by the composition g ◦ u. An example is

−∆u = λeu ~x = [x, y, z]T ∈ Ω ⊆ R3 (1.2)

u(~x) = 0 ~x ∈ ∂Ω

Here L is the negative of the Laplacian operator in three spatial dimensions with
homogeneous Dirichlet boundary conditions, ~x is a point in R3, Ω is an open
connected region in R3, ∂Ω is its boundary, V = {u ∈ V1 : u(~x) = 0 ∀ ~x ∈ ∂Ω}
where V1 = C

2(Ω,R) ∩ C(Ω̄,R), and W = C(Ω̄,R). Hence D = Ω̄. Such
problems arise in the theory of combustion (Deberness [1], Moseley [2, 3, 4, 5]).
For this problem in R2, it is known that for λ < 0, there exists a unique solution.
However, for λ > 0 and large, there is no solution. But for λ > 0 and small,
there are at least two solutions. If λ = 0, the solution set is the null space of
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48 A one dimensional Hammerstein problem

L and since L is invertible the problem has only the trivial solution u = 0. If
g(u) = u, (1.1) is a spectral problem for L. Hence (1.1) is sometimes referred
to as a nonlinear eigenvalue problem.
If L is invertible, then (1.1) can be written as the Hammerstein equation

u− λL−1[g(u)] = 0. (1.3)

A solution of (1.3) is a fixed point of the combined operator B = λ(L−1 ◦ g).
The level of difficulty of problems of type (1.1) or (1.3) varies greatly depending
on the number of elements in D, the value of n, and the operator L. We list
several categories, starting with the easiest.

1. One dimensional problems (i.e., D contains only one element).

2. Multidimensional problems (i.e., D is finite, but contains two or more
elements).

3. Infinite dimensional problems with D ⊆ R (n = 1) and L a first, second,
or higher order differential operator.

4. Infinite dimensional problems with D ⊆ Rn , n = 2, 3, 4, . . . and L a first,
second, or higher order partial differential operator.

Since L is linear, we at most have linear coupling and often this coupling is
weak. The coupling of L−1 may be stronger than the coupling of L and is a
reason to examine (1.1) directly even when L is invertible. To investigate the
fundamental importance of the growth rate of g and the sign and magnitude of
λ on the number of solutions to problems of this type, in this paper we consider
the one dimensional nonlinear eigenvalue problem

ax = λg(x). (1.4)

Here L : R→ R is L(x) = ax, g : R → R is a continuous function and a and λ
are parameters. (If a 6= 0, L is invertible.) To this end, we first consider two
types of behavior for a continuous function f : R → R (i.e., f ∈ C(R,R) =
{f : R → R : f is continuous ∀x ∈ R}). If L is invertible (a 6= 0), we take
f(x) = x − kg(x) where k = λ/a. Although less restrictive conditions on f
can be obtained, for convenience we assume that f has a continuous second
derivative for all x in R; that is, f ∈ C2(R, R) = {f : R→ R : f ′′(x) exists and
is continuous ∀x ∈ R}. We are interested in sufficient conditions on f that will
determine the number of solutions of the equation

f(x) = 0. (1.5)

The obvious advantage of considering the scalar equation (one dimensional prob-
lem) (1.4) or (1.5) over an abstract Hammerstein equation or a Hammerstein
equation of the type (1.1) where D is finite or infinite dimensional is that much
more (often everything) can be said for many functions g(x) (and classes of
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functions). However, the techniques investigated here are quite different from
the standard fixed point theorems (e.g., contraction mapping theorem and the
Brouwer and Schauder fixed point theorems) and are expected reveal distinctive
new results when extended to higher dimensions including methods for solving
multidimensional problems.

2 Linear and quadratic properties

In addition to f ∈ C2(R,R) we also assume some of the following:

H1 limx→∞ f(x) = +∞

H2 limx→∞ f(x) = −∞

H3 limx→−∞ f(x) = −∞

H4 limx→−∞(x) = +∞

H5 f ′(x) > 0

H6 f ′(x) < 0

H7 f ′′(x) > 0

H8 f ′′(x) < 0

We consider properties that f : R→ R may have that are also possessed by the
linear function F (x) = ax+ b (a 6= 0):

Definition If f(x) satisfies H1 and H3, we say that it is mainly increasing.
If it satisfies H1, H3 and H5, we say that it is consistently increasing. On
the other hand, if f(x) satisfies H2 and H4, we say it is mainly decreasing.
If it satisfies H2, H4, and H6, we say it is consistently decreasing. If f(x)
is mainly increasing or decreasing, then we say f(x) is mainly monotonic. If
f(x) is consistently increasing or decreasing, then we say f(x) is consistently
monotonic.

For completeness we review a theorem that establishes the existence and
uniqueness of solutions to (1.5) if f(x) is mainly or consistently monotonic.
Like the Jordan Curve Theorem, it is geometrically obvious and an analytic
proof can be given [8].

Theorem 2.1 If a function f is mainly monotonic, then for any c in R, there
exists at least one x in R such that f(x) = c. If the function is consistently
monotonic, then for any c in R, there exists exactly one x in R such that f(x) =
c.

If f(x) is consistently monotonic it is similar to the linear function F (x) =
ax + b (a 6= 0) in that (1.5), like F (x) = 0, has exactly one solution. We say
that f(x) has the linear property. We also consider some properties that f(x)
may have that are also possessed by the quadratic function G(x) = ax2+ bx+ c
(a 6= 0).
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Definition If f(x) satisfies H1,H4 (H2,H3), we say f(x) opens upwards
(downwards). If f(x) satisfies H1, H4, H7 (H2, H3, H8), we say f(x) is
completely concave up (down).

Again for completeness, we review two theorems that establish when (1.5)
has exactly zero, one, or two solutions. Again they are geometrically obvious
and can be proved analytically [8].

Theorem 2.2 If f opens upwards (downwards), then there exists at least one
x0 ∈ R such that f(x0) = minf(x) (f(x0) = max f(x)).

Theorem 2.3 If f opens upwards (downwards) and m = f(x0) = min f(x)
(m = f(x0) = max f(x)), then

1. c < m (c > m) implies that there is no x such that f(x) = c,

2. c = m implies that there is at least one x such that f(x) = c, namely
x = x0,

3. c > m (c < m) implies that there are at least two (distinct) values of x
for which f(x) = c.

If f(x) is completely concave up or down, we see that f(x) has similar
properties to the quadratic function G(x) = ax2 + bx+ c (a 6= 0) in that (1.5),
like G(x) = 0, has exactly 0, 1, or 2 solutions. We say f(x) has the quadratic
property.

3 Zero and nonzero values for the parameters

Returning to (1.4) we consider whether the values for the parameters a and λ
are zero or not. Recall that if λ = 0 the solution set of (1.1) is just the null space
of L. If L is the zero operator and λ 6= 0, then solutions are those functions
u which map all values of x into the zeros of g. If L is the zero operator and
λ = 0, then all u in V are solutions. For completeness, we stand these results
explicitly for (1.4).

Theorem 3.1 If a = λ = 0, then ∀x ∈ R, x is a solution. If a 6= 0, λ = 0, we
have x = 0 is the unique solution. If a = 0, λ 6= 0, then x is a solution of (1.4)
if and only if x is a solution of g(x) = 0.

From now on we assume a 6= 0 and λ 6= 0. We may then divide by a and
have one nonzero parameter.

Theorem 3.2 If a 6= 0, λ 6= 0, the solution set of ax = λg(x) is the same as
the solution set of

x = kg(x) (3.1)

where k = λ/a.
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4 Conditions for infinite limits as x→ ±∞

We let
f(x) = x− kg(x)(k 6= 0) (4.1)

which we may also write as

f(x) = x− kg(x) = x

(
1−
kg(x)

x

)
= g(x)

(
x

g(x)
− k

)
, (4.2)

provided x 6= 0 and g(x) 6= 0. From this it is easy to establish that limx→∞ f(x) =
∞ for the following conditions. Although less restrictive conditions can be
stated, for convenience we consider only limit conditions on g(x), g(x)/x, and
x/g(x) that are finite or ±∞.

PP1 limx→∞ g(x) = −∞, limx→∞ x/g(x) = M , M ∈ R and M < k (e.g.
g(x) = −1/3x+ 2, k = −1)

PP2 limx→∞ g(x) = −∞ and k > 0. (e.g. g(x) = −ex or g(x) = −x2 and
k = 2)

PP3 limx→∞ g(x) =M , (e.g. g(x) = Arctan x)

PP4 limx→∞ g(x) =∞ and k < 0. (e.g. g(x) = ex or g(x) = x2 and k = −1)

PP5 limx→∞ g(x) =∞ and limx→∞ x/g(x) =∞. (e.g. g(x) = x1/3)

PP6 limx→∞ g(x)/x =M , and kM < 1. (e.g. g(x) = 3x+ 2 and k = −1)

PP7 limx→∞ g(x) =∞, limx→∞ x/g(x) =M , and M > k. (e.g. g(x) = 3x+ 2
and k = −1)

To obtain conditions such that limx→∞ f(x) = −∞ we must completely
counteract the effect of the linear term.

PN1 limx→∞ g(x) = −∞, limx→∞ x/g(x) = M , and M > k. (e.g. g(x) =
−3x+ 2 and k = −2)

PN2 limx→∞ g(x)/x = M , and kM > 1. (e.g. g(x) = 2x+ Arctan x and
k = 1)

PN3 limx→∞ g(x) =∞, limx→∞ x/g(x) =M andM < k. (e.g. g(x) = 3x2+4
and k = 1)

Similar to the conditions above, we can obtain properties as x approaches −∞.
It is easy to establish that limx→−∞ f(x) = −∞ for the following conditions.

NN1 limx→−∞ g(x) = ∞, limx→−∞ x/g(x) = M and M < k. (e.g. g(x) =
−1/3x, k = −1 or g(x) = e−x, k = 1)

NN2 limx→−∞ g(x) = ∞ and k > 0. (e.g. g(x) = e−x or g(x) = −x2 and
k = 1)
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NN3 limx→−∞ g(x) =M (e.g. g(x) = e
x or g(x) = Arctan x)

NN4 limx→−∞ g(x) = −∞ and k < 0. (e.g. g(x) = −e−x or g(x) = −x2 and
k = −1)

NN5 limx→−∞ g(x) = −∞ and limx→−∞ x/g(x) =∞. (e.g. g(x) = x1/3)

NN6 limx→−∞ g(x)/x =M and kM < 1. (e.g. g(x) = 3x+ 2 and k = −2)

NN7 limx→−∞ g(x) = −∞, limx→−∞ x/g(x) = M , and M > k. (e.g. g(x) =
3x+ 2 and k = −1)

Finally, we can establish that limx→−∞ f(x) =∞ for the following conditions.

NP1 limx→−∞ g(x) = −∞, limx→−∞ x/g(x) = M , and M < k. (e.g. g(x) =
3x+ 2 and k = 2)

NP2 limx→−∞ g(x)/x = M and kM > 1. (e.g. g(x) = 2x+Arctan(x) and
k = 1)

NP3 limx→−∞ g(x) = ∞, limx→−∞ x/g(x) = M and M > k. (e.g. g(x) =
3x2 + 4 and k = −1)

5 Linear property

For f(x) given by (4.1), we consider conditions such thatf(x) is mainly increas-
ing (and mainly decreasing). We then add conditions so that f(x) is consistently
increasing (and consistently decreasing) so that it has the linear property. We
begin by looking at conditions so that f(x) is mainly increasing when k > 0.
Of those conditions such that limx→−∞ f(x) =∞, only PP4 explicitly requires
k < 0 and must be eliminated. For PP1 we note

Theorem 5.1 If limx→∞ g(x) = −∞ and limx→∞ x/g(x) =M , then M ≤ 0.

Proof. limx→∞ g(x) = −∞, then there exists M0 > 0 such that ∀x > M0,
g(x) < 0. Hence ∀x > M0, x/g(x) < 0. Hence limx→∞ x/g(x) =M ≤ 0.

Since we are assuming k > 0, the requirement that k > M in PP1 is su-
perfluous. Also assuming k > 0 allows us to combine PP2 and PP3 into one
statement. For emphasis, we modify the new statement (PPKP2) as well as
PP1 and PP7 (PPKP1 and PPKP5) to include the constraint k > 0. The sign
of k has no impact on PP5 (PPKP3). The impact of k > 0 on PP6 (PPKP4)
is examined later. We do a similar reorganization for those cases for which
limx→−∞ f(x) = −∞. Hence we have the following sufficient conditions for the
function f(x) = x− kg(x) to be mainly increasing.

Theorem 5.2 Suppose k > 0 and one of the following hypothesis holds:

PPKP1 limx→∞ g(x) = −∞, limx→−∞ x/g(x) =M , and k > 0 (≥M). (PP1)
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PPKP2 limx→∞ g(x) = −∞ or M > 0 and k > 0. (PP2 or PP3)

PPKP3 limx→∞ g(x) =∞ and limx→∞ x/g(x) =∞. (PP5)

PPKP4 limx→∞ x/g(x) =M and kM > 1. (PP6)

PPKP5 limx→∞ g(x) =∞, limx→∞ x/g(x) =M and M > k > 0. (PP7).

Suppose further that one of the following hypothesis holds

NNKP1 limx→−∞ g(x) = ∞, limx→−∞ x/g(x) = M , and k > 0 (k ≥ M).
(NN1)

NNKP2 limx→−∞ g(x) =∞ or M > 0 and k > 0. (NN2 or NN3)

NNKP3 limx→−∞ g(x) = −∞ and limx→−∞ x/g(x) =∞. (NN5)

NNKP4 limx→−∞ x/g(x) =M and kM < 1. (NN6)

NNKP5 limx→−∞ g(x) =∞, limx→−∞ x/g(x) =M , and M > k > 0. (NN7)

Then f given by (4.1) is mainly increasing.

Note that by requiring k > 0, PPKP1 is now contained in PPKP2 and
can be eliminated. Similarly for NNKP1. To consider PPKP4 and PPKP5,
we note that these depend on the growth rate of g(x) as compared with x. If
limx→∞ g(x)/x = M and M 6= 0, then the growth rate of g(x) is essentially
linear. In this case the linear part of g(x) can be moved to the other side of
the equation and combined with x. Hence we really wish to consider only the
case when M = 0. But if M = 0 and k > 0, neither PPKP4 or PPKP5 is
possible. We consider the details. Suppose limx→∞ g(x)/x = M , M 6= 0 and
limx→−∞ g(x)/x = N , N 6= 0. We then consider

g1(x) =

{
g(x)−Mx x > 0
g(x)−Nx x < 0

(5.1)

Theorem 5.3 Suppose limx→∞ g(x)/x = M , M 6= 0 and limx→−∞ g(x)/x =
N , N 6= 0. Let g1(x) be given by (5.1).
Then limx→∞ g1(x)/x = 0, limx→−∞ g1(x)/x = 0,
limx→∞ g1(x)/g(x) = 0, and limx→−∞ g1(x)/g(x) = 0.

Proof. limx→∞ g1(x)/x = limx→∞(g(x) −Mx)/x = limx→∞(g(x)/x −M) =
M −M = 0. Similarly for limx→−∞ g1(x)/x = limx→∞ g1(x)/g(x) = 0,
limx→∞(g(x)Mx)/g(x) = limx→∞(1−M/(g(x)/x)) = limx→∞(1−M/M) = 0.
Similarly for limx→−∞ g1(x)/g(x). ♦

Thus when limx→∞ g(x)/x = M , M 6= 0 and/or limx→−∞ g(x)/x = N ,
N 6= 0, we rewrite (3.1) as

x+ k(g1(x) − g(x)) = kg1(x).
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Hence f can be written as f(x) = x+k(g1(x)−g(x))−kg1(x) = x(1+k(g1(x)−
g(x))/xkg1(x)/x) = g1(x)(x/g1(x) + k)). Conditions can now be obtained so
that f(x) approaches ±∞ as x approaches ±∞ using g1(x) instead of g(x).
However, care must be taken since x+k(g1(x)− g(x)) need not be linear, but is
only guaranteed to be “piecewise” linear. Also g1(x) is continuous at x = 0, but
not differentiable unless M = N . This is only a minor inconvenience and well
worth the elimination of a linear component in g by moving it to the other side
of the equation. This is a small price to pay to reap the benefits of the function
on the right hand side having a truly nonlinear growth rate. We leave such
issues to future work and from now on only allow limx→∞ g(x)/x = M where
M = 0 or M = ±∞ and limx→−∞ g(x)/x = N where N = 0 or N = ±∞. We
now modify Theorem 7 to consider only these possibilities.

Theorem 5.4 Suppose k > 0 and one of the following hypothesis holds:

PPKPN1 limx→∞ g(x) = −∞ or 0, (e.g., g(x) = −ex or g(x) = −x3),

PPKPN2 limx→∞ g(x) = ∞ and limx→∞ x/g(x) =∞. (e.g., g(x) = x1/3).

Suppose further that one of the following hypothesis holds:

NNKPN1 limx→−∞ g(x) =∞ or 0, (e.g., g(x) = −exor g(x) = −x3),

NNKPN2 limx→−∞ g(x) = −∞ and limx→−∞ x/g(x) = ∞, (e.g., g(x) =
x1/3).

Then the function f given by (4.1) is mainly increasing.

Similarly, we consider mainly increasing functions f(x) when k < 0.

Theorem 5.5 Suppose k < 0 and one of the following hypothesis holds:

PPKNN1 limx→∞ g(x) =∞ or 0, (e.g., g(x) = ex or g(x) = x3),

PPKNN2 limx→∞ g(x) = −∞ and x/g(x) = −∞. (e.g., g(x) = −x1/3).

Suppose further that one of the following hypothesis holds:

NNKNN1 limx→−∞ g(x) = −∞ or limx→−∞ g(x) = 0, (e.g., g(x) = exor
g(x) = x3).

NNKNN2 limx→−∞ g(x) = ∞ and limx→−∞ x/g(x) = −∞ (e.g., g(x) =
−x1/3).

Then the function f given by (4.1) is mainly increasing.

We now consider functions f(x) that are mainly decreasing. Following the
previous procedure, we retain only the cases where limx→∞ g(x)/x =M where
M = 0 or ±∞ and limx→−∞ g(x)/x = N where N = 0 or ±∞. We first consider
the case of k > 0. This eliminates PN1 and PN2 as well as NP2 and NP3.
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Theorem 5.6 Suppose k > 0, if

PNKPN1 limx→∞ g(x) =∞, limx→∞ x/g(x) = 0 (e.g., g(x) = sinhx) and

NPKPN1 limx→−∞ g(x) = −∞, limx→−∞ x/g(x) = 0, (e.g., g(x) = sinhx)

then f(x) is mainly decreasing.

Now, we consider the case k < 0.

Theorem 5.7 Suppose k < 0, if

PNKNN1 limx→∞ g(x) = −∞, limx→∞ x/g(x) = 0 (e.g., g(x) = sinhx) and

NPKNN1 limx→−∞ g(x) =∞, limx→−∞ x/g(x) = 0, (e.g., g(x) = − sinhx)

then f(x) is mainly decreasing.

Corollary 5.8 If a 6= 0, λ 6= 0 and
k > 0, PPKPN1 or 2, and NNKPN1 or 2 (mainly increasing)

or
k < 0, PPKNN1 or 2, and NNKNN1 or 2 (mainly increasing)

or
k > 0, PNKPN1, and NPKPN1 (mainly decreasing)

or
k > 0, PNKNN1, and NPKNN1 (mainly decreasing)

so that f(x) given by (4.1) is mainly monotonic, then (3.1) (and (1.3)) has at
least one solution.

We now investigate sufficient conditions for f(x) given by (4.1) to be con-
sistently monotonic. Since we require f ′(x) > 0, we obtain conditions on k and
g(x).

Theorem 5.9 If a 6= 0, λ 6= 0, k = λ/a > 0, and
PPKPN1 or 2, NNKPN1 or 2, and g′(x) > 1/k(consistently increasing)

or
PNKPN1, NPKPN1, and g′(x) < 1/k (consistently decreasing)

then the function f(x) given by (4.1) is consistently monotonic.

Theorem 5.10 If a 6= 0, λ 6= 0, k = λ/a < 0, and
PPKNN1 or 2 , NNKNN1 or 2, and g′(x) > 1/k (consistently increasing)

or
PNKNN1 or 2, NPKNN1 and g′(x) < 1/k (consistently decreasing)

then the function f(x) given by (4.1) is consistently monotonic.

Corollary 5.11 If a 6= 0, λ 6= 0 and

k > 0, PPKPN1 or 2, NNKPN1 or 2, and g′(x) > 1/k (consistently increas-
ing)
or
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k < 0. PPKNN1 or 2, NNKNN1 or 2, and g′(x) > 1/k (consistently in-
creasing)
or
k > 0, PNKPN1, NPKPN1, and g′(x) < 1/k (consistently decreasing)

or
k < 0, PNKNN1, NPKNN1, and g′(x) < 1/k (consistently decreasing)

so that the function f(x) given by (4.1) is consistently monotonic, then (3.1)
(and (1.3)) has exactly one solution.

6 Quadratic property

We now wish to consider cases when f opens upwards or opens downwards. As
with the linear cases, we consider the sign of k separately and only cases where
the growth rate of g(x) is not linear. We begin with the case where f opens
upwards and k > 0.

Theorem 6.1 Suppose k > 0 and one of the following hypothesis holds:

PPKPN1 limx→∞ g(x) = −∞ or 0, (e.g., g(x) = −e−x).

PPKPN2 limx→∞ g(x) = ∞ and limx→∞ x/g(x) = ∞. (e.g., g(x) = e−x +
x1/3).

Suppose further that the following hypothesis holds:

NPKPN1 limx→−∞ g(x) = −∞ and limx→−∞ x/g(x) = 0. (e.g., g(x) = −e−x

or g(x) = −e−x + x1/3.

Then the function f(x) given by (4.1) opens upwards.

Now we consider the case where f opens upwards and k < 0.

Theorem 6.2 Suppose k < 0 and one of the following hypothesis holds:

PPKNN1 limx→∞ g(x) =∞ or 0, (e.g., g(x) = e−x)
or

PPKNN2 limx→∞ g(x) = −∞ and limx→∞ x/g(x) = −∞. (e.g., g(x) = e−x−
x1/3

Suppose further that the following hypothesis holds:

NPKNN1 limx→−∞ g(x) =∞ and limx→−∞ x/g(x) = 0. (e.g., g(x) = e−x or
g(x) = e−x − x1/3).

Then the function f(x) given by (4.1) opens upwards.

Now we consider the case where f opens downwards and k > 0.
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Theorem 6.3 Suppose k > 0 and the following hypothesis holds:

PNKPN1 limx→∞ g(x) = ∞ and limx→∞ x/g(x) = 0. (e.g., g(x) = x2 or
g(x) = ex + x1/3).

Suppose further that one of the following hypothesis holds:

NNKPN1 limx→−∞ g(x) =∞ or 0, (e.g., g(x) = x2)

NNKPN2 limx→−∞ g(x) = −∞ and limx→−∞ x/g(x) = ∞. (e.g., g(x) =
ex + x1/3).

Then the function f(x) given by (4.1) opens downwards.

Now we consider the case that k < 0.

Theorem 6.4 Suppose k < 0 and the following hypothesis holds:

PNKNN1 limx→∞ g(x) = −∞ and limx→∞ x/g(x) = 0. (e.g., g(x) = −x2 or
g(x) = −ex − x1/3.

Suppose further that one of the following hypothesis holds:

NNKNN1 limx→−∞ g(x) = −∞ or 0, (e.g., g(x) = −x2)

NNKNN2 limx→−∞ g(x) = ∞ and limx→ −∞x/g(x) = −∞. (e.g., g(x) =
−e−x − x1/3).

Then the function f(x) given by (4.1) opens downwards.

We next state theorems when there exists no solution, at least one solution,
and at least two solutions.

Theorem 6.5 Suppose m = minx∈R f(x) = f(x0) where f
′(x0) = 0 and

k > 0, PPKPN1 or 2, and NPKPN1, (e.g., g(x) = −e−x)
or

k < 0, PPKNN1 or 2, and NPKNN1. (e.g., g(x) = e−x).

Then f given by (4.1) opens upward. Hence

(C1) m > 0 implies (3.1) (and (1.3)) has no solution,

(C2) m = 0 implies (3.1) (and (1.3)) has at least one solution, namely x = x0.

(C3) m < 0 implies (3.1) (and (1.3)) has at least two solutions, say x1 and
x2. Furthermore, we may assume x1 < x0 < x2.

Similarly,

Theorem 6.6 Suppose m = maxx ∈ Rf(x) = f(x0) where f ′(x0) = 0 and
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k > 0, PNKPN1, and NNKPN1 or 2, (e.g., g(x) = x2)
or

k < 0, PNKNN1, and NNKNN1 or 2. (e.g., g(x) = −x2).

Then f given by (4.1) opens downward. Hence

(C1) m < 0 implies (3.1) (and (1.3)) has no solution,

(C2) m = 0 implies (3.1) (and (1.3)) has at least one solution, namely x = x0.

(C3) m > 0 implies (3.1) (and (1.3)) has at least two solutions, say x1 and
x2. Furthermore, we may assume x1 < x0 < x2

Note that if f is given by (4.1), then f ′′(x) = kg′′(x). Hence we can consider
cases where f is completely concave up or down. We can then state conditions
where there exist no solutions, exactly one solution, or exactly two solutions.

Theorem 6.7 Suppose m = minx∈R f(x) = f(x0) where f
′(x0) = 0 and

k > 0, PPKPN1 or 2, NPKPN1, and ∀x ∈ R, g′′(x) > 0
or

k < 0, PPKNN1 or 2, NPKNN1 and ∀x ∈ R, g′′(x) < 0.
Then f given by (4.1) is completely concave up. Hence

(C1) m > 0 implies (3.1) (and (1.3)) has no solution,

(C2) m = 0 implies (3.1) (and (1.3)) has exactly one solution, namely x = x0.

(C3) m < 0 implies (3.1) (and (1.3)) has exactly two solutions, say x1 and x2.
Furthermore, we may assume x1 < x0 < x2.

Similarly,

Theorem 6.8 Suppose m = maxx∈R f(x) = f(x0) where f
′(x0) = 0 and

k > 0, PNKPN1, NNKPN1 or 2, and ∀x ∈ R, g′′(x) < 0
or

k < 0, PNKNN1, NNKNN1 or 2, and ∀x ∈ R, g′′(x) > 0.
Then f given by (4.1) is completely concave down. Hence

(C1) m < 0 implies (3.1) (and (1.3)) has no solution,

(C2) m = 0 implies (3.1) (and (1.3)) has exactly one solution, namely x = x0.

(C3) m > 0 implies (3.1) (and (1.3)) has exactly two solutions, say x1 and x2.
Furthermore, we may assume x1 < x0 < x2.
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7 Future work

In the future, we will consider multidimensional systems beginning with the
scalar equations

ax+ by = λg(x) (7.1)

cx+ dy = λg(y). (7.2)

These can be written as the vector or matrix equation

A~x = λ~g(~x) (7.3)

where

A =

[
a b
c d

]
, ~x =

[
x
y

]
, and ~g(~x) =

[
g(x)
g(y)

]
.

Extensions to n dimensions should follow. The problem (7.3) has five parameters
in addition to the function g. If b 6= 0, (7.1) may be solved for y and substituted
into (7.2) to obtain a single equation. The steps in the above process can then
be followed to obtain conditions where the linear property of the quadratic
property obtains for (7.3). This will include direct applications of the theorems
in this paper. Hence we will obtain linear conditions where (7.3) has exactly
one solution as well as quadratic conditions where there are no solutions or
exactly one or two solutions. Tridiagonal matrices should also be amenable to
this process.

8 Summary

We give sufficient conditions to determine exactly the number of solutions for the
one dimensional nonlinear eigenvalue problem ax = λg(x). We first considered
the cases when a or λ (or both) are zero. We then assumed a 6= 0, λ 6= 0, let
k = λ/a and focused on the solution set of f(x) = 0. For any function f(x)
we then defined the linear and quadratic properties depending on the limits of
f as x approaches ±∞, and on its monotonicity and concavity properties. We
then considered sufficient conditions on k and g(x) so that f(x) = x − kg(x)
approaches ±∞ as x approaches ±∞ and hence obtained sufficient conditions
for f(x) to be mainly monotonic and consistently monotonic. This allowed us
to establish sufficient conditions so that f(x) has the linear property and hence
conditions so that ax = λg(x) has at least one and exactly one solution. We
also gave sufficient conditions for f(x) to open upwards and downwards and to
be completely concave up and down so that f has the quadratic property. This
leads to sufficient conditions so that ax = λg(x) has no solution, at least one
solution, and at least two solutions as well as sufficient conditions where exactly
one solution, and exactly two solutions exist. Examples are given for both the
linear and quadratic cases. Future work on multidimensional systems includes
two dimensional problems and tridiagonal systems.
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