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ON OSCILLATORY SOLUTIONS OF THIRD ORDER
DIFFERENTIAL EQUATION WITH QUASIDERIVATIVES

MIROSLAV BARTUSEK

ABSTRACT. This paper gives sufficient conditions under which all oscillatory solu-
tions of a third order nonlinear differential equation with quasiderivatives vanish at
infinity. Applications to third order differentials equation with a middle term are
also given.

I. INTRODUCTION

Consider the differential equation

o = (i (iy>> — (1) () 1)

where J = [0,T), T < oo, r € C°(J), f € C°(R), R = (—00,00), a; € C'(J),

1 =1,2, a; are positive on J,
r(t) >0 on J, f(x)r >0 for z#0, (H1)

and yl!l, i = 0,1,2,3, is the i-th quasiderivative of y defined by

SOV gy gl ail(t) <y[i—u)’ =12 = <y[21)’ . (2)

Let a function y : I — R have the continuous quasiderivatives up to the order 3
on I and let (1) hold on I. Then y is called a solution of (1). A solution y is called

oscillatory if it is defined on J, sup |y(¢)| > 0 for an arbitrary 7 € J and if there
Tt<T

exists a sequence of its zeros tending to 7. Denote by O the set of all oscillatory

solutions of (1).

Due to the methods used, we will study two cases:

(GQ(t))/go, ted, (H2)

a1 (t)
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and

(“2(t)>l>o, telJ. (H3)

ax(t)
A great effort has been exerted to the study of the asymptotic behaviour of
oscillatory solutions of (1) and its special cases, see e.g. [1-6, 8, 10, 12].
If ap = a3 = 1 and T = oo, sufficient conditions are given in [1,10] for every
oscillatory solution y of (1) to vanish at infinity, i.e.

Jim y(t) =0. (3)

Theorem A ([10]). Let T = oo, (H1) hold, a; = a2 =1, and 0 < M < r(t) on
Ry. Ify € O, then (3) holds.

The same problem is solved for (1) in [6].

Theorem B. Let (H1) and (H3) hold and let
0<M<r(t), a(t)ax(t) <My <oo on J. (4)

If y be an oscillatory solution of (1), then tlirjl} y(t) = 0.
—T_

Proof. The assertion is proved in [6] if T = oo and (4) holds on R;. But in the
proof, the fact that J is infinite is not used; thus the statement holds for T' < oo
as well. O

The following example shows that (3) can not be valid.

Example 1. The differential equation

(e y’)')l =2e"'y, teRy

has an oscillatory solution y = sint and (3) does not hold. Note that (H1) and
(H2) are valid.

Besides (3), other asymptotic behaviour of oscillatory solutions of (1) with 7' =
oo are often investigated. In [3, 4] we give sufficient conditions under which the
sequences of the absolute values of all local extrema of yl), i € {0,1,2}, in a
neighbourhood of co are monotone for an oscillatory solution y of (1) in case 7(t) <
0.

In this paper, the above mentioned results are extended to (1) under the hy-
pothesis (H1). In the last paragraph, applications to the third order differential
equation with a middle term are given.

We do not discuss the problem of the existence of oscillatory solutions of (1). It
is solved in [8, 12], and for the case of usual derivatives (i.e., for a; = as = 1), in
the monographes [1] and [10] (for T = o0).

The following lemma is a simple consequence of the definition of quasiderivatives
and of (H1).

Lemma 1. Let (H1) hold and let y be a solution of (1) defined on I = [t1,t3] C J,
t1 < ty. Let yl= =yl Ifi € {0,1,2} and y11(t) > 0 (< 0) on I, then yli=1 is
increasing (decreasing) on I.

Remark 1. Note that < and increasing (> and decreasing) can be replaced by <

and nondecreasing (> and non-increasing).
The following lemma describes the structure of oscillatory solutions of (1).
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Lemma 2 ([2]). Let y € O. Then sequences {ti}, i = 0,1,2, k = 1,2,... exist
such that klim t) =T,
—00

9 <th <ti<th., yl) =0, i=0,1,2,

17 @) () >0 on (8,8]),
<0 on (t,t9.1), j=1,2k=12...
Remark 2. Note that according to Lemmas 1 and 2, the sequences {|y(¢})[}1°,
{|y!(#2)|}5° and {|y[2(t2)|}$° are the sequences of the absolute values of all local

extrema of y, y[!l and yl¥ on [t3, T"), respectively.
Sometimes it is useful to express (1) in an equivalent form.

Lemma 3. Let ag € C°(J) be positive. Then the transformation

x(t) —/0 ap(s)ds, Y(z)=y(t), te J, ze0,2"), " =z(T)

(o () <o

where A;(x) = Z;g((i;; ,1=1,2, R(z)= (:O(g(a;)))) 4L = and t(z) is the inverse

function to z(t). At the same time,

transforms (1) into

Vi) =yll@1), i=0,1,2,3, (6)

where

vl =y, v = 1 (y{j—1}>' =12, y®Z (y{z})' '

i@
Proof. Use a direct computation or see [4]. O

2. CasE (H2)

Some results will be used that are obtained for (1) under a different assumptions
than (H1). Consider

/
(ﬁz) +7(0) f(Z) =0 (7)
where I C Ry, be CY(I), 7 € C(I), f € C°(I), f(z)x > 0 for = # 0,
b(c) >0, 7(c)=>0onlI, f'(z)>0 onR.
The quasiderivatives are given by

ZII

70 — 7 gzl _ 7z Z[2] — )
b b b(o’)

Note that the sign of 7 is opposite to the one of r.
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Lemma 4. Let b/ > 0 and # > 0 on I. Let Z be a solution of (7) the second
quasiderivatives Z (2l of which has three consecutive zeros oy, o1 and oo € I, 0¢ <
o1 < 09. Then

V2|Z'(02)| < |1Z'(00)].

Proof. The assertion is proved for 7' = oo and for an oscillatory solution in [4] (see
Lemma 2.4 and Definition 2.1). But it follows from the proof that only information
on [0, 02] and the existence of the zero oy were used. Thus, the statement is valid
under our assumptions as well. ]

The following theorem investigates the asymptotic behaviour of the first and the
second quasiderivatives of an oscillatory solution of (1).

Theorem 1. Let (H1) and (H2) hold. Lety € O and {ti},i=0,1,2, k=1,2,...,
be given by Lemma 2.
(i) Then the sequence {|yM(t2)}5° of the absolute values of all local extrema of y!!)
on [t9,T) is decreasing.
/

(ii) Let 7 € C*(J), f € CY(R), f' >0 on R and (;f%) <0 onJ.
Then lim y(t) =0 and

t—T

)| <27 )|, k=12 ®)

/
(iii) Let r € C1(J), f € CY(R), f' >0 on R and ( r(t) ) <0 onJ.

ag(t)
Then the sequence {\ym (t%)]}c;o of the absolute values of all local extrema of y!
on [t9,T) is decreasing.

Proof. Note that according to Remark 2, the sequences {|ym (ti)|}c1>o and
{|y? (t%)]}(;o are the sequences of the absolute values of all local extrema of yl!!
and y?!, respectively.

(i) Let k € {2,3,...} and suppose, without loss of generality, that
y(t) >0 on (£t 1)
Thus, according to Lemmas 1 and 2 there exists ¢} such that
tr€ () s y(th) = y(t3),
y is increasing (decreasing) on [t},t1] (on [t},t3]),
yU(#) > 0 (< 0) on [t},t}) (on t, 67) (9)
yUen) =0, M@ > oM@) >0,
y@(t) < 0 and |y is decreasing on [t},2),y(t2) = 0.
Let ¢ and 9 be the inverse functions to y:
th <) <tp, ylp
ty <P(v) <8,y
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We prove by an indirect proof that

s () > [y (¥ ()

, vel. (10)

Observe that (9) yields y[!(o(v)) > 0 and yM(y(v)) <0 forve I, = [y(t5), y(t}))-
Define

S@) =y (pw) - WM @), vel.

Suppose, contrarily, that there exists v € I; such that
S(v) <0. (11)
Then using (2), (9) and (H2), we have

(2] V))asz v (2] v))a2 v
%S(v):y (p(v)az(e(v) = y=(¥(v))az(¥(v))

Thus d
vel, S(v) <0 R_i_ightam*ow%S(v) <0.

(From this and from (11), it is clear that
S(v) <0 on [3,y(t)],

and this contradicts S(y(¢})) = 0. Thus, (10) holds and using v = y(¢}) in (10) and
(9, yM(E7_y) > [yM Rl

(i) Let to < t; < ta, t§ < to be consecutive zeros of yl?l. Let us transform (1)
into (5) according to Lemma 3 with a9 = a;. Then z;, x; = x(t;), i = 0,1,2, are
the consecutive zeros of Y{Q}, To < x1 < X3.

The next transformation

oc=x9—2x, Y(x)=2Z(0), x € [xg,22], 0 € [0, 22 — 0] , (12)
transforms (5) into (7) where

as(t(zg —0)) . r(t(zz —0))

o) = =) ") T it =)

and according to (H2) and % ((;1(8)) < 0, we have

d
b (o) > 0 and 7 (o) > 0 on [0, 22 — o], i "
o
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As 09 =0, 01 = 9 — 1, and 09 = x5 — o are consecutive zeros of Z[Q}, Lemma 4
yields
V2| Z' (xg — x0)| < |2 (29 — 21)]. (13)

Using (12) and (6) we have
[y (to)] = [Y T (@0)| = [Y (z0)| = |2/ (w2 — o),

)] = Y ()| = [V (@0)] = 12/ (22 — 20)

and thus (13) yields v/2[y!Y (t1)] < |y (to)].
;From this the inequality (8) holds and tlirjr} yll(t) = 0.
—T_

(iii) We prove the third statement for (5) with ag = as

((fy)) ~ R(a) £V,

Ay (x) = a1 (t(x)) R(z) = %’ v} ﬁy.’ vz = (yithye,

then according to (6), it will hold for (1) too.

Applying Lemma 2 to (5), sequences {z}}, k = 1,2,..., ¢ = 0,1,2 exist such
that

) <ap <ap <Tpys k=1,2,..., kli_)ngomgza:(T),

Vi) =0, (-1)"'YU (@)Y (z) > 0on (29,2]), (14)

< 0on (wi,wgﬂ),

Let k € {1,2,...}. Put 7y = a:,{:, T = mi, Ty = m2+1, Ay = [10,71], Ao = [11,T2],
61 = 71 — 70, 62 = T» — 71 and suppose, for simplicity, that Y{}(z) < 0 on A;.
Then (14) and Lemma 1 yield

Y(z) >0, YIB () <0, Y (z) <0, YV and [Y{?}] are decreasing
and |Y {1} is increasing on (79, 71) ;

15
Y(z)>0, Y3 () <0, Y(z) >0, Y and [y} are decreasing (15)

and Y12} is increasing on (71, 72) .
The statement will be valid if we prove that
Y& (@) > Y3 (r)| > Y ().

As the first inequality follows from (14) and Lemma 1, the second one only must
be proved. Thus, suppose that

Y2 (7o) <Y (7). (16)
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According to (15) and the assumptions of the theorem, the function Y{2} is concave
on [7g, T2]:

(y{2}($)>" — (y{S}($)>. — [M f(Y(z)) ) =

@ (t(z)
(@) N s TEE) oy )
() 100+ Loy ey Ve )
e ATUA;.

Thus, Y {2} is above the secant line on A; U Ay, and using (14) and (15), we have

YO @)= [ @) lde = [ YO e)de< |y Gm)| .
Al A1

YO ) 2 YO ) YO ) = [ YD @)de > Y (r) 2.
Ay

(From this and (16),
85 >0y (18)

Furthermore, according to (1), (15) and (17), Y {3} > 0 is decreasing on A; U As.
From this it follows that

Y& (m) = | YO )de >V (m)an,

V2 (5,) = / YO (@) de < Y13 (1) 6, .
Ao
Thus, with respect to (16), d; < d2 and this contradicts (18). O

The following theorem states a sufficient condition under which oscillatory solu-
tions tend to zero as t — T'.

Theorem 2. Let (H1) and (H2) hold, r € C'(J), f € C*(R), f' >0 on R,

(6:1((?)>, <0 19)

and let one of the following assumptions hold:

/
(i)(r(t)><0, 0<M<T(t) forte J;

as(t) a1 (t)
(ii) Zggg r(t)>M >0 forteJ;
T
(iii) [a1(s)ds < oo.
0

If y € O, then tlim y9(t) =0 for j =0,1.
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Proof. Let y € O. According to Lemma 3 with ag = a1, it is sufficient to prove the
results for(5) only:

1 ' * _ x d _ e
ey _mlte) oo @)
Al = ]-7 AQ( ) (Zl(t(.’L')) ) R( ) (Zl(t(.’L')) ) el [07 )7 (T)7
M _ye vy - L yee
yit—ye v eI (21)

Denote by {zi}, i =0,1,2, k =1,2,..., the sequences given by Lemma 2 for (20)
(ie. 2% =ti) and put
Ay = [ag, 2]
Then, according to Lemmas 1 and 2,
Y (z)Y(z) >0, YIB(2)Y(x) <0 forz e Ay, (22)
Y1} and |V {2} are decreasing on Ay, .

Furthermore, using (19),

() -

the assumptions of Th. 1 (ii), applied to (20), are fulfilled. Thus, lim Y{}(z) =0

r—x*

/
) t*(x) <0 on I,

Il
N
S
A“
:‘;v

and
2—k
Y @) <YM (i) <277 (Y@, k>2; (23)

note that the first inequality follows from Lemmas 1 and 2.
We prove indirectly that
lim Y(¢) =0. (24)
t—=T

Thus suppose, without loss of generality, that
YV(zg)| =My >0, k=12,...

Then, according to Lemmas 1 and 2, there exists a sequence Z; € (w%,w}c) such

that
_ M, M _ -
V(@) = 5t S5E < V(@) < My on By = (@, o] (25)

Let 6y = x}, — T. Using (22) and (23), we have

N

%-W@wwmbéy“ww

2—k
<Y (@) 6 << 277 6 [V T (a2)]

and thus
lim d; = oco. (26)

k—o0
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(i) According to (19) and (22),

Y @) > [y ah) - v @) |sen Viah) = [ YH@)senY (a) de
Ay
_ / R(z) f(Y (2))sgn Y (&) dz > Mo, _min  |f(s)| > 0
A ML Ls<My

and thus (26) yields limy_, o, Y{2}(29) = co which contradicts Theorem 1 (iii).
(ii) Using (22), (H2) and the assumptions, we have for z € Ay:

A@IY @) > Ax(o) [¥ (a}) - YPH)] sgn V(o) =
~ Ay() / "y (s) ds > / " R() Ao () F(Y (5)) ds >

> MMs(x}, — ), M,y = Mlmin |f(s)|>0.
— <s<My

(From this and from (21),

52

M M.
yith(z,) = As ()Y (z)| dx > MM2/ (3 — z)dx = 2
Ay A

Ay 2

Since lim Y{}(z) =0, Y{}(z;) is bounded, say

T—T*
Y @) < My, k=1,2,...,

and we can conclude that ¢y is bounded as well. This contradiction to (26) proves
the statement.

(iii) In this case, * < oo and I is bounded which contradicts (26). O

/
Remark 8. (i) Note that (T(t)> < 0 follows from (H2) and the fact that

ax(t)
(;2(8)>/ <0:

() -Go) -G ea@
ai az ax a2 ap a2 \a1
(ii) The differential equation in Ex. 1 fulfills all assumptions of Th. 2 (i) with the

exception of 0 < M < arl(ft)).

3. CAse (H3)

In this section (1) will be studied under the assumption (H3).
Theorem B gives us a sufficient condition for every oscillatory solution to vanish
at 7. We generalize this result as follows.



10 Miroslav Bartusek
Theorem 3. Let (H1) and (H3) hold and let

M € (0,00), ayi(t)as(t) < Mr3(t), teJ.
Then for every oscillatory solution y of (1), lirjr} y(t) = 0.
t—T~

Proof. Using Lemma 3 with ag = r, the statement follows from Theorem B applied
to (5). O

Remark 4. (i) It is proved in [6] that if (H3) holds, then { Z—;]ym\‘t:ti}zozl is a
decreasing sequence.
(ii) Note that Theorem B is the special case of Theorem 3. Furthermore, if

a1(t) =as(t) =r(t)=et, J=R,,

then the assumptions of Theorem 3 are fulfilled and the ones of Theorem 3 not.
Thus Theorem 3 is a generalization of Theorem B.

4. APPLICATIONS

We apply the previous results to the equation
y" +at)y =s(t) f(y) (27)
where ¢ € C°(R4), s € C°(Ry), f € C(R),
s(t) >0on Ry, f(z)r >0forx#0. (H4)
A solution y of (27) is called oscillatory if it is defined on R;, sup |y(¢)| > 0 for
every 7 € R, and there exists a sequence of zeros of y tending 7:cf)t;ooo
Let h be a positive solution on [1,00), T € R4, of the equation
W' +q(t)h =0. (28)

Then (27) is equivalent to (1) (see [5] or make a direct computation) on J = |1, 00),
where T' = oo,

y
g = Ll 2y

Thus (H1) is satisfied, (H2) holds if h is increasing, and (H3) holds if & is decreasing.
Theorem 4. Let (H4) hold,
q(t) <0,s(t) =M >0 for te[M,o0)

o0
and [ t|q(t)| dt < oo where M and M, are positive constants. Then every oscillatory
0

solution of (27) tends to zero ast — oo.

[e.¢]
Proof. If follows from [11] and from [ t|q(t)|d¢t < oo that (28) is non-oscillatory
0

and there exists a positive solution h of (27) that is decreasing for large ¢ and
tlim h(t) = ho € (0,00). Thus, the conclusion follows from Theorem 3. O
—00
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Theorem 5. Let (H4) hold, s € C'(R,), f € CY(R), f' >0 on R,

at) >0, 0<M<s(t), s(t)<0 forte[M,o0),

o0

and [ tq(t) dt < oo where M and My are positive constants. Then every oscillatory
0

solution of (27) tends to zero ast — oo along with its first derivative.

Proof. 1t follows from [7] and from fot tq(t)dt < oo that (28) is nonoscillatory
and there exists a positive solution h of (28) that is increasing for large ¢ and
tlirn h(t) = ho € (0,00). Then (27) is equivalent (1) and (29). Thus, the statement
—00

follows from Theorem 2 (ii) and the fact that tl_i}m y'(t) = tl_i}m y () h(t) = 0 (see
Theorem 1 (ii)). O

Remark 5. Theorems 4 and 5 expand the results obtained in [9].
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