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Abstract

Using the methods developed in a previous paper, we consider the
problem of extending endomorphisms to cross-product by compact group
duals. Then we discuss some other applications to QFT, mainly in con-
nection with PCT symmetries.

1 Introduction

Even if the basic philosophy in local Quantum Field Theory is that all the
information is encoded in the observable net A, the analysis of charged states
suggests the introduction of the field net F . It is then natural to enquire which
properties of A extend to F and under which conditions. Mathematically this
amounts to asking for extension theorems from a C∗-algebra to a cross product
by a group dual.
In algebraic QFT, a PCT-symmetry ϑ is defined as an anti-isomorphism of

the observable net, whose origin goes back to the particle-antiparticle symmetry.
Starting from the seminal papers [1], it has been subject to several investigations
([3, 21, 22] and afterwards [23, 11, 6]) that benefitted from the methods of
modular theory advocated in [3, 21, 22].
Motivated by the desire to have a better understanding of the PCT symmetry

in AQFT, we used in an essential way the Doplicher-Roberts uniqueness theorem
for cross products by compact group duals [14] and subsequent developments
[5]. The first simple but important step was to prove an extension theorem for
isomorphisms [8, Theorem 2.1]. This allowed us to consider anti-isomorphisms
A → A1 by treating them as isomorphisms A → A

opp
1 (the opposite algebra).

As a consequence of our abstract result, we showed that any PCT-symmetry
extends to the canonical field net as an anti-automorphism, still retaining (part
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of) its geometrical meaning. More precisely, the extension ϑ̂ is easily seen to act
on the local algebras as expected, but showing the right commutation relations
with the translations seems to require more assumptions, e.g. [ϑ̂, G] = 0 (and
Z(G) discrete), or the full strength of the spectrum condition. The existence of

an extension ϑ̂ commuting with the gauge action necessarily implies that ϑ◦ρ◦ϑ
is a conjugate of ρ for every DHR morphism ρ with finite statistics of A. As to
the converse, an affirmative answer is known provided that G satisfies a certain
property interesting in its own, concerning the action of Aut(G) on the dual Ĝ
[9]. The occurrence of such groups, including compact connected Lie groups,
is not surprising because of the special role they play in the duality theory for
compact groups. But from our point of view, the fact that an order-preserving
isomorphism of their duals always originates from an isomorphism between the
groups in question has a natural application in the context of an extension to
cross products.

2 Extension of endomorphisms

The procedure developed in [8] to extend (anti-)isomorphisms between C∗-
algebras to their cross-products by compact group duals can be succesfully
applied to handle endomorphisms as well. In this section we take this up.
The same result has been obtained in [26], §3, but the perspective is somehow
different.
We need to recall a few notations and definitions, thus setting the stage for

our considerations. Let A be a C∗-algebra, hereafter assumed to be simple,
(∆, ε) a permutation symmetric, specially directed semigroup of unital endo-
morphisms of A with unit ι, and T the full subcategory of End(A) with objects
∆.
Let ρ be a (necessarily injective) ∗-endomorphism ofA. Our main task in this

section is to show the existence, under suitable assumptions, of an extension ρ̂ of
ρ as an endomorphism of the cross-productB = AoT , and discuss its properties.
The following observation is quite trivial, but it has far reaching consequences.
The ∗-endomorphism ρ, as an isomorphism onto its image, provides immediately
another quadruple {Aρ,∆ρ, Tρ, ερ} as above by setting:

Aρ := ρ(A)

∆ρ := {ρσρ
−1 ; σ ∈ ∆} ⊂ End(Aρ)

Tρ := full subcategory of End(Aρ) with objects ∆ρ

ερ(ρσρ
−1, ρτρ−1) := ρ(ε(σ, τ)), σ, τ ∈ ∆

The verification that this quadruple possess the properties mentioned above can
be worked out without difficulties and is left to the reader.
Let Bρ := AρoTρ. It is quite clear from the outset that we are in position to

apply Theorem 2.1 in [8]. We get the existence of an isomorphism ρ̃ : B → Bρ,
such that ρ̃|A = ρ. Also, Gρ may be identified with G and its action is given
by ρ̃αgρ̃

−1. (Note that, more generally, the same discussion applies if we start



Roberto Conti & Claudio D’Antoni 25

with any isomorphism φ : A → A1.) What remains to be shown is that ρ̃ is in
fact an endomorphism of B, or, in other words, that Bρ ⊃ Aρ can be naturally
embedded as a C∗-subalgebra of B, Aρ o Tρ ⊂ Ao T . (After this identification
we will get that ρ̂ = ρ̃.)
To this end, from now on we focus our attention on endomorphisms ρ for

which there are unitaries (“two-variable cocycles”) in A satisfying the conditions
(8.10)-(8.12) introduced in [14], namely

Wσ(ρ) ∈ (σρ, ρσ) (2.1)

Wσσ′ (ρ) =Wσ(ρ)σ(Wσ′ (ρ)), σ, σ
′ ∈ ∆ (2.2)

Wσ′ (ρ)TWσ(ρ)
∗ = ρ(T ), T ∈ (σ, σ′) . (2.3)

Then we will infer that ρ̂(ψ) = Wσ(ρ)ψ, ψ ∈ Hσ (σ ∈ ∆). The essence of
the argument goes as follows: if ψi is an orthonormal basis in Hσ, i.e., it is
a multiplet of isometries in B implementing σ on A, then taking into account
(2.1), we have

∑

i

ρ̃(ψi)ρ(A)ρ̃(ψi)
∗ = ρ̃(

∑

i

ψiAψ
∗
i )

= ρ(σ(A))

= Wσ(ρ)σρ(A)Wσ(ρ)
∗

=
∑

i

Wσ(ρ)ψiρ(A)ψ
∗
iWσ(ρ)

∗ (A ∈ A).

Thus Wσ(ρ)ψi is another multiplet in B implementing ρσρ−1 on ρ(A). 1 Con-
sider now the C∗-subalgebra B̃ρ of B generated by ρ(A) and Wσ(ρ)Hσ , with σ
running over all the elements in ∆, endowed with the natural G-action obtained
by restricting the action of G on B. In the next step we exploit the universal
property of the cross-product.

Lemma 2.1 Under the above assumptions there is an isomorphism φρ : Bρ ≡
Aρ o Tρ → B̃ρ, that reduces to the identity on Aρ.

Proof. The argument relies on the uniqueness result given in [14], Theorem
5.1 when applied to Aρ, G, and ∆ρ 3 ρσρ−1 7→ Hρσρ−1 ≡ Wσ(ρ)Hσ. We check
the conditions a)− e) given there:
a) A′ρ ∩ B̃ρ = B̃

G
ρ
′ ∩ B̃ρ by the point b).

Since (B̃ρ, G) has full Hilbert spectrum, we are in position to apply Lemma
5.1 in [14]. Therefore the latter relative commutant is generated, as a closed
linear space, by (ρH , ι)AρH ,

2 where H are Hilbert G-modules in B̃ρ (thus in
B). However, inspection of the proof of that result shows that in the present
situation it is enough to consider H of the form Wσ(ρ)Hσ with σ ∈ ∆. Now,

1Formally one might say that ρ̃(Hσ(A)) = Hρσρ−1(Aρ)(= Wσ(ρ)Hσ(A) ), cf. below.
2We keep the same notation as in the quoted reference.
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ρ(X) ∈ (ρWσ(ρ)Hσ , ι)Aρ = (ρσρ
−1, ι)Aρ easily implies X ∈ (σ, ι)A, and thus

X = 0, whenever σ 6= ι, since A′ ∩ B = CI.
b) of course ρ(A) ⊂ B̃Gρ . The other inclusion can be deduced with the aid

of the following observation: if H = Hρσρ−1 = Wσ(ρ)Hσ with σ ∈ ∆, then
HG = Wσ(ρ)H

G
σ = Wσ(ρ)(C, Hσ)G ⊂ Wσ(ρ)(ιA, σ) ⊂ ρ(A) (the first equality

follows from Wσ(ρ) ∈ A, while the first inclusion is shown in [13, Lemma 2.4]
and the latter one follows by (2.3)). MoreoverH∗ ⊂ ρ(A)K, whereK = Hρσρ−1 :
in fact, given an orthonormal basis ψi in H and an orthonormal basis ϕj in K,
we have that X =

∑
i ϕiψi ∈ A satisfies ϕ

∗
jX = ψj , and further X ∈ ρ(A) by

combining the fact that (in B) HσHσ′ = Hσσ′ together with ((2.2) and) the
above observation.
It follows that B̃ρ is generated, as a closed linear space, by the ρ(A)H with

H as above, and therefore B̃Gρ is generated by ρ(A)H
G ⊂ ρ(A) (here one can

use the conditional expectation provided by taking the mean over G, see e.g.
[27, Proposition 6.2]).
c), d) follow by definition and the computation above, respectively;
e) since ε(σ, τ) = F (Hσ, Hτ ) where F implements the flip symmetry on

Hσ⊗Hτ , σ, τ ∈ ∆, the conclusion is immediate by a straightforward calculation
using (2.2), (2.3) . �
It follows that ρ̂ := φρ ◦ ρ̃ is the desired endomorphism of B extending ρ.

Also, ρ̂ commutes with the action of G.
As to the opposite direction, if a given ρ has an extension ρ̂ commuting with

G, then Wσ(ρ) :=
∑d
i=1 ρ̂(ψi)ψ

∗
i , where {ψi}

d
i=1 is an orthonormal basis of Hσ,

satisfy all the properties (2.1)-(2.3) (see [14, 26]). 3

So we have proved the following result.

Theorem 2.2 Let A and B = AoT be as above, and let ρ be an endomorphism
of A. Then there is an extension ρ̂ of ρ to B commuting with G if and only if
there are unitaries Wσ(ρ), σ ∈ ∆ in A satisfying the identities (2.1)-(2.3). In
this case, ρ̂ is uniquely determined by

ρ̂(ψ) =Wσ(ρ)ψ, ψ ∈ Hσ, σ ∈ ∆.

In particular, when the conditions are satisfied, ρ̂ preserves the Z2-grading.
Moreover, ρ̂(F)G = ρ(A).

Remarks

(i) In general ρ̂ will not be irreducible, even if ρ is.
(ii) It is possible to discuss along the same lines G-commuting extensions to

B of actions by semigroups Γ of endomorphisms of A. One has to require the
further hypothesis

(2.4) Wσ(ρρ
′) = ρ(Wσ(ρ

′))Wσ(ρ), ρ, ρ
′ ∈ Γ,

3The overall discussion should make it clear that in general ρ̂ will not be inner in B.
However, if ρ ∈ ∆, then ρ̂ is nothing but the endomorphism implemented by the same Hilbert
space of isometries as ρ.



Roberto Conti & Claudio D’Antoni 27

see e.g. [26], Lemma 3.10.
Next we discuss some properties of the extensions. In the following we will

also make use of

(2.5) Wσ(ρ
′)∗TWσ(ρ) = σ(T ), T ∈ (ρ, ρ

′), σ ∈ ∆.

So let us start with ρ, ρ′ both satisfying (2.1) - (2.5) as above. Then ρ and ρ′

both extend to B and it is easy to deduce from (2.5) that

(ρ, ρ′) ⊂ (ρ̂, ρ̂′).

¿From (2.4) we immediately get that

ρ̂ρ′ = ρ̂ρ̂′.

As an application, let ρ̂ and ρ̂ be the extensions of ρ and ρ respectively. Then

ρ̂ = ρ̂

whenever

Wσ(ρ)
∗ρ(Wσ(ρ)

∗)R = σ(R) ; Wσ(ρ)
∗ρ(Wσ(ρ)

∗)R = σ(R), σ ∈ ∆

where R ∈ (ι, ρρ) and R ∈ (ι, ρρ) are standard solutions of the conjugate equa-
tions. Then clearly one has

d(ρ) = d(ρ̂).

3 On sectors of field nets

Now let A be an observable net satisfying standard assumptions and F = AoT ,
where T is the category whose objects are the DHR morphisms with finite
statistics of A and whose arrows are their intertwiners [16]. Also let ϑ be a PCT-
symmetry as in [8], §3. For every DHR morphism ρ of A we define ρϑ := ϑρϑ.
Then ρϑ is a DHR morphism, with the same statistics as ρ. Furthermore, there
is an extension ϑ̂ of ϑ to F [8]. (To simplify things we also assume ϑ̂2 = idF
from now on.)
To define the extension of ρ to F , a canonical choice is provided by taking

Wσ(ρ) = ε(σ, ρ), the familiar statistical operator. Then all the conditions con-
sidered above are satisfied, cf. [25]. In fact for any (relatively) local extension
A ⊂ B one gets a unit-preserving monoidal ∗-functor ˆ from the category
whose objects are the DHR morphisms of A to the category whose objects are
the DHR morphisms of B, acting identically on the arrows [10]. We summarize
here the relevant properties:

i) ι̂A = ιB,

ii) (ρ1ρ2)̂ = ρ̂1ρ̂2,

iii) (ρ1 ⊕ ρ2)̂ = ρ̂1 ⊕ ρ̂2,
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iv) ρ̂ = ρ̂,

v) ε(ρ̂, σ̂) = ε(ρ, σ),

vi) d(ρ̂) = d(ρ),

vii) T ∈ (ρ1, ρ2)⇒ T ∈ (ρ̂1, ρ̂2).

Actually this functor corresponds to a group homomorphism h : GB → GA,
where GA (resp. GB) is the canonical gauge group for A (resp. B), cf. [15],
Theorem 6.10. This extension procedure is just an instance of effectiveness of
ideas and methods from net cohomology [28].
Another version of this result appears in [2], Sect. 3.3, called “homomor-

phism properties.” However, that approach is more suitable for low-dimensional
QFT’s.

Proposition 3.1 Let ϑ be a PCT symmetry for A. Then (ρϑ )̂ = ϑ̂ρ̂ϑ̂.

Proof. Since ρ̂(ψ) = ε(σ, ρ)ψ, ψ ∈ Hσ, we have

ϑ̂(ρ̂(ψ)) = ϑ(ε(σ, ρ))ϑ̂(ψ)

= ε(σϑ, ρϑ)ϑ̂(ψ)

= ρ̂ϑ(ϑ̂(ψ))

where in the last equality we used that ϑ̂(ψ) ∈ Hσϑ , see [8], Lemma 3.2. �
This statement has the following interpretation: if ρ has finite statistics, ρϑ

is likely to be (equivalent to) a conjugate ρ of ρ, so the formula reads as ρ̂ ∼= ρ̂ϑ̂;
since we know that ρ̂ = ρ̂ (and d(ρ) = d(ρ̂)), this means that conjugation by

ϑ̂ induces the conjugation on the extended DHR morphisms. Now a natural
question is whether the relation ρ′

ϑ̂
∼= ρ′ holds for every DHR morphism ρ′ of F

with finite statistics (provided that it holds for A).
This is tied up with the existence of nontrivial DHR sectors of F . (For

simplicity we assume F to be Bosonic, but this requirement can be relaxed.)
If one can rule out the occurrence of sectors with infinite statistics for A, then
F has no nontrivial sectors at all (with any statistics) [10], and the conclusion
easily follows.
A major open problem in algebraic QFT is indeed to find conditions exclud-

ing the occurrence of morphisms with infinite statistics (see e.g. [17]). One may
even wonder if some related techniques involving ϑ can be used for that goal,
or for showing that F has no nontrivial sectors.
Returning to our original question, the results allow us to extend to F mor-

phisms of A with a priori any statistics. Morphisms with finite statistics will
extend to inner morphisms (by definition of the cross product), so that only
morphisms with infinite statistics may have nontrivial extension.
We conjecture that if ϑ induces the conjugation on all the DHR morphism

ρ of A with finite statistics (resp. irreducible), then the same is true for ϑ̂.
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Furthermore ϑ coincides with the modular conjugation associated with some
wedge.

Let ϑ̂ (resp.
ˆ̂
ϑ) be some extension of ϑ to F (resp. of ϑ̂ to the field net of

the field net 4 FF). Of course ϑ̂ should be a reasonable PCT operator as well
(see Remark 2 below). Applying the results in [8] we can say that ϑ̂ρ′ϑ̂ ∼= ρ′ if

[
ˆ̂
ϑ,H ] = 0, where H is the gauge group of FF (the compact group such that
FF = F o Ĥ). For the converse implication we lack the information whether

H is quasi-complete [8]. There is an (algebraic) exact sequence 1→ H
i
→ G →

G → 1, where G ⊃ H is the (possibly non-compact) “group of symmetries of
FF extending those of G” and i denotes the inclusion map. But even if G is
known to be quasi-complete, we cannot conclude that H , nor G, is.
We end this section with some brief observations that are relevant to our

discussion. Some of them are new, others are already contained in some form
in previous papers.

Remarks.

1. PCT and (modular) conjugation. We point out an observation contained
in [8], cf. [21, 22]. If ϑ is an anti-automorphism of A satisfying 1) ϑ(A(O)) =
A(−O) for any double cone O, 2) ω◦ϑ = ω∗ where ω is the vacuum state (hence
we can assume that ϑ = Ad(Θ)), 3) ω(αR1(π)(A)ϑ(A)) ≥ 0 for any A ∈ A(WR)

′′,
then, assuming wedge duality, we have that ϑρϑ = ρ. In fact, by properties 1)-3)
we identify Θ with V (R1(π))JWR via Araki’s characterization of modular invo-
lutions. Under the additional hypothesis of positive energy, Borchers’ theorem
[3] yields ϑαx = α−xϑ. Finally in this case there is an extension of ϑ to F
commuting with the gauge action (implemented by V̂ (R1(π))ZĴWR), and the
conclusion follows.
2. PCT and translations. We show that a PCT symmetry on the observables has
a full fledged extension as a PCT symmetry on the fields: by appealing to the
spectrum condition, we get that an extension ϑ̂ of ϑ to the canonical (covariant)
field net Fc has the expected commutation relations with (a suitable extension
of) the translations (cf. [8], §3). The main obstacle here is to find some kind
of uniqueness result for cocycles. In [24], §1, a similar problem is solved by
appealing to the KMS condition. Here we try to keep the use of the modular
structure to a minimal amount but again an analyticity requirement is involved.
We borrow some ideas from [16], §6. More precisely, given a translation covariant
sector ρ, we consider the unique minimal covariant representation {ρ, Uρ} and
the associated cocycle Wρ(x) = U(x)Uρ(x)

∗ ∈ (ρ, αxρα−1x ). (Accordingly we
select the extension α̂ of α, corresponding to this choice.) Now, following the
pattern outlined in [8], §3, one can easily check that ϑ(Wρ(x)) =Wϑρϑ(−x), x ∈
R4, from which the conclusion follows.

3. PCT on intermediate nets. Since we know that ϑ extends to F (once again
considered to be Bosonic, for simplicity) one may like to consider the action of ϑ̂

4At this point we don’t know whether FF = F .
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on any intermediate subnet A ⊂ B ⊂ F . Since B = FL for some closed subgroup
L of G [10], B is stable under ϑ̂ if [ϑ̂, αg] = 0, g ∈ L. (This is obviously true

whenever we know that [ϑ̂, G] = 0.) In this situation we expect ϑ̂|B to inherit
all the properties of a PCT operator from ϑ̂ (in fact from ϑ).

4. PCT on the net generated by the local charges (see [7] and references therein).
If Λ and Λ′ = Ad(U)Λ are two anti-isomorphic W∗ Standard Split Inclusions
via the anti-linear unitary U , then WΛ′U = U ⊗ UWΛ so that ψΛ(U∗TU) =
U∗ψΛ′(T )U , T ∈ B(H), and UηΛ = ηΛ′ (ψΛ is the universal localizing map
associated to Λ and ηΛ is the product vector [4]).

If ϑ̂ = Ad(Θ̂) then we get ψO,Ô,Ω(Θ̂
∗T Θ̂) = Θ̂∗ψ−O,−Ô,Ω(T )Θ̂, T ∈ B(H).

In particular, Θ̂ψO,Ô,Ω(V (x))Θ̂
∗ = ψ−O,−Ô,Ω(V (−x)), x ∈ R

4, from which,
for the net Ct generated by the local energy-momentum tensor, it immediately
follows that Θ̂Ct(O)Θ̂∗ = Ct(−O). The same argument goes through for the net
generated by the local charges.

4 PCT on the field bundle

In this section we start discussing extensions of ϑ in a slightly different context.
We present some elementary computations and hints for further investigations.

We consider the “field bundle operators” F = {ρ,A} where ρ ∈ ∆t(A) (as
usual ∆t denotes the set of all DHR morphisms of A) and A ∈ A. These are
intrinsic operators that play the role of the unobservable fields, and are quite
well suited for treating certain particle aspects of superselection sectors when
the field algebra is not available. (This may be the case in theories obtained via
a scaling limit procedure, or in lower dimensions.)

Denote by FB the family of all such operators (see e.g. [12] for a full account
of their properties). Then FB is a bundle of algebras over ∆t with fiber A.
Suppose we are given an involutive PCT anti-automorphism of A. Out first
aim is to extend it to (an involutive anti-automorphism of) FB. So we need
to explain what we mean by “extension.”5 Loosely speaking, it is a structure-
preserving bijection of FB coinciding with (ι, A) 7→ (ι, θ(A)) (modulo inners)
when restricted to (ι,A). Note that {ρ, I}{ι, A} = {ρ,A}. (Moreover, it should
be well-behaved with respect to taking conjugates.) We refrain from giving more
details, and just notice that, whatever the possibilities are, there is a natural
candidate expressed by the formula θ(F ) = (ϑρϑ, ϑ(A)) (in particular, it is likely
that one extension always exists). Let us look at the very first consequences
of this definition. We have θ2 = idFB, and θ(FB) = FB. Moreover, this
is an antilinear morphism for the natural associative law, namely θ(F 1F 2) =

5We discuss here only the case of a single (anti-)automorphism, but one-parameter groups
or even more general group actions should be treated along the same lines.
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θ(F 1)θ(F 2). In fact

θ({ρ1, A1}{ρ2, A2}) = θ({ρ2ρ1, ρ2(A1)A2})

= {ϑρ2ρ1ϑ, ϑ(ρ2(A1)A2)}

= {ϑρ2ϑϑρ1ϑ, (ϑρ2ϑ)(ϑ(A1))ϑ(A2)}

= θ({ρ1, A1})θ({ρ2, A2}).

In particular [F 1, F 2] = 0 iff [θF 1, θF 2] = 0.
A net structure is put on FB by declaring that F = {ρ,A} ∈ FB(O), O ∈ K

if there is a unitary U ∈ (ρ, ρ′) with ρ′ ∈ ∆t(O) and UA ∈ A(O). Here, as
usual, K denotes the set of open double cones in Minkowski spacetime. Then
θ(FB(O)) = FB(−O), namely F = {ρ,A} ∈ FB(O) iff θ(F ) ∈ FB(−O). In
fact ϑ(U) ∈ (ϑρϑ, ϑρ′ϑ), ϑρ′ϑ ∈ ∆t(−O) and ϑ(U)ϑ(A) = ϑ(UA) ∈ A(−O).
Recall that if T ∈ (ρ, ρ′) then by definition T ◦ {ρ,A} = {ρ′, TA}. Since

T ∈ (ρ, ρ′) iff ϑ(T ) ∈ (ϑρϑ, ϑρ′ϑ) we have

θ(T ◦ {ρ,A}) = {ϑρ′ϑ, ϑ(TA)}

= ϑ(T ) ◦ {ϑρϑ, ϑ(A)}

= ϑ(T ) ◦ θ({ρ,A}).

Then θ preserves the redundancies present in the field bundle.
If F 1 = {ρ1, A1} ∈ FB(O1) and F 2 = {ρ2, A2} ∈ FB(O2) with O1 ⊂ O

′
2

then we have F 1F 2 = ε(ρ1, ρ2) ◦ F 2F 1. Now θ(F 1) ∈ FB(−O1) and θ(F 2) ∈
FB(−O2), and therefore

θ(F 1)θ(F 2) = ε(ϑρ1ϑ, ϑρ2ϑ) ◦ θ(F 2)θ(F 1).

On the other hand, we have

θ(F 1)θ(F 2) = θ(F 1F 2)

= θ(ε(ρ1, ρ2) ◦ F 2F 1)

= ϑ(ε(ρ1, ρ2)) ◦ θ(F 2F 1).

In other words, in order to extend ϑ to FB via the aforementioned formula, com-
patibility with spacelike commutation relations forces the identity ϑ(ε(ρ, σ)) =
ε(ϑρϑ, ϑσϑ) for every ρ, σ ∈ ∆t. Cf. condition 2) in [8, Proposition 2.6].
If we consider only covariant morphisms, spacetime symmetries are lifted to

FB according to αL{ρ,A} = {ρ,XL(ρ)
−1αL(A)} = {ρ, Uρ(L)AU(L)∗}, where

XL(ρ) = U(L)Uρ(L)
∗ ∈ A(O)′ ∩ A(LO)′ ⊂ A if ρ is localized in O. We expect

a relation like θαx = α−xθ (x ∈ R4). We compute

θαx{ρ,A} = θ{ρ, Uρ(x)U(x)
∗αx(A)} = {ϑρϑ, ϑ(Uρ(x)U(x)

∗)ϑ(αx(A))},

α−xθ{ρ,A} = α−x{ϑρϑ, ϑ(A)} = {ϑρϑ, Uϑρϑ(−x)U(−x)
∗α−x(ϑ(A))},

so that we are left with the identity ϑ(Uρ(x)U(x)
∗) = Uϑρϑ(−x)U(−x)∗. Now

Uρ(x)U(x)
∗ = Xx(ρ)

∗ ∈ (αxρα−x, ρ), and thus both ϑ(Uρ(x)U(x)∗) and
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Uϑρϑ(−x)U(−x)∗ are elements of (α−xϑρϑαx, ϑρϑ). If ρ, thus ϑρϑ, are irre-
ducible, the two unitaries can only differ by a phase factor. More generally, see
the discussion in [8] after Theorem 3.1 and in the previous section.
Restricting ourselves to morphisms with finite statistics, there is a well-

defined conjugation on FB. Let ∆r be the set of covariant DHR morphisms
with finite statistics. Given ρ ∈ ∆r there is ρ ∈ ∆r, and operators R ∈ (ι, ρρ),
R ∈ (ι, ρρ), 6 such that R

∗
ρ(R) = I = R∗ρ(R), R = sign(λρ)ε(ρ, ρ) ◦ R, and

R∗R = R
∗
R = d(ρ)I. If F = {ρ,A} with ρ ∈ ∆r, set F

† = {ρ, ρ(A)∗R}. Using
the convention that ρ = ρ and R is the intertwiner associated with ρ, we have
F †† = F . Note that {ι, A}† = {ι, A∗}. It is also easy to check that F ∈ FB(O)
iff F † ∈ FB(O). We have

(F 1F 2)
† = {ρ2ρ1, ρ2(A1)A2}

†

= {ρ2ρ1, ρ2ρ1(ρ2(A1)A2)
∗Rρ2ρ1}

= {ρ2ρ1, ρ2ρ1(A
∗
2)ρ2ρ1(ρ2(A

∗
1))Rρ2ρ1}

while

F †2F
†
1 = {ρ2, ρ2(A2)

∗Rρ2}{ρ1, ρ1(A1)
∗Rρ1}

= {ρ1ρ2, ρ1(ρ2(A2)
∗Rρ2)ρ1(A1)

∗Rρ1}

= {ρ1ρ2, ρ1ρ2(A
∗
2)ρ1(Rρ2A

∗
1)Rρ1}

= {ρ1ρ2, ρ1ρ2(A
∗
2)ρ1(ρ2ρ2(A

∗
1)Rρ2 )Rρ1}

from which the antimultiplicative character of † readily follows 7.
Now ϑρϑ and ϑρϑ are both in ∆r, ϑ(R) ∈ ((ι, ϑρϑϑρϑ)), ϑ(R) ∈ (ι, ϑρϑϑρϑ),

and we easily check the relations8

ϑ(R)∗ϑρϑ(ϑ(R)) = I = ϑ(R)∗ϑρϑ(ϑ(R)),

ϑ(R) = sign(λϑρϑ)ε(ϑρϑ, ϑρϑ) ◦ ϑ(R),

ϑ(R)∗ϑ(R) = ϑ(R)∗ϑ(R) = d(ϑρϑ)I,

i.e. ϑρϑ = ϑρϑ. If F = {ρ,A} we compute

(θF )† = {ϑρϑ, (ϑρϑ)(ϑ(A))∗ϑ(R)}

and
θ(F †) = {ϑρϑ, ϑ(ρ(A)∗R)},

from which we conclude that (θF )† = θ(F †). Summing up, it is tempting to
say that θ ◦ † = † ◦ θ implements an isomorphism of FB with FBopp (=FB as a
set, but with reversed product). The restriction of this isomorphism to A gives

6Sometimes we write Rρ, Rρ to stress the dependence on ρ.
7It is well-known that ρ1, ρ2 ∈ ∆r ⇒ ρ2ρ1 ∈ ∆r . We may, and will, assume to have chosen

a map ρ 7→ ρ such that ρ2ρ1 = ρ1ρ2, Rρ2ρ1 = ρ1(Rρ2)Rρ1 and Rρ2ρ1 = Rρ2ρ1 = Rρ1ρ2 =

ρ2(Rρ1)Rρ2 .
8Note that λϑρϑ = λρ.
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the usual isomorphism ϑ ◦ ∗ : A → Aopp. Of course, using this isomorphism we
also get an isomorphism between FB and FB(Aopp).
So far we have not used the fact that ϑρϑ may express a conjugate of ρ.

However this is bound to play a crucial role. For instance in [12, Section VI] a
charge conjugation C and a Spin-Statistics Theorem are obtained using Poincaré
covariance and positivity of the energy. By combining the properties of † with
the information that ϑρϑ is a conjugate of ρ we get a (linear, antimultiplicative)
“fiberwise” formula expressing the action of θ on FB. More precisely, for every
ρ ∈ ∆r choose a unitary “cocycle” Xϑ(ρ) ∈ (ρ, ϑρϑ). (Notice that even if ρ
is irreducible, such an intertwiner is unique only up to the choice of a phase.)
Therefore Xϑ(ρ)

∗ ◦ θ({ρ,A}†) = {ρ,Xϑ(ρ)∗ϑ(ρ(A)∗R)}, and we are left with
a (non-uniquely defined) fiber-preserving map {ρ,A} 7→ {ρ,Xϑ(ρ)∗ϑ(ρ(A)∗R)}
(in fact an extension of ϑ ◦ ∗). At this point, it is natural to look for a converse
and ask to what extent such or similar maps encompass the information that ϑρϑ
is actually a conjugate of ρ. So we are faced with the following problem: “What
are the relevant properties of the extensions of ϑ to FB ensuring that ϑρϑ ' ρ
for every ρ with finite statistics?” In the field algebra picture, the answer was
the existence of an extension commuting with the gauge action. Making due
allowance for the somewhat different setting, we propose as a sufficient condition
the existence of a fiber-preserving extension of ϑ◦∗. But probably a new insight
is needed.
In low-dimensional QFT, where no canonical description of the field algebra

is available yet, an alternative construction is provided by the reduced field
bundle [19]. It seems worthwhile to give a version of our discussion for that
case. We plan to return on this topic elsewhere.
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