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THE MEASURABLE DISTINCTION BETWEEN THE SPIN AND

ORBITAL ANGULAR MOMENTA OF ELECTROMAGNETIC

RADIATION

JAMES H. CRICHTON & PHILIP L. MARSTON

Abstract. We show how the angular momentum of electromagnetic radiation
may be decomposed into spin and orbital parts, of which the spin part is
measurable in terms of Stokes parameters, thereby providing an unambiguous,
gauge-invariant, distinction between the two parts.

1. Introduction

We are concerned with two issues in this paper. First, to what extent are those
physical quantities which are transported by electromagnetic radiation measurable
in terms of Stokes parameters? These quantities would include energy, momentum
and angular momentum. We find that, in general, the angular momentum is not
measurable, but only its spin part. Thus, our second issue: how can the spin and
orbital angular momentum of electromagnetic radiation be distinguished?
An example will illustrate these issues. Consider a left-circularly-polarizedmono-

chromatic plane wave incident on a dielectric sphere. The problem is to determine
the force and torque exerted by the incoming wave on the sphere [1, 2]. It would
seem reasonable (but it turns out to be unnecessary) to expect that it would be
important to know experimentally how much momentum and angular momentum
would be transported by the scattered radiation. Detectors could be set up in the
radiation zone, with appropriate polarization filters, to measure Stokes parameters
at all scattering angles. The question is then, is such a detection scheme adequate to
determine the momentum and angular momentum flux of the scattered radiation?
The answer is yes for momentum, but no for angular momentum. The detection of
the right- and left-circular polarizations of the scattered light permits only a partial
measurement – the spin part – of the angular momentum.
Formulas for the force and torque exerted by beams of light on arbitrarily-shaped

target objects depend on a precise knowledge of the electric and magnetic multipoles
induced in the target [2, 3, 4]. We are not assuming such precise knowledge, but are,
in effect, inquiring whether measurements of the Stokes parameters in the radiation
zone are sufficient to specify such detailed information of the source.
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Relating the Stokes parameters to the angular momentum of light, particularly
to the spin angular momentum, is not a new idea. Jauch and Rohrlich developed
a quantum-mechanical version of the Stokes parameters to discuss the spin of pho-
tons [5]. Here we are working with the classical fields and the classical Stokes
parameters, but we will be able to exploit the close relationship between circularly-
polarized light and the helicity states of photons in developing and interpreting our
classical results.
In Section 2, we define the Stokes parameters and review the relationships among

angular momentum, helicity, and the Stokes parameters. In Section 3, we obtain
expressions for the rate of transport of the physical quantities of interest from a
finite source through a spherical surface far removed from the source. We express
these quantities in terms of Stokes parameters insofar as possible. An understanding
of the measurement of the angular momentum consistent with the quantum nature
of light is presented in Section 4 and related to the Stokes parameters. The well-
known decomposition of the angular momentum of electromagnetic radiation into
spin and orbital parts is reviewed in Section 5 and applied to the problem raised
in Sections 3 and 4. The problem of the gauge invariance of this decomposition
is discussed in Section 6. We give some specific examples of the problem of non-
measurability in Section 7 and save some concluding remarks for Section 8. In
an appendix, we present formulas for the rate of transport of physical quantities,
given the source multipole moments. These formulas are useful for the examples of
Section 7.

2. Plane waves and Stokes parameters

Consider a monochromatic electromagnetic plane wave propagating in the z-
direction. With real functions, we could express such a wave with transverse com-
ponents as follows:

Ex = E0x cos (kz − ωt+ α) , (1a)

Ey = E0y cos (kz − ωt+ β) , (1b)

where the amplitudes E0x, E0y are real and positive. In the physically-realizable
case, they must decrease to zero at some finite distance from the z-axis. Such
a variation in x and y gives a non-vanishing longitudinal component to the field
which, as we shall see, is related to the angular momentum carried by the wave [6].
In taking time-averages, it will be convenient to work with complex fields:

Ex = |E0x|e
i(kz−ωt+α), (2a)

Ey = |E0y|e
i(kz−ωt+β), (2b)

whose real parts are the physical fields.
The Stokes parameters are measures of the energy flux and the polarization of

the electromagnetic wave. Using the convention of Bohren and Huffman, we take
these to be [7]:

I = |E0x|
2 + |E0y|

2, (3a)

Q = |E0x|
2 − |E0y |

2, (3b)

U = 2Re
(
ExE

∗
y

)
= 2|E0x||E0y | cos (α− β) , (3c)

V = 2 Im
(
ExE

∗
y

)
= 2|E0x||E0y| sin (α− β) . (3d)
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For the monochromatic radiation under consideration, these parameters are not all
independent and are related by [7, 8, 9]: I2 = Q2 + U2 + V 2.
The energy, momentum and angular momentum densities of electromagnetic

fields are given by the following well-known formulas (in Gaussian units) [8]:

e =
1

8π

(
E2 +B2

)
, (4a)

pz =
1

4πc
(E×B)z , (4b)

jz =
1

4πc
[r× (E×B)]z . (4c)

For the case of plane waves, we can obtain expressions for the time-averaged flux
of energy, momentum and angular momentum by considering the amount of each
in a slab of thickness cδt perpendicular to the z-axis. Then:

〈ε̇〉 =
c

4π

∫
dx dy 〈E2 +B2〉 =

c

8π

∫
dx dy (E∗ ·E), (5a)

〈Ṗz〉 =
1

4π

∫
dx dy 〈E×B〉z =

1

8π

∫
dx dy (E∗ · E), (5b)

〈J̇z〉 =
1

8π

∫
dx dy [r× (E∗ ×B)]z . (5c)

In these formulas, we are using the standard procedure for time-averaging sinusoid-
ally-varying waves, where the fields are now given by the complex quantities of Eqs.
(2a) and (2b). The brackets 〈. . . 〉 denote the time-average of the quantity inside.
Thus:

〈ε̇〉 =
c

8π

∫
dx dy

(
|E0x|

2 + |E0y |
2
)
=
c

8π

∫
dx dy I, (6a)

〈Ṗz〉 =
1

8π

∫
dx dy I. (6b)

We see in Eqs. (6a) and (6b) that the energy and momentum fluxes can be
expressed in terms of Stokes parameters integrated over the surface normal to the
propagation direction. The corresponding expression for angular momentum flux
requires some careful treatment. It is useful to go to a cylindrical coordinate system.
In the source-free region, the divergence of E vanishes, giving:

∇ ·E =
1

ρ

∂(ρEρ)

∂ρ
+
1

ρ

∂Eφ

∂φ
+
∂Ez

∂z
= 0.

Thus, for a z-dependence eikz , we have:

−ikEz =
1

ρ

∂(ρEρ)

∂ρ
+
1

ρ

∂Eφ

∂φ
.

Likewise, for a time-dependence e−iωt, Faraday’s law gives:

1

ρ

∂(Ez)

∂φ
− ikEφ = ikBρ,

ikEρ −
∂Ez

∂ρ
= ikBφ,

1

ρ

∂(ρEφ)

∂ρ
−
1

ρ

∂(Eρ)

∂φ
= ikBz.
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Substituting these results in Eq. (5c) (neglecting small quantities) gives:

〈J̇z〉 =
1

8π

∫
ρ dρ dφ ρ(E∗zBρ − E

∗
ρBz)

=
1

8πik

∫
ρ dρ dφ

(
E∗ρ
∂Eρ

∂φ
+ E∗φ

∂Eφ

∂φ

)
,

neglecting “small” terms and integrating by parts, as necessary. Returning to
Cartesian coordinates, using:

Eρ = Ex cosφ+ Ey sinφ,

Eφ = −Ex sinφ+ Ey cosφ,

we have finally:

〈J̇z〉 =
1

8πik

∫
dx dy

[
E∗x
∂Ex

∂φ
+ E∗y

∂Ey

∂φ
− 2i Im (ExE

∗
y)

]

=
1

8πk

∫
dx dy

[
1

2
I
∂

∂φ
(α+ β) +

1

2

∂

∂φ
(α− β)− V

]
.

(6c)

We note here that the angular momentum flux cannot be expressed completely in
terms of Stokes parameters as explained below Eq. (10). This fact is the central
issue of this paper and which will be examined for outgoing spherical waves in more
detail in later sections.
To illustrate the use of these expressions, consider a standard case, a left-

circularly-polarized (LCP) plane wave [9]:

Ex =
E0√
2
cos(kz − ωt) = Re

[
E0√
2
ei(kz−ωt)

]
,

Ey = −
E0√
2
sin(kz − ωt) = Re

[
E0√
2
ei(kz−ωt+π/2)

]
.

We obtain:

〈ε̇〉LCP =
c

8π

∫
dx dy |E0|

2,

〈Ṗz〉LCP =
1

8π

∫
dx dy |E0|

2,

〈J̇z〉LCP =
1

8πk

∫
dx dy |E0|

2.

Thus: 〈ε̇〉LCP = c〈Ṗz〉LCP = ω〈J̇z〉LCP , with obvious quantum-mechanical inter-
pretation that ~ of angular momentum corresponds to ~ω of energy for this wave.
In the language of particle physics, such a wave would be said to have positive helic-
ity: the angular momentum component in the direction of motion is +~. Likewise,
the right-circularly-polarized (RCP) states have negative helicity. For such waves:

〈J̇z〉RCP = −
〈Ṗz〉RCP
k

= −
〈ε̇〉RCP
ω
.

It will be useful later to have the transverse components of the electric field
decomposed into LCP and RCP components. This is done as follows:

eL ≡ −
(i+ ij)
√
2
, eR ≡

(i− ij)
√
2
.
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Then:

E = Exi+ Eyj = ELeL + EReR,

where:

EL = −
Ex − iEy√

2
, ER =

Ex + iEy√
2
.

(For the example given above: EL = −E0ei(kz−ωt), ER = 0.)
Expressing the Stokes parameters in terms of these helicity amplitudes yields:

I = |EL|
2 + |ER|

2, (7a)

Q = −2Re (ELE
∗
R), (7b)

U = −2 Im (ELE
∗
R), (7c)

V = −
(
|EL|

2 − |ER|
2
)
. (7d)

3. Transport of physical quantities by outgoing spherical waves

In this section, we develop expressions for the fluxes of energy, momentum and
angular momentum carried by outing spherical waves in the radiation zone. Far
from the source of the radiation, the transverse components of the electric field,
given appropriately in a spherical polar coordinate system, have a 1/r behavior:

Eθ, Eφ ∼
1

r
ei(kr−ωt)

as do the transverse magnetic field components, which, through Faraday’s law, are
related to the transverse electric field components:

Bθ = −Eφ, Bφ = Eθ,

the error in these equations being of order 1/r2. There is a radial component for
each field, of order 1/r2, obtained from the divergence conditions. Thus:

−ikEr =
1

r sin θ

[
∂

∂θ
(sin θEθ) +

∂Eφ

∂φ

]
+O
(
1/r3
)
,

ikBr =
1

r sin θ

[
∂

∂θ
(sin θEφ)−

∂Eθ

∂φ

]
+O
(
1/r3
)
.

In terms of the transverse E components, the time-averaged fluxes of energy, mo-
mentum and angular momentum through a spherical surface of radius r are given
by:

〈ε̇〉 =
c

8π

∫
r2 dΩ

(
|Eθ|

2 + |Eφ|
2
)
, (8a)

〈Ṗz〉 =
1

8π

∫
r2 dΩ

(
|Eθ|

2 + |Eφ|
2
)
cos θ, (8b)

〈J̇z〉 =
1

8πk

∫
r2 dΩ

[
E∗θ

(
−i
∂Eθ

∂φ

)
+ E∗φ

(
−i
∂Eφ

∂φ

)]
, (8c)

where the integration is over the solid angle dΩ = sin θ dθ dφ. Some integration by
parts was required to bring the expression for 〈J̇z〉 into its final form.
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We again follow Bohren and Huffman in defining Stokes parameters for the
outgoing radiation at angles θ and φ:

I = |Eθ|
2 + |Eφ|

2, (9a)

Q = |Eθ|
2 − |Eφ|

2, (9b)

U = −2Re (EθE
∗
φ), (9c)

V = +2 Im(EθE
∗
φ). (9d)

The expressions for the fluxes in terms of these Stokes parameters are then given
by:

〈ε̇〉 =
c

8π

∫
r2 dΩ I, (10a)

〈Ṗz〉 =
1

8π

∫
r2 dΩ I cos θ, (10b)

〈J̇z〉 =
1

16πk

∫
r2 dΩ

[
I
∂

∂φ
(α+ β) +Q

∂

∂φ
(α− β)

]
. (10c)

with Eθ = |Eθ|eiα and Eφ = |Eφ|eiβ . For outgoing spherical waves, as for plane
waves, the angular momentum flux cannot be expressed completely in terms of
Stokes parameters, hence is not measurable. The unmeasurable quantity is the
sum of the phases, α + β, the difference being given by the inverse tangent of
−V/U .

4. A tentative measurement of the angular momentum of outgoing
spherical radiation

We have seen that the theoretical expression for the angular momentum flux
derived in the previous section does not give much hope for measuring angular
momentum in the radiation zone. But certainly we can measure something. If we
think of the scattered light as consisting of photons, each of which has a probability
for being found to have positive or negative helicity upon measurement, then we
can count the contributions of all the photons in carrying a certain component of
angular momentum.
Here is the measurement that we propose: set a detector with an appropriate set

of polarization filters at given angles θ and φ. The detector can be used to measure
the irradiance of left-circularly-polarized light (energy carried by photons found to
have positive helicity) and that of right-circularly-polarized light. The resulting
contribution to angular momentum transport over the total solid angle is (again,

the z-component for convenience) we denote by 〈J̇z〉M :

〈J̇z〉M =

∫
r2 dΩ

[
IL

hν
(+~) +

IR

hν
(−~)

]
cos θ. (11)

In this expression, the irradiances, IL and IR, or left- and right-circularly-polarized
light, respectively, are divided by ~ω to give the number of photons per unit area
per unit time. An angular momentum +~ is attributed to the LCP states and −~
to the RCP states. The irradiances called for are obtained by decomposing the
electric field into LCP and RCP components as in Section 2 with

eL = −
(eθ + ieφ)√

2
, eR =

(eθ − ieφ)√
2

. (12)
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Here the LCP and RCP field components are:

EL = −
(Eθ − iEφ)√

2
, ER =

(Eθ + iEφ)√
2

. (13)

The irradiances are then given by IL,R = (c/8π)|EL,R|2, so that

〈J̇z〉M =
c

8πω

∫
r2 dΩ

(
|EL|

2 − |ER|
2
)
cos θ

= −
1

8πk

∫
r2 dΩV cos θ.

(14)

Thus, the angular momentum flux that we could measure is expressible in terms
of a Stokes parameter, but nevertheless there must be some part of the angular
momentum that we have missed, since 〈J̇z〉M is clearly not equal to 〈J̇z〉 as given
by Eq. (10c).

5. The Humblet decomposition: orbital and spin angular momenta of
light

It is a common feature of quantum field theories that expressions for total field
angular momentum can be naturally decomposed into orbital and spin parts [5, 10].
Humblet applied this idea to the classical electromagnetic field [11]. For the time-
averaged angular momentum density (i-th Cartesian component),

ji =
1

8πc
[r× (E∗ ×B)]i , (15)

a simple rearrangement of terms gives the desired result. We start with Faraday’s
law (for monochromatic fields with time-dependence e−iωt):

∇×E = ikB.

Then:

ji =
1

8πiω
{r× [E∗ × (∇×E)]}i = li + si + j

surf
i ; (16)

with

li =
1

8πω
E∗j [−i(r×∇)]iEj , (17a)

si =
1

8πω
E∗j (−iεijk)Ek, (17b)

jsurfi = −
1

8πω
∇j(E

∗
j (r×E)i). (17c)

(In these expressions, summation over repeated indices is assumed and εijk is the
Levi–Civita symbol, which is +1 (−1) when the indices are an even (odd) permu-
tation of 123 and zero otherwise.)
The “orbital” angular momentum density, li , has a striking similarity to a

quantum-mechanical density with the orbital angular-momentum operator (except
for a factor of h/2π) sandwiched between a wave function and its complex conjugate.
(Elsewhere, it is explained why the electric field components do not make good wave
functions for photons [12].)
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The “spin” angular momentum density, si, is appropriately named in that there
is no moment arm. Its relation to spin is even more strongly suggested when we
form matrices Σi according to the following rule:

(Σi)jk = −iεijk. (18)

The set of three 3× 3 matrices {Σi} satisfies the angular momentum commutation
relations and further:

Σ21 +Σ
2
2 +Σ

2
3 = 2I3, (19)

as would be appropriate for spin-one matrices. The “surface” term, jsurfi is a
three-divergence: integration of this term throughout a volume is thus equivalent
to integration of E∗n(r × E)i over a surface (En being the component of E normal
to that surface) which could be indefinitely far removed from the source. Such an
integral can be safely taken to vanish, although this should be checked whenever
the Humblet decomposition is used. Humblet showed that, in calculating the time-
averaged flux of angular momentum through a spherical surface, the surface term
makes no contribution.
Thus, for the angular momentum flux we have:

〈J̇z〉 = 〈L̇z〉+ 〈Ṡz〉, (20a)

〈L̇z〉 =
1

8πk

∫
r2 dΩE∗j (−i)

∂Ej

∂φ
, (20b)

〈Ṡz〉 =
1

8πk

∫
r2 dΩ

(
|EL|

2 − |ER|
2
)
cos θ, (20c)

where in Eq. (20c), we have made use of Eq. (13). We see that 〈Ṡz〉 is exactly what
we suggested could be measured in the hypothetical experiment of Sec. 4, and the
orbital part is that which cannot be measured.
Our result shows that there is a measurable distinction between the spin and

orbital parts of the angular momentum of electromagnetic radiation. Yet, it is
often stated that there is no unique, gauge-invariant, separation of these two kinds
of angular momentum [5, 11, 12]. To this problem we turn next.

6. Spin and gauge invariance

The standard decomposition of the angular momentum density uses B =∇×A
in the development of Eq. (15). There results the following:

ji = li + si + j
surf
i ; (21)

with

li =
1

8π
E∗j [(r×∇)]iAj , (22a)

si =
1

8π
E∗j εijkAk (22b)

jsurfi = −
i

8π
∇j
[
E∗j (r×A)i

]
. (22c)

Under a gauge transformation,

A→ A′ = A+∇χ, (23)
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the spin angular momentum density transforms as:

si → s
′
i = si +

1

8π
(E∗ ×∇χ)i. (24)

Because no measurement can distinguish between A and A′, it would seem that
the spin density is not unique. We suggest below a number of ways out of this
difficulty.
First of all, if we restrict the physical situation to one of monochromatic radia-

tion, the decomposition performed in Sec. 5 is valid, and the decomposition there
is expressed in terms of gauge-invariant quantities, i.e., the transverse electric-field
components in the radiation zone.
Second, we point out that the change in si, to leading order in powers of 1/r, is:

δs =
1

8π
(E∗ ×∇χ) = −

ik

8πr
(r×E∗χ), (25)

i.e., it has a moment arm. It appears then that to the spin density has been added
an orbital part. But what is true of the orbital angular momentum density is true
here also: the change in the spin density is transverse to the propagation direction
and cannot be measured. Our gauge-invariant decomposition gives gauge-invariant
quantities, one of which is measurable.
Finally, we note that the electromagnetic fields can be uniquely decomposed into

longitudinal (‖) and transverse (⊥) parts [12]:

E = E‖ +E⊥, B = B‖ +B⊥, (26)

with

∇×E‖ =∇×B‖ = 0; ∇ · E⊥ =∇ ·B⊥ = 0. (27)

The vector potential A can be similarly decomposed. A gauge transformation is
then represented as:

A‖ → A
′
‖ = A‖ +∇χ, (28a)

A⊥ → A
′
⊥ = A⊥. (28b)

The angular momentum density can also be expressed in terms of longitudinal and
transverse parts:

j‖ =
1

4π
r× (E‖ ×B), (29a)

j⊥ =
1

4π
r× (E⊥ ×B). (29b)

Making the substitutionB =∇×A as before, it can be shown that the longitudinal
part can be distributed to the moment of (canonical) momentum of the charged
particles constituting the source of the fields. The longitudinal part is not gauge-
invariant. However, the transverse part, which can be expressed as:

j⊥ =
1

4π
[E⊥i(r ×∇)A⊥i +E⊥ ×A⊥] , (30)

is obviously gauge-invariant. It is this transverse part with which we are dealing in
the radiation zone.
Our conclusion, then, is that the spin flux 〈Ṡz〉 is measurable and certainly

satisfies gauge invariance as much as any other measurable quantity.
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7. Examples of measurable spin and unmeasurable orbital angular
momentum

We now present some examples to illustrate this measurability problem with the
angular momentum of outgoing spherical electromagnetic waves.
First, we consider the field of an electric dipole rotating in the x-y plane with

angular frequency ω:

D = D(i cosωt+ j sinωt), (31a)

or, in terms of complex quantities:

D = D(i+ ij)e−iωt. (31b)

The electric-field components in the radiation zone are [13]:

Eθ =
k2D

r
cos θeiφei(kr−ωt), (32a)

Eφ = i
k2D

r
eiφei(kr−ωt). (32b)

Using Eqs. (8a) – (8c), we obtain the fluxes of interest:

〈ε̇〉 =
2

3
k3D2ω, (33a)

〈Ṗz〉 = 0, (33b)

〈J̇z〉 =
2

3
k3D2, (33c)

and, from Eqs. (20b) and (20c):

〈L̇z〉 = 〈Ṡz〉 =
1

3
k3D2. (33d)

In this example, in which we know what the radiated angular momentum will
be because we know the source of the fields, we see that half of the total angular
momentum, in the orbital form, will escape unmeasured: it cannot in principle be
measured from Stokes parameters.
Consider next the example given in the introduction: the scattering of LCP light

from a dielectric sphere. The measurement of spin angular momentum is predicted
to be:

〈Ṡz〉 =
1

2k3

∑
n

[
2n+ 1

n(n+ 1)

(
|an|

2 + |bn|
2
)
+
2n(n+ 2)

n+ 1
Re
(
anb

∗
n+1 + bna

∗
n+1

)]

(34)

where the an, bn are the Mie scattering coefficients [14]. (This expression is derived
in the Appendix.) This is another case where we know, theoretically, the source of
the fields, so the measurement of the spin would be a test of the theory. The total
angular momentum, however, is given theoretically by a much simpler expression.
Matching boundary conditions of incoming and scattered waves on the surface of
the sphere gives to the spherical polar components of the scattered field a simple
φ-dependence: eiφ. The expression for the total angular momentum is then:

〈J̇z〉 =
1

8πk

∫
r2 dΩ I =

〈ε̇〉

ω
. (35)
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We must emphasize that this simple result, whose expression in terms of Mie coef-
ficients is given in the Appendix, is a theoretical one which cannot be verified by
measurements in the radiation zone.
As a final example, we use multipole sources which are nonvanishing only for

m = 0 components (in the notation of the Appendix):

aE,M (n,m) = aE,M (n, 0)δm0, (36)

Then, setting aE(n, 0) = cn and aM (n, 0) = dn, we have:

〈ε̇〉 =
c

πk2

∑
n

(
|cn|

2 + |dn|
2
)
, (37a)

〈Ṗz〉 = −
1

4πk2

∑
n

[
n(n+ 2)

(2n+ 1)(2n+ 3)

]1/2
Im
(
cnc

∗
n+1 + dnd

∗
n+1

)
, (37b)

〈J̇z〉 = 0, (37c)

〈Ṡz〉 =
1

4πk3

∑
n

[
n(n+ 2)

(2n+ 1)(2n+ 3)

]1/2
Re
(
dnc

∗
n+1 − cnd

∗
n+1

)
. (37d)

Here, without further specification of the multipole sources, we have an example
in which the unmeasurable orbital angular momentum just cancels the measurable
spin to give zero (z-component) total angular momentum. As in the previous cases,
measurement of the spin provides no useful information concerning the total angular
momentum.

8. Conclusion

It should be noted that restricting our development to the z-components of
momentum, angular momentum and spin does not limit our conclusions. It is
simply an artifact of the spherical polar coordinate system that the corresponding
expressions for x- and y-components are somewhat more complicated. Nevertheless,
〈Ṗx〉, 〈Ṗy〉, 〈Ṡx〉 and 〈Ṡy〉 can be expressed completely in terms of Stokes parameters
but 〈J̇x〉 and 〈J̇y〉 cannot.
We have shown above, on the basis of classical electromagnetic theory, that it is

possible to measure energy, momentum and spin angular momentum transported
by electromagnetic radiation from a finite source region and that it is not possible
to measure total angular momentum using Stokes parameters.
Such a finding is surprising on the one hand because of the lack of gauge in-

variance when decomposing the total angular momentum into spin and orbital
parts. On the other hand, it is not surprising when we consider these measure-
ments from the standpoint of quantum theory. The detectors used to measure the
Stokes parameters determine photon momentum, all three components. Physical
quantities whose corresponding operators do not commute with the momentum
operator are left undetermined, unmeasurable. The orbital angular momentum is
one such quantity. The helicity, however, is the projection of angular momentum
along the momentum direction and the corresponding operator commutes with the
momentum operator. Hence, helicity is measurable along with momentum. We
have shown then that the classical theory is consonant with the quantum theory in
this regard.
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Appendix A. Rate of transport of energy, momentum, angular
momentum and spin from a given source of

electromagnetic radiation

To obtain the formulas for energy, momentum, angular momentum and spin
transport in terms of sources, we need the transverse components of the electric
field in the radiation zone. The most general solution of Maxwell’s equations corre-
sponding to outgoing spherical waves in the radiation zone is, according to Jackson:

E =
1

kr
ei(kr−ωt)

∑
n,m

(−i)n+1 [aE(n,m)Xnm + aM (n,m)n×Xnm]× n, (38)

where the Xnm are vector spherical harmonics,

Xnm = [n(n+ 1)]
−1/2 n×∇Ynm,

n is a unit vector radially outward, and the aE(n,m), aM (n,m) are the electric
and magnetic multipole moments of the source. Helicity components EL, ER are
found to be:

EL,R = ±
1

kr
ei(kr−ωt)

∑
n,m

(−i)n+1(−1)m
[
2n+ 1

8π

]1/2
dn±1,m(θ)e

imφ

× [aM (n,m)± iaE(n,m)] . (39)

In Eq. (39) the dnmm′ are the reduced Wigner rotation matrices. Various prop-
erties of the vector spherical harmonics, d-matrices and Clebsch–Gordan coeffi-
cients needed in these derivations can be found in the monograph of Varshalovich,
Moskalev and Khersonkii [15].
The time-averaged energy flux at distance r from the source in terms of helicity

components is given by:

〈ε̇〉 =
c

8π

∫
r2 dΩ

(
|EL|

2 + |ER|
2
)
. (40a)

Substitution of EL and ER from Eq. (39) and integration yield:

〈ε̇〉 =
c

8πk2

∑
n,m

(
|aE(n,m)|

2 + |aM (n,m)|
2
)
. (40b)

The time-averaged angular momentum flux (z-component for convenience) is:

〈J̇z〉 =
1

8πk

∫
r2 dΩ

[
E∗L(−i)

∂

∂φ
EL + E

∗
R(−i)

∂

∂φ
ER

]

=
1

8πk3

∑
n,m

m
(
|aE(n,m)|

2 + |aM (n,m)|
2
)
.

(41)

The time-averaged momentum flux (z-component) is given by:

〈Ṗz〉 =
1

8π

∫
r2 dΩ

(
|EL|

2 + |ER|
2
)
cos θ, (42)

while the time-averaged spin angular momentum flux (z-component) is given by:

〈Ṡz〉 =
1

8πk

∫
r2 dΩ

(
|EL|

2 − |ER|
2
)
cos θ. (43)
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Thus, we must calculate the integral

I± =

∫
r2 dΩ

(
|E2L ± |ER|

2
)
cos θ.

Exploiting the fact that d100(θ) = cos θ, and using various symmetry properties of
the d matrices, we obtain:

I± =
1

6k2

∑
n,m

∑
n′

[(2n+ 1)(2n′ + 1)]
1/2
(−i)n−n

′

(−1)m−1

× {[aM (n,m) + iaE(n,m)] [a
∗
M (n

′,m)− ia∗E(n
′,m)]

× (n1n′ − 1|nn′10)(nmn′ −m|nn′10)

± [aM (n,m)− iaE(n,m)] [a
∗
M (n

′,m) + ia∗E(n
′,m)]

×(n1n′1|nn′10)(nmn′ −m|nn′10)} ,

where the (j1m1j2m2|j1j2JM) are the Clebsch–Gordan coefficients in a standard
notation [16]. Explicit evaluation of the C–G coefficients leads to:

I± =
1

2k2

∑
n,m

{
m

n+ 1

[
|aM (n,m) + iaE(n,m)|

2 ∓ |aM (n,m)− iaE(n,m)|
2
]

−
2

n+ 1

[
n(n+ 2)(n−m+ 1)(n+m+ 1)

(2n+ 1)(2n+ 3)

]1/2

× { Im [(aM (n,m) + iaE(n,m)) (a
∗
M (n+ 1,m)− ia

∗
E(n+ 1,m))]

± Im [(aM (n,m)− iaE(n,m)) (a
∗
M (n+ 1,m) + ia

∗
E(n+ 1,m))]}} . (44)

Taking the upper signs, we have:

〈Ṗz〉 = −
1

4πk2

∑
n,m

{
m

n(n+ 1)
Im [aE(n,m)a

∗
M (n,m)]

+
1

(n+ 1)

[
n(n+ 2)(n−m+ 1)(n+m+ 1)

(2n+ 1)(2n+ 3)

]1/2

× Im [aM (n,m)a
∗
M (n+ 1,m) + aE(n,m)a

∗
E(n+ 1,m)]} . (45)

The lower signs give:

〈Ṡz〉 =
1

8πk3

∑
n,m

{
m

n(n+ 1)

[
|aE(n,m)|

2 + |aM (n,m)|
2
]

+
2

(n+ 1)

[
n(n+ 2)(n−m+ 1)(n+m+ 1)

(2n+ 1)(2n+ 3)

]1/2

×Re [aM (n,m)a
∗
E(n+ 1,m)− aE(n,m)a

∗
M (n,m)]} . (46)

For the case of a left-circularly-polarized plane wave scattering from a dielectric
sphere, we have, in the standard notation:

aE(n,m) = (i)
n+1 [4π(2n+ 1)]

1/2
anδm1,

aM (n,m) = (i)
n+2 [4π(2n+ 1)]

1/2
bnδm1.
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With this restriction, Eqs. (40), (41), (45) and (46) reduce to [17]:

〈ε̇〉MS =
c

2k2

∑
n

(2n+ 1)
(
|an|

2 + |bn|
2
)
, (47)

〈J̇z〉MS =
1

2k3

∑
n

(2n+ 1)
(
|an|

2 + |bn|
2
)
, (48)

〈Ṗz〉MS =
1

k2

∑
n

[
2n+ 1

n(n+ 1)
Re (anb

∗
n) +

n(n+ 2)

n+ 1
Re
(
ana

∗
n+1 + bnb

∗
n+1

)]
(49)

〈Ṡz〉MS =
1

2k3

∑
n

[
2n+ 1

n(n+ 1)

(
|an|

2 + |bn|
2
)
+
2n(n+ 2)

n+ 1
Re
(
anb

∗
n+1 + bna

∗
n+1

)]
,

(50)

with subscripts “MS” to denote Mie scattering.
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