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Oscillation of the solution to a singular

differential equation ∗

Alexandra Kurepa & Hugh Weithers

Abstract

Let u be a solution to the initial-value problem

u′′(t) + N−1
t
u′(t) + u(t) + u(t)|u(t)|4/(N−2) = 0, t ∈ (0, T ]

u(0) = 1
2
, u′(0) = 0 .

In this paper we show that if N ≤ 6, then the distance between the two
consecutive zeroes of u is “close” to π. The proof is based on an energy
analysis and the Sturm comparison theorem.

1 Introduction

We consider the boundary-value problem

u′′(t) + N−1
t
u′(t) + u(t) + u(t)|u(t)|s = 0 , t ∈ (0, T ] (1.1)

u(0) = d, u′(0) = 0 ,

where s = 4
N−2 , and d and T are given real numbers. These initial-value

problems arise in the study of radially symmetric solutions of elliptic boundary-
value problems of the type

∆u(x) + u(x) + u(x)|u(x)|s = 0, x ∈ Ω, (1.2)

u(x) = 0, x ∈ ∂Ω

where Ω is a ball in RN of radius T . Since the solutions of (1.1) that satisfy

u(T ) = 0 (1.3)

are radially symmetric solutions to (1.2) the study of (1.2) is reduced to the
study of (1.1) subject to the boundary condition (1.3). Furthermore, the non-
linearity involved in the equation has the so-called critical Sobolev exponent
growth, which raises questions regarding the existence as well as multiplicity of

∗1991 Mathematics Subject Classifications: 34B15, 34A10, 35J65.
Key words and phrases: critical exponent, singular equation, Sturm comparison theorem.
c©1999 Southwest Texas State University and University of North Texas.
Published November 24, 1999.

19



20 Oscillation of the solution

solutions. The study of boundary value problems involving the critical Sobolev
exponent N+2N−2 , where N is the dimension of the space, has been of great inter-
est because a number of problems in geometry and physics, such as Yambe’s
problem lead to equations involving critical exponents. It is known that prob-
lem (1.2) has infinitely many radially symmetric solutions with arbitrary many
nodal curves if N > 7 (see [7]). The case N = 3, 4, 5, 6 is still partially open.
It has been proven (see [5]) that for N = 3, 4 there are finitely many solutions.
Because of the unresolved problems for N ≤ 6 we consider that case and con-
centrate on the analysis of the oscillation of solutions to (1.1). Arguments of the
contraction mapping principle (see [8]) show that problem (1.1) has a unique so-
lution u(·, d) on [0, T ]. In this paper we concentrate on estimating the zeroes of
u for the case N ≤ 6, which generalizes the previously proven result for N = 6.
We let d = 1/2.
Our main result is the following theorem:

Theorem 1.1 If u(·, 1
2 ) is a solution to (1.1) and N < 6 then

π − 0.035 < xi+1 − xi < π + 0.065, for i ≥ 3,

π − 0.04 < xi+1 − xi < π + 0.1585, for i = 1, 2 ,

where x1 < x2 < x3 < . . . < xn < . . . denote the zeroes of u(·,
1
2 ).

Similar estimates are proven for the case N = 6 in [6]. The proof of Theo-
rem 1.1 is based on the energy analysis and the Sturm comparison theorem. The
framework of the proof is the mathematical induction that requires a delicate
energy analysis of the solution u at the first three zeroes. For the sake of clarity,
we state some preliminary results obtained in [6] without proof.

2 Some Preliminary Results

By using the Pohozaev’s identity in [6] we show that (see also [3, 4, 10]).

Lemma 2.1 For 0 < t we have

tN−1H(t) =

∫ t
0

rN−1u2(r) dr ,

where

H(t) = t

(
(u′(t))2

2
+
|u(t)|s+2

s+ 2
+
|u(t)|2

2

)
+
N − 2

2
u(t)u′(t)

= tE(t) +
N − 2

2
u(t)u′(t) . (2.1)

The following lemma gives an inequality that is crucial in analyzing energy
of a solution at any two consecutive zeroes.

Lemma 2.2 Let xi and xi+1 denote two consecutive zeroes of u(·,
1
2 ). Then

E(xi+1) ≤
E(xi)

N

{
(N − 1)

(
xi

xi+1

)N
+ 1

}
.
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3 Analysis at the First Three Zeroes of u(·, 12)

The analysis and the proof in the remainder of this paper will be conducted for
the case N = 3, 4, 5. In this section we estimate the location of the first three
zeroes of u(·, 12 ) numerically using Maple and obtain,
If N = 3 then

3.1 < x1 < 3.2, 6.2 < x2 < 6.3, 9.4 < x3 < 9.5 12 < x4. (3.1)

If N = 4 then

3.6 < x1 < 3.7, 6.8 < x2 < 6.9, 10.0 < x3 < 10.1 . (3.2)

If N = 5 then

4.2 < x1 < 4.3, 7.4 < x2 < 7.5, 10.6 < x3 < 10.7 . (3.3)

Next, we conduct the energy analysis of u at the first three zeroes and prove
the following lemma.

Lemma 3.1 If x1, x2, x3 denote the first zero of u(·,
1
2 ), then we have

|u′(x1)| ≤ .3, |u′(x2)| ≤ .2, |u′(x3)| ≤ .15, for N = 3 ,

|u′(x1)| ≤ .233, |u′(x2)| ≤ .131, |u′(x3)| ≤ .085, for N = 4 ,

|u′(x1)| ≤ .188, |u′(x2)| ≤ .095, |u′(x3)| ≤ .056, for N = 5 .

Proof. From

−u′(t) = t−(N−1)
∫ t
0

rN−1(1 + |u(r)|s)u(r) dr (3.4)

on [0, x1] we see that u
′ < 0 and

−u′(t) ≥
t

N
u(t). (3.5)

Hence, integrating (3.5) on [0, t] we obtain

u(t) ≤
1

2
e−

t2

2N , (3.6)

where we have also used the fact that u(0) = 1/2.
Let N = 3. From (3.6) we see that u(2) ≤ .26. We estimate E(x1) by using

Lemma 2.1 and infer

x1
3E(x1) =

∫ 2
0

r2u2(r)dr +

∫ x1
2

r2u2(r)dr

≤
23

3 · 22
+ (0.26)2

(
x31
3
−
8

3

)
. (3.7)
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Since E(x1) = (u
′(x1))

2/2, from (3.1) and (3.7) it follows that

|u′(x1)| ≤ 0.3 , (3.8)

On the other hand, from Lemma 2.2, (3.1) and (3.8) we have

(u′(x2))
2 ≤

(u′(x1))
2

3

(
2

(
x1

x2

)3
+ 1

)

≤
(.3)2

3

(
2

(
3.2

6.2

)3
+ 1

)
. (3.9)

Thus
|u′(x2)| ≤ .2. (3.10)

Reiterating the argument we obtain

(u′(x3))
2 ≤

(u′(x2))
2

3

(
2

(
x2

x3

)3
+ 1

)

≤
(.2)2

3

(
2

(
6.3

9.4

)3
+ 1

)
. (3.11)

Hence
|u′(x3)| ≤ .15 , (3.12)

which concludes the proof for case N = 3.
If N = 4 then from (3.6) we see that u(2.5) ≤ .23. Therefore, arguing as in

(3.7) we obtain

x1
4E(x1) ≤

2.54

4 · 22
+ (0.23)2

(
(x1)

4

4
−
(2.5)4

4

)
. (3.13)

Thus,
|u′(x1)| ≤ .233 . (3.14)

Using Lemma 2.2 and (3.2) from (3.14) we infer

(u′(x2))
2 ≤

(u′(x1))
2

4

(
3

(
x1

x2

)4
+ 1

)

≤
(.233)2

4

(
3

(
3.7

6.9

)4
+ 1

)
. (3.15)

Hence,
|u′(x2)| ≤ .131 . (3.16)

Reiterating the argument in (3.15) and using the estimates in (3.2) for x2
and x3 we obtain

|u′(x3)| ≤ .085 , (3.17)
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which completes the proof for case N = 4.

If N = 5 then from (3.6) we see that u(3) ≤ .204. Therefore,

x1
5E(x1) ≤

35

5 · 22
+ (0.204)2

(
(x1)

5

5
−
35

5

)
. (3.18)

Thus, using the estimate for x1 in (3.3) we obtain

|u′(x1)| ≤ .188 . (3.19)

Furthermore,

(u′(x2))
2 ≤

(u′(x1))
2

5

(
4

(
x1

x2

)5
+ 1

)

≤
(.188)2

5

(
4

(
4.3

7.4

)5
+ 1

)
. (3.20)

Hence,

|u′(x2)| ≤ .095 . (3.21)

Reiterating the argument in (3.20) and using (3.3) for x2 and x3 we infer

|u′(x3)| ≤ .056 , (3.22)

which completes the proof for case N = 5.

From Lemma 3.1 and (3.1)-(3.3) we obtain the following results:

|u′(x3)| <
1.5

x
3/4
3

for N = 3, (3.23)

|u′(x3)| <
.9

x3
for N = 4, (3.24)

|u′(x3)| <
.6

x3
for N = 5. (3.25)

4 Zeroes of u on (x3,∞)

To prove the ,main theorem we first show:

Lemma 4.1 If N = 3, 4, 5, and xi and xi+1 are two consecutive zeroes of u(·,
1
2 )

on (x3,∞), then xi+1 − xi ≤ 3.38. Moreover,

xi

xi+1
≥ .7
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Proof. Let θ be a differentiable function such that (see [5])

u(t) = −ρ(t) cos θ(t)

u′(t) = ρ(t) sin θ(t) (4.1)

θ(0) = 0,

with ρ(t) =
√
u2(t) + (u′(t))2. An elementary calculation shows (see [6]) that

θ′(t) =
(u′(t))2 + N−1t u(t)u

′(t) + (1 + |u(t)|s)u2(t)

(u′(t))2 + u2(t)
. (4.2)

Without loss of generality we can assume that u′(xi) > 0. Let x̄i ∈ (xi, xi+1),
i > 3, be such that u′(x̄i) = 0. Then, from (4.2) we see that θ

′ ≥ 1 on [xi, x̄i].
Thus

x̄i − xi ≤
π

2
. (4.3)

On the other hand on [x̄i, xi+1], using the fact that xi ≥ 10 for i > 3 from (4.2)
we infer

θ′(t) ≥ 1−
N − 1

2t
sin 2θ ≥ 1−

N − 1

20
sin 2θ. (4.4)

Hence, by integrating (4.4) we obtain

xi+1 − x̄i ≤

∫ π
π/2

dθ

1− N−120 sin 2θ

=
1√

1−
(
N−1
20

)2
(
arctan

N−1
20√

1−
(
N−1
20

)2 + π2
)

(4.5)

≤ 1.8087 .

Therefore, by combining (4.3) with (4.5) we have

xi+1 − xi ≤ 3.38 .

Furthermore,
xi

xi+1
≥

xi

xi + 3.455
≥ .7 ,

where we have used the fact that xi ≥ 10 for i > 3. Thus, the lemma is proven.

Lemma 4.2 Let x3 < x4 < . . .. denote the zeroes of u(·,
1
2 ).

If |u′(x3)| ≤
M
x3
for N = 4, 5 then

|u′(xi)| ≤
M

xi
. (4.6)

Furthermore, if |u′(x3)| ≤
M

x
3/4
3

for N = 3 then

|u′(xi)| ≤
M

x
3/4
i

. (4.7)
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Proof. We prove the lemma by induction. As shown in section 3 (see (3.23)-
(3.25)), Lemma 4.2 holds for i = 3. Suppose |u′(xi)| ≤

M
xi
for i > 3. From

Lemmas 2.2 and 4.1 we have

N − 1

N

(
xi

xi+1

)N
+
1

N
≤

x2i
(xi+1)2

, (4.8)

because
(
xi
xi+1

)2
≥ .49 for N = 4, 5. Hence, we obtain |u′(xi+1)| ≤

M
xi+1
.

For N = 3 from Lemmas 2.2 and 4.2 we see that the following holds

2

3

(
xi

xi+1

)3
+
1

3
≤

x
3/2
i

(xi+1)3/2
. (4.9)

This concludes the proof of the Lemma 4.2.

5 Proof of Theorem 1.1

Now, we proceed with the proof of the theorem, by estimating the location of

zeroes xi, with i > 3. If N = 4, 5 we let w(t) := t
N−1
2 u(t). It can easily be

shown that w satisfies

w′′(t) +

(
1−
(N − 1)(N − 3)

4t2
+ |u(t)|s

)
w(t) = 0. (5.1)

Since for t ∈ [xi, xi+1] we have

1−
(N − 1)(N − 3)

4t2
+ |u(t)|s ≥ 1−

(N − 1)(N − 3)

4x2i
,

by the Sturm comparison theorem it follows that

xi+1 ≤ xi +
π√

1− (N−1)(N−3)
4x2i

≤ xi +
π

1− (N−1)(N−3)
4x2i

= xi + π

(
1 +
(N − 1)(N − 3)

4x2i
+

(
(N − 1)(N − 3)

4x2i

)2
+ · · ·

)

= xi + π +
(N − 1)(N − 3)π

4x2i
·

1

1− (N−1)(N−3)
4x2i

. (5.2)

Since xi ≥ 10 for i > 3 we obtain

xi+1 ≤ xi + π + 0.065. (5.3)

On the other hand using Lemma 4.2 we see that

1−
(N − 1)(N − 3)

4t2
+ |u(t)|s ≤ 1−

(N − 1)(N − 3)

4x2i+1
+

(
M

xi

)s

≤ 1 +

(
M

xi

)s
. (5.4)
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Hence, from the Sturm comparison theorem it follows that

xi+1 ≥ xi +
π√

1 + (M
xi
)s
≥ xi +

π

1 + 12 (
M
xi
)s

= xi + π

(
1−
1

2
(
M

xi
)s +

(
1

2
(
M

xi
)s
)2
− · · ·

)

= xi + π −
1

2
π(
M

xi
)s ·

1

1 + 12 (
M
xi
)s

≥ xi + π − 0.035, (5.5)

where we have used the fact that xi > x3, (3.24) and (3.25).
If N = 3 we let w(t) := tu(t). It can easily be shown that w satisfies

w′′(t) +
(
1 + |u(t)|4

)
w(t) = 0. (5.6)

Since for t ∈ [xi, xi+1] we have

1 + |u(t)|4 ≥ 1,

by the Sturm comparison theorem it follows that

xi+1 ≤ xi + π. (5.7)

On the other hand using Lemma 4.2 and the fact that s = 4 for N = 3 we see
that

1 + |u(t)|4 ≤ 1 +

(
M

x
3/4
i

)4

≤ 1 +
M4

x3i
. (5.8)

Hence, from the Sturm comparison theorem it follows that

xi+1 ≥ xi +
π√
1 + M

4

x3i

≥ xi +
π

1 + 12
M4

x3i

= xi + π

(
1−
1

2

M4

x3i
+

(
1

2

M4

x3i

)2
− · · ·

)

= xi + π −
1

2
π
M4

x3i
·

1

1 + 12
M4

x3i

(5.9)

≥ xi + π − 0.011 ,

where we have used the fact that x3 > 9 and M = 1.5. By combining (5.3),
(5.5), (5.7), (5.9) with (3.1)-(3.3) we conclude the proof of Theorem 1.1.
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