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Operational WKB solution to the
initial /final-value problem for Beechem-Haas
equations *

Valentino Anthony Simpao

Abstract

Operational and Wantzel-Kramers-Brillouin (WKB) methods are uti-
lized to obtain an analytical approximate solution of the Beechem-Haas
equation for the initial/final-value problem with system parameters of
radial profile. The Beechem-Haas equation herein is expanded from its
traditional form, which determines its solutions in a spherical coordinate
system as functions of the radial and time coordinates only, to one which
includes the angular coordinates as well, thus providing a natural model-
ing framework for polarization phenomena.

1 Introduction

Consider the Beechem-Haas equation and its initial/boundary conditions, as
given in [1],

N (r,t) = (zg‘l %14 (Ro/wﬁ))mr, )+ 550, [No(r) D(r)3, N (1, 1),

N(r,t) =1, Nizo(rt)=1, (1)

t=0

OrN(r,t)

=0, ON(r) =0,

T=Tmin T=Tmax

where 0 < rmin < 7 < Tmax, t > 0, and «;, 75, Ry are positive real numbers.
Unless otherwise directed, all variables, parameters, and domains are real.

In the present work, the full 3-dimensional form of the spatial derivatives
in spherical coordinates shall be applied to (1), resulting in an enhanced form
of the Beechem Haas equation, which will allow for the inclusion of angular
components to the solution in a natural way. Particularly, this allows (1) to be
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126 Initial/final-value problem for Beechem-Haas equations

extended to include the nontrivial effect of angular coupling to the radial compo-
nent of the density function (i.e., polarization phenomena). Finally, the solution
of the initial/final-value problem for the enhanced version of the Beechem-Haas
equation will be addressed herein. This is basically the “on/off” control problem
in the time-domain for the system. As a result of solving this problem, one then
determines the system function necessary to produce a required output state,
given a prescribed input state. Full technical details of the terms in (1), other
than those supplied herein, are unnecessary for the present work. Therefore,
the interested reader is encouraged to examine the original source [1]. The pri-
mary purpose of the present work is to simply supply a derivation of the results
named above; applications and deeper studies shall appear elsewhere.

2 Main result

With these notions in place, the enhanced Beechem-Haas equation equation
with attendant generalized auxiliary conditions becomes

8tWE(7‘, 0,9, t) = (Z;LI i—j(l + (Ro/r)ﬁ))NE(T, 0,9, t)

+E5 v - [ D () VN (.0, 6, 1)), 2)
NE (T’, 97 ‘157 t) = NEt:O (T’) y NE(T7 9, ¢a t) = NEt:T (T’)
t=0 t=T
0 [Ng(r,0,¢,t) =0, O [Ng(r,0,¢,1) =0,

where 0 < rmin <7 < rpax, 0<0 <7, 0< ¢ <27, t >0, and «y, 75, Ry are
positive real numbers. Expanding the above expression,

1 _
WatNE(r,g,ﬁb, t)
- = <Zn: S+ (RO/T)6)>NE(T’ 0,9,1) (3)
D(T) = 7 Uy @
+V|ln (%)] -VNEg(r,0,0,t) + ANg(r,0,6,t).

Recall that the finite Fourier transform and its inverse [2] are defined as

F(n) = Frlf(t)] = / F(tye et

~

— 1 = 7 inw 7 —inw
ft) = Fp'[f(n)] = f(f(o) + ) [F(n)e™ + F(—n)e= ™)
n=1
Applying the finite Fourier transform on the time domain of (3), we obtain

1 — —
By N Erer () = Ny 1)
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= Db‘) <Z i—j(l + (RO/T)G) - inw) ]VE(T', 6, p,n) (4)
+V[ln (N‘)Zzg(” )] - VNg(r,0,6,n) + ANg(r,0,¢,n) .

Reducing this to canonical form,

L () = Ny ()]
Dy Eer ) = e W G by
= ANg(r,0,¢,n) + (Dir)(z T—;(1+(R0/7‘)6)—inw) (5)
Lo R (M2, ) 0,
where

NE(T,9,¢,R) :NE(T,9,¢,R) %
8r[NE(Ta9a¢an) ﬁ% r—p . =0,
On [N (r, 0, ¢,m) ﬁﬁm e

Now we consider the homogeneous equation corresponding to (5),

0 = ANg,(r,0,¢,n) ( En:a— 1+ (Ro/r)%) — inw) (6)
2
—%A[ln (NOE;ZTQ(T’))] . i'v[ln (NOE;.Z?Q(T’))] >JA\?E;,(7'70;¢; n) .

Let Ng, (7,0, ¢,n) = R(r,n)0(0)®(¢). Then via separation of variables,

Wl(r,n)D’" (r*DyR.(r,n))

+r2sm(z) o) P EmODOO) + H s gy DO ()
D}T ]Enjli—j (14 (Ro/r)®) — inw)
ot 20 2220
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Hence
; (2L ” = 7)) —inw
D2(rR.(r,m)) (r2+D(r)(j21 1+ (Ro/r))  in) ®
_%A[m(%)]—ﬂvun(%)] )ch(r,n) - o,

1
®(9)
_LeDg(sin(a)Dge(a)) ~ ™ _9(6) + 20(8) = 0,

sin sin® 6

D;(I)((b) = _m27

where herein \, m are arbitrary real parameters and n is a positive integer.
Regarding the solutions of the above angular component equations, they are
most generally expressed as

OO0)B(¢) = [cg, €™ + cgpe” ™ (9)
><<ce 1 (l—l—cos@ , ﬂ'cot(mﬂ')(l—i—cosﬁ
'T(1—m) 1 —cosb 220(1 —m)
e al(m+ A +1) (1+cos0)m/2>
22sin(mm)I'(A —m + D)I'(1 +m)

)5

)m/2 )m/2

1—cosf

1—cosf
1—cosf

XFQ’l(_A,A;]. —m; )

where cg,, cg,, Co,, Cg, are arbitrary constants. From (8) it is clear that the
radial ordinary differential equation couples to the angular ordinary differential
equation only when A is non-zero. When A # 0, (9) can take different forms,
depending on the values of A and m, which may be arbitrary real numbers.
Indeed for A and m integers, the angular dependence may be specified in terms
of a finite superposition of spherical harmonics Y"(6, ¢), rather than via the
Gauss hyper-geometric functions F5 ; used in in (9).

However, even if m is an integer and A is not so restricted, the angular
solutions will still [in general, by necessity] require the Gauss hyper-geometric
formulation [3]. With an eye toward future results, the phenomena modeled by
(8) may or may not require A and m to be integer, depending upon the possible
presence of more general non-homogeneous auxiliary conditions. For economy
of notation result (9) may be denoted as A(6, A : ¢, m) in general. However,
since the present homogeneous auxiliary conditions on the solutions are just
the standard ones for boundedness and single-valuedness, it is here sufficient to
particularly designate the angular components as spherical harmonics Y (8, @)
with A and m integers. Hence

fv;Eh(T? 0, ¢, n) = RC(T7 n)@(g)@(d)) = Rc(rv n)A(gv A, m) = RC(T7 n)Y)fn(a((ﬁ))
10
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The bulk of the remaining analysis concerns the radial equation (8). Now ap-
plying the WKB admissibility criterion [4] to (8),

®(r,n) = Za— 1+ (Ro/r)%) — inw) (11)

1 No(r)D(r) . |?
+ A0 i)rz”ﬂ 3| CHDEO
|D,®(r,n)/2|
Brpr

Hence the WKB results are accurate when the above criterion is met by the
coefficient over the given (r, n)-domain. Recalling (10), there obtains the linearly
independent WKB analytical solutions for the homogeneous radial equation in

(8):

R. (r,n) = Rcwks(r,n)
_ { (=®(r,n))" V4 cos([(=®(r,n))*/2dr) if ®(r,n) <0,
(®(r,n)) "4 exp( [ (®(r, ))1/2 dr) if 0 < ®(r,n).
Rcz (7‘ n) ~ RCQWKB (T’ n) (12)

_ { (=®(r,n))"V4sin([(=®(r,n))/2dr) if ®(r,n) <0,
(®(r,n))" Y4 exp(— [(®(r,n))/2dr) if 0 < ®(r,n).

Hence, the general solution of the radial part of the full non-homogeneous equa-
tion (5) may be supplied via (12) as

C1 (n)RCI (T’, n) + CQ(n)Rcz (7‘, n) (13)
N t=T (T) B N t=0 (T) 47‘('7“2
+R,,(r, n)/ = D(r)ar, 5) R, (r,m) W dr
_ rn NEt:T (T) B NEt:O (T) rn 47‘('7“2 r
Be, (r,m) / D(r)w(r,n) Be(r,m) No(r)D(r) ar,

where
”[17(7’, n) = RCI (7‘, n)DTRcz (T’, n) - RCz (T’, n)DTRcl (7‘, n) .

By ansatz (10), (13), and (5), the time-transformed version (4) of equation (12)
has general solution

472

Ng(r,0,¢,n) = T() Np(r,0,¢,n)

\ [ Y)\ 0(725 Rcl (7‘, n) +c2 (n)Rcz (7‘, n) (14)

/ Et T 7‘ N ( )Rcl(r,n) ﬁz;r)dr
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Npr(r) = N r) A
—Re, (r, ")/ D(r)w(r,n) Bearim) No(r)D(r) ! ) 7

Now consider the boundary conditions of (4), which are the time-transformed
boundary conditions of (1),

= 07 ar]/\}E(r70a¢a n)

T="min T=Tmax

8, Ng(r,0,6,n) =0. (15)

Without loss of generality, we may ignore the angular factor Y"(6¢) and
consider only the radial terms in (14). Given the particular boundary conditions
(15), the formula (14) may be used to calculate the appropriate particular solu-
tion matching the boundary conditions in the (r,n)-domain. In general, there
will result a 2x2 matrix equation for the coefficients c;(n) and ca(n).

(b i) (ai)-(3) "

where

P =\ wmm )|

Py = 8t< ﬁgm&z(h n)) .

ra=a —w)
le—a«wm/ NE%(Z));(i,Vi;"(”Rc*W o
R [ R et i )|
Qf—ar@m/ b e
Rt 2 N 50 ).

Then by Cramer’s Rule, the functions ¢i(n) and ¢;(n) have values

PaoQ1 — P21Q2 ~ PuiQ2 — Pio@Qy

22Tl TRt ()= s = 17
Py Py — Py Pr 2( Py Py — Py P (7

c1(n) =
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Hence the cefficients in (17) are the functions of n necessary for the given
time-transformed boundary conditions of (15) to be met in (14). Finally, substi-
tuting the coeflicients in (17) into (14), and applying the inverse finite Fourier
transform to N in (14) yields the operational WKB analytical solution to the
boundary and initial/final value problem (2) in the (r,§, ¢, t)-domain.

Ng(r,0,¢,t) = F; ' [Ng(r,0,6,n)]

1, -~ - . ~ .
= 7 (Ne(r,6,,0) + > [Ne(r,0,6,n)e™" + Ng(r,0,¢, —n)e”""]),
n=1

with NE(T, 0, ¢,n) given by (14).
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