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Determination of the source/sink term in a heat
equation *

Ping Wang & Kewang Zheng

Abstract

In this work, we consider the problem of determining an unknown
parameter in a heat equation with ill-posed nature. Applying Tikhonov
regularization, we obtain a stable approximation to the unknown param-
eter from over-specified data. We also present numerical computations
that verify the accuracy of our approximation.

1 Introduction

Cannon and Zachmann [4] considered the question of determining an unknown
source in the heat equation from over-specified data. More precisely, find the
source f(t) in the heat equation

ut(x,t) = ugg(x,t) + f(£), O0<z, 0<t<T,
u(z,0) =g(z), O0<ux,

u(0,t) =o(t), 0<t<T, (1)
um(ovt) :¢(t)a 0<t<T,
9(0) = ¢(0) =0,

were u(z, t) is the unkown temperature, and ¢(t), ¥ (t), g(z) are the known data.
Assuming that ¢ and 1 are smooth functions, Cannon and Zachmann were able
to determine the source or the sink term f(¢) explicitly or implicitly in several
cases. In this short note, we will study (1) with non-smooth data applying the
regularization approach used in [9].

Assume that the pair (u, f) is a classical solution of (1). Then

/f dT—2/Kact—T Y(r)dT (2)
/0 9(E) (K (z — £,1) + K(z + € 1)de,
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1

where K(z,t) = Tte*wz/(‘”) is the heat kernel.
T
Therefore, f(t) can be expressed as the solutions to the integral equation
Af=F, (3)
where
t
0= [ e (1)
FO) =)+ = | = [ e o,
ity V== Vi

Now we see that problem (1) is equivalent to (3). Therefore, we will focus our
attention on this equation (3).

2 Ill-posedness and Regularization

For practical purposes, it is more interesting to assume that the data functions
are non-smooth. Suppose that ¢, € L?[0,T] and g € L?[0, 0] with compact
support in [0, T]. Now the integral operator A defined in (3) from space C[0, T
to space L2[0,T] is not surjective and the inverse operator A~! defined on the
range of A is not continuous. This means that the problem of solving equation
(3) for f in C from data F € L? is ill-posed in the sense of Hadamard [7]

In what follows, we will apply a regularization technique to construct a
regularizing operator for equation (3) and then define an approximation to the
unknown term f. For this, we first introduce the Tikhonov functional

M[f,F) = |Af — Fl3a0my + ol /1B jozy (5)
where « is a positive parameter.

Theorem 2.1 For every function F € L?[0,T] and every positive number c,
there exists a unique function fo, € W3[0, T] that minimizes the functional M.

Proof: Consider the first variation of the functional M“. A straightforward
calculation shows that the minimizer f, is the solution of the following Euler
differential integral equation

ol () - / / F()de — F(r))dr (6)
)=

subject to boundary conditions f'(0 = 0. It is also easy to show that
the solution of (6) in W4 is unique. &

Now for each o > 0, each F' € L?[0,T], we define the operator f, = R(F,a).
For an approximate data function Fjs (6 measures the error in data), it is impor-
tant to choose an appropriate parameter «(J) so that the according minimizer
fa(0) = R[Fs,a(d)] can be taken as a stable approximate solution of (3). The
following theorem shows how to choose the regularizing parameter a.
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Theorem 2.2 Let fr € CY0,T] be the exact solution corresponding to the
exact data Fr, and Fs be approrimate datum. Then for every positive € there
exists 0(€) such that the inequality

[Fs — Frllrzo,m) < 6 < d(e)
implies
[ fa(e) = frllep,m <e (7
where fo(s5) = R(Fs,(8)) with a = a(6) =6 and 0 < X < 2.

Proof: By the definition of f,s), we know

MO [fo 5y, F5] < MO fr, Fy).

That is
[Afa@s) = Follze + @) fa iy < IAfr = FsllZ2 + a(@) | fr
< &+ frili,
< P d= 1+ | frlf)

Hence, || fo(s)llwy < d and [|Afas) — Fsllre < dé*?. Tt is easy to see that both
fa(s) and fr belong to the set E = {f : HfHW;[O,T] < d}, which is a compact
subset of space C[0,T]. The continuity of A~! on A E implies that

[ fa@ = frllcom < AT - [ Afae) — Afrllze
< AT ASa) — Fsllze + | Afr — Fsll2)
< JlATH(d6™? 4 6)
< AT (A +d).
By setting
¢ 2/
S@)=[—
©=mara
we obtain (7) and the proof is complete. O

Next, we show that F' depends continuously on the initial data ¢, v, g.

Theorem 2.3 Suppose that exact data Fr, ¢, ¥, gr satisfy (4), and that the
appzimate data Fs, ds, Vs, gs also satisfy (4). Then inequalities ||¢r — ds||rz <
8, [ — sllz2 <6 and [|gT — gsl|L2 < 0 imply

2T T /2
|Fr = Fyllz < D8, D = [6(1+ = +1/ )]
m 2m
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Proof: Applying Cauchy’s inequality, we have

T
|Es — Fr|3. < (/O (o7 — ¢s)°dt + = //w‘s t_T )] dr

= /0 %[/000(95(95) — gr(z))e*" /(W dz]2dt)

™

< 307+ /[qs(; — o7(T /,/t_ dt dr

2

6—/ —/ e“”z/(%)dmdt)

T t

AT 2T
< 362(1+—+ —)
o

< D%

¢
Combining Theorems 2.2, 2.3, we obtain the following stability theorem.

Theorem 2.4 Suppose fr is the exact solution of (3) corresponding to data
functions ¢, Y, gr. For any e > 0 and approzimate data ¢s, s, gs, there exists
a d(e) and an a(d)such that inequalities || dT — dsllL2 < 9, ||[Yvr — Ys|lL2 < § and
llgr — gsllrz < imply that

| faisy — frlicom <€ (8)
where fo(5) = R(F5,(0)).

The above result shows that, for carefully chosen «, f, (), the minimizer of
functional (5), can be taken as a stable approximate solution of (1).

3 Numerical Verification

We will study a concrete overdetermined system in this section to numerically
test the applicability of the regularization approach discussed in Section 2.
For T =1, we take

br(t) = ﬁ—ﬁJrooooz\/z(lJrth(eﬁ—l))
A N N p ’
25645
) = —_
vr(?) 3157
gr(z) = 0.0001z(1— z?).

Then Fr(t) = & — % + % The corresponding exact solution of (3) is

frt) =3t —1)%
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It remains to be seen how well the equation (6) recovers the value of fr with
the following altered initial data

os(t) = o¢r(t) + dsin(507t),
Ys(t) = p(t) + 0sin(507t),
g95s(x) = gr(z)+6(1—x)(1—(1-2x)).

First of all, (6) is replaced by its finite difference approximation on a uniform
grid with step h = T'/(n 4+ 1). Thus we obtain the following system of linear
equations in which the coefficient matrix is of five diagonal form:

AMf* = h3DF",
where
i b a 1
b a b « -1 1
a b b « -1 1
Ah = e , D=
a b a b «
a b a I:) -1 1
a b a -1 1
a=h*+2a(h?+3),d=h*+a(h’+2),a=h*+a2h?+3), b= —a(h®+4),
b= —a(h®+3). Fh=(Fp ... FP), fP = (fF,---, f?) are difference functions
(f8 = fs fapa = f2)-
The difference scheme for (4) is
1 i n
j=1 j=1
where
b d VRVI=TFI-Vi=]) j<i
* 0 j>i
j+1 [h Jj [hy ..
c;j = erf( 5 \/;)—erf(g\/;),z,y:l,2,...,n,
and

o = ¢(ih), v} = ¥(jh), g = g(jh).

The results of the numerical simulation are shown in the following table (§ =
0.0001 and A = 1.2. fu1, fa2, fa3 are approximate solutions corresponding to
n = 39,79, 159 respectively).

One can see from the data in the Table 3 that the numbers generated through
the computation show that the approximate solutions and the exact solution
match better as n becomes larger. The numbers also show that the approxi-
mation when ¢ is very close to 0 is not nearly as good as the approximation
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¢ fr(t) far(t) fa2(t) fas(t)
0.025 | 0.000594 | 0.001808 | 0.003578 | 0.004813
0.05 | 0.002256 | 0.003663 | 0.005205 | 0.006199
0.1 0.008100 | 0.011018 | 0.011220 | 0.011334
0.2 | 0.025600 | 0.031311 | 0.028778 | 0.027295
0.3 0.044100 | 0.049948 | 0.046540 | 0.044596
0.4 | 0.057600 | 0.062285 | 0.059168 | 0.057404
0.5 0.062500 | 0.066572 | 0.063701 | 0.062082

Table 1: Exact and approximate solutions

elsewhere. We think it is because we know little about f(0) in advance. The
only assumption on f at 0is f'(0) = 0 (see (6)). Therefore we do not have much
control of f when ¢ is very very small. Overall, the table shows that, for large
n, our regularization approach i s a reliable way of recovering unknown source
or sink term in a heat equation from non-smooth overspecified data.
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