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Abstract

For each finite-dimensional real vector space X we construct a C∗-
algebra CX0 graded by the lattice of all subspaces of X. Then we compute
its quotient with respect to the algebra of compact operators. This allows
us to describe the essential spectrum and to prove the Mourre estimate
for the self-adjoint operators associated with CX0 .

1 Introduction

Let C be a C∗-algebra of bounded operators on a Hilbert space H and let H be
a self-adjoint operator on H. One says that H is affiliated to C if (H−z)−1 ∈ C
for some z ∈ C \ σ(H). In this case ϕ(H) ∈ C for all ϕ ∈ C0(R) (the space of
continuous functions which tend to zero at infinity).
Assume that the algebra of compact operators K(H) on H is included in

C. Then one can construct the quotient C∗-algebra Ĉ = C/K(H), and one can

consider the map Ĥ : C0(R)→ Ĉ defined by Ĥ(ϕ) = ϕ̂(H) = [class of ϕ(H) in

the quotient]. This is a morphism, and Ĥ should be thought as an “abstract”

self-adjoint operator affiliated to the “abstract” C∗-algebra Ĉ. The notion of
spectrum of Ĥ has an obvious meaning, and it is easy to show that the essential
spectrum of H is given by σess(H) = σ(Ĥ).

This point of view is not practically useful unless the algebra Ĉ has a special
structure. In any case Ĉ should be, in some sense, simpler than C. A systematic
treatment of a rather large class of examples in which Ĉ and Ĥ are explicitly
computed can be found in [4]. In particular, the relevance, in this context, of the
C∗-algebras obtained as cross products of algebras equipped with group actions
is pointed out.
Our purpose in this note is to consider the quantum-mechanical N -body

problem from this point of view. By taking into account the kind of potentials
involved in the N -body problem it is natural (at least, a posteriori) to consider
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52 C∗-cross products

in this case the algebra C = CX0 constructed as follows. Let X be a real finite-
dimensional vector space (the configuration space of the system of N particles)
and A the C∗-algebra generated by functions on X of the form ϕ ◦ πY , where
Y is a vector subspace of X , ϕ ∈ C0(X/Y ) and πY : X → X/Y is the natural
map. The additive group X acts continuously by translations on A. Then we
take C equal to the cross product of A by the action of X .
The definition of cross products used in this paper is adapted to our needs,

and we do not make any explicit reference to the general theory (whose useful-
ness in more complicated situations is, however, shown in [4]). Let H(X) be the
space of square integrable functions on X and denote by Q and P the position
and momentum observables. If A is a ∗-algebra of bounded uniformly continu-
ous functions on X and if A is stable under translations, then the (norm) closed
linear subspace of B(H(X)) generated by operators of the form ϕ(Q)ψ(P ), with
ϕ ∈ A, ψ ∈ C0(X∗), is a C∗-algebra isomorphic to the “abstract” cross product
A o X of A by the action of the additive group X . Here we simply take this
as the definition of A o X . Thus the algebra CX0 is obtained by choosing A
equal to the closed linear space generated by functions of the form ϕ ◦ πY with
ϕ ∈ C0(X/Y ).
In Section 2 we show that such cross products appear quite naturally in the

spectral analysis of quantum Hamiltonians. Assume, for example, that one is
interested in self-adjoint operators of the form H = H0 + V , where H0, the
kinetic energy, is an elliptic differential operator of order m with constant coef-
ficients and V is a symmetric differential operator of order < m with coefficients
in A. Assume also that A contains the constant functions. Then the smallest
C∗-algebra of operators on H(X) to which all these operators are affiliated (H0
being fixed) is equal to C = A o X . The main point of our approach is that
this algebra often has a remarkable structure (determined by certain properties
of A), and this fact alone gives important information on the spectral proper-
ties of H . Note that we construct C starting with a rather restricted class of
perturbations V . However, the class of operators H affiliated to C is very large
and it allows quite singular perturbations (this point is studied in [2] and will
not be further discussed here).
Above X∗ is the space dual to X and one may assume without loss of

generality that X = X∗ = Rn. However, our approach is explicitly independent
of a choice of a Euclidean structure on the configuration space. This not only
simplifies the presentation but opens the way to generalizations which allow one
to study many channel Hamiltonians quite different from those of N -body type.
Indeed, one can replace X by a locally compact abelian group and the subspaces
Y by subgroups. The case of nonabelian groups is also interesting, for example
the “symplectic algebra” associated to a symplectic space (to which N -body
Hamiltonians with magnetic fields are affiliated) corresponds to the Heisenberg
group.
Technically speaking, the main result of this paper is Theorem 5.2. We shall

state now several consequences of this theorem. The proofs are quite easy and
will not be detailed (see Section 8.4.3 in [1] and note that the spectrum of a
direct sum, not necessarily finite, of self-adjoint operators is equal to the closure
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of the union of the spectra).

Theorem 1.1 Let H be a self-adjoint operator on H(X) affiliated to CX0 . Then
for each ω ∈ X, ω 6= 0, the limit lim|λ|→∞ τλω[H ] := Hω exists in strong-
resolvent sense and

σess(H) =
⋃

ω∈X\{0}

σ(Hω). (1.1)

Here τx[H ] = e
i〈x,P 〉He−i〈x,P 〉 and (ei〈x,P 〉f)(y) = f(x + y). Note that Hω

depends only on the one dimensional space generated by ω. In order to get a
version of Theorem 1.1 which resembles more to the standard N -body version,
we shall consider only a rather particular class of H . Take X = X∗ = Rn and
let h : Rn → R be a continuous function such that c−1〈x〉2s ≤ h(x) ≤ c〈x〉2s if
|x| > r, where s, r, c are strictly positive constants and 〈x〉 = (1+ |x|2)1/2. Then
H0 = h(P ) is a self-adjoint operator whose form domain is the Sobolev space
Hs(X). For each linear subspace Y ⊂ X let VY be a continuous symmetric
sesquilinear form on Hs(X), identified with an operator Hs(X) → H−s(X),
such that:

(i) [ei〈y,P 〉, VY ] = 0 for all y ∈ Y ;

(ii) ‖[ei〈Q,k〉, VY ]‖Hs→H−s → 0 if k ∈ Y , k → 0

(iii) ‖[ei〈Q,k〉 − 1]VY ‖Hs→H−s → 0 if k ∈ Y
⊥, k → 0.

We have denoted ei〈Q,k〉 the operator of multiplication by the function ei〈x,k〉.
For Y = O = {0} we take VY = 0. Note that in (ii) (but not in (iii)) the
Euclidean structure of X = Rn is used. Furthermore, we assume∑

Y⊂X

‖VY ‖Hs→H−s <∞,

in particular VY 6= 0 only for a countable number of subspaces Y . Finally, we
ask that VY ≥ −µYH0− δY as forms on Hs(X), where µY , δY ≥ 0 are numbers
such that

∑
Y µY < 1 and

∑
Y δY <∞. ThenH = H0+

∑
Y VY is a self-adjoint,

bounded from below operator on H(X), H is affiliated to CX0 , and

σess(H) =
⋃
Y ∈M

σ(HY ).

Here HY = H0 +
∑
Z⊃Y VZ and M is the set of minimal elements (for the

inclusion relation) of the class of subspaces of the form Y1 ∩ · · · ∩ Yk 6= 0 with
Yi ∈ {Y : VY 6= 0}.
Theorem 5.2 can also be used in order to prove the Mourre estimate for

operators affiliated to CX0 . We shall present here only the simplest case when
H0 is the (positive) Laplacian and the VY do not depend on the projection on Y
of the momentum, so VY = 1⊗ V Y if H(X) = H(Y )⊗H(Y ⊥). More precisely,
it suffices to replace (ii) by the stronger condition:
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(ii∗) [ei〈Q,k〉, VY ] = 0 if k ∈ Y .

Now H looks exactly as in the non-relativistic N -body problem, the only
difference is that we allow an infinite lattice of subspaces. Thus we can define
operators HY acting in H(Y ⊥) for each Y ⊂ X and these operators have a
structure similar to that of H . Note that in the N -body case the subspaces Y
are usually denoted Xa; moreover, one must interchange the rôles of Y and Y

⊥

in order to agree with the conventions from [1].

Theorem 1.2 Let H be of the form described above and let D be the generator
of the dilation group in H(X). Assume that the quadratic form [D, (H + i)−1],
with domain equal to the domain of D, extends to a bounded operator which
belongs to CX0 . Let L be the family of subspaces of the form Y1 ∩ · · · ∩ Yk where
Yi are subspaces such that VYi 6= 0. Define the set of thresholds of H by

τ(H) =
⋃

Y ∈L\{O}

σp(HY ).

Then the Mourre estimate for H with respect to D holds outside τ(H).
The proof is a straightforward application of Theorem 5.2 and of Theorem

8.4.3 from [1] (infinite version). See Section 9.4.1 from [1], or [2] where the
Mourre estimate is proved for more general classes of Hamiltonians.
We would like to thank George Skandalis who, several years ago, mentioned

in a private discussion with one of us (VG) that the algebras defined in relation
(9.2.14) from [1] are in fact cross products.

2 Cross Products and Quantum Hamiltonians

We begin with some notations and conventions adopted in this paper. If X is
a locally compact topological space then Cb(X) is the C

∗-algebra of continuous
bounded complex functions on it, C0(X) the C

∗-subalgebra of functions con-
vergent to zero at infinity, and Cc(X) the subalgebra of functions with compact
support. If H is a Hilbert space then B(H) and K(H) are the C∗-algebras of all
bounded and compact operators on H respectively. By morphism between two
∗-algebras we mean ∗-morphism. If A,B are subspaces of an algebra C then we
denote by A ·B the linear subspace of C generated by the elements of the form
AB with A ∈ A,B ∈ B; if C is a C∗-algebra then [[A ·B]] is the norm closure of
A · B in C. A family {Ci}i∈I of subalgebras of C is linearly independent if for
each family {Si}i∈I such that Si ∈ Ci ∀i, Si 6= 0 for at most a finite number of
i and

∑
i∈I Si = 0, one has Si = 0 for all i ∈ I.

Let X be a finite-dimensional real vector space. For each x ∈ X we denote by
τx the automorphism of Cb(X) associated to the translation by x, so (τxϕ)(y) =
ϕ(y + x). Then the set Cbu(X) of functions ϕ ∈ Cb(X) such that x 7→ τxϕ is
norm continuous is the C∗-algebra of bounded uniformly continuous functions
on X . If X = O = {0} is the zero dimensional vector space then Cb(X) =
Cbu(X) = C0(X) = C.
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We denote by H(X) the space of (equivalence classes of) functions on X
square integrable with respect to a Haar measure (i.e. a translation invariant
positive Radon measure on X). There is no canonical norm on H(X), the Haar
measure being determined only modulo a positive constant factor. However, it
is clear that the norms in the spaces B(H(X)) and K(H(X)) are independent
of the choice of the measure. We set B(X) = B(H(X)) and K(X) = K(H(X));
these are C∗-algebras uniquely determined by X . If X = O = {0} is the zero
dimensional vector space we set H(X) = C and B(O) = K(O) = C.
We embed Cb(X) in B(X) by identifying a function u ∈ Cb(X) with the

operator of multiplication by u in H(X). If we denote u(Q), or u(QX), this
operator, then the map u 7→ u(Q) is an isometric morphism of Cb(X) into
B(X). So we realize Cb(X) as a C

∗-subalgebra of B(X).

Let X∗ be the dual space of X . For x ∈ X,x∗ ∈ X∗ let 〈x, x∗〉 = x∗(x)
and identify X∗∗ = X by setting 〈x∗, x〉 = 〈x, x∗〉. We shall embed the al-
gebra Cb(X

∗) of bounded continuous functions on X∗ into B(X) by the fol-
lowing procedure, explicitly independent of a Haar measure on X . It will be
convenient here to use the notation ei〈x,P 〉 for the operator of translation by
x ∈ X , more precisely (ei〈x,P 〉f)(y) = f(x + y) (this is identical to the action
of τx on functions). For each v ∈ S(X∗) (space of Schwartz test functions on
X∗) there is a unique measure v̂ on X such that v(x∗) =

∫
X
ei〈x,x

∗〉v̂(dx). We

set v(P ) =
∫
X
ei〈x,P 〉v̂(dx) (if X has to be specified we set v(P ) = v(PX)).

The map v 7→ v(P ) extends to an isometric morphism of C0(X
∗) into B(X).

This allows us to realize C0(X
∗) as a C∗-subalgebra of B(X) and it is easy to

check that the action of C0(X
∗) on H(X) is nondegenerate. This, in turn, will

give us an embedding Cb(X
∗) ⊂ B(X), uniquely determined by the property

u(P )v(P ) = (uv)(P ) if u ∈ Cb, v ∈ C0. Observe that C0(X∗) is just the group
C∗-algebra of the additive group X .

One may define the Fourier transformation as a bijective map F : S(X) →
S(X∗) such that F exp(i〈x, PX〉) = exp(i〈x,QX

∗

)〉F for all x ∈ X . This defines
F modulo a complex factor and ΦX [S] = FSF

−1 gives a canonical isomorphism
ΦX : B(X)→ B(X∗) such that ΦX [v(P

X)] = v(QX
∗
) for all v ∈ Cb(X∗).

We now prove a lemma which plays an important rôle in our arguments.

Lemma 2.1 If u ∈ Cbu(X) and v ∈ S(X∗) then for each number ε > 0 there
are points x1, . . . , xN ∈ X and functions v1, . . . , vN ∈ S(X∗) such that

‖v(P )u(Q)−
N∑
k=1

u(Q+ xk)vk(P )‖ < ε.

Proof. Set S = u(Q) and S(x) = ei〈x,P 〉Se−i〈x,P 〉. Then S(x) = u(Q+ x), S
is an element of B(X), and the map x 7−→ S(x) is bounded by ‖S‖ and is norm
continuous. Choose a Haar measure dx on X . The measure v̂ is absolutely
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continuous, so we can identify it with a function in S(X) by v̂(dx) ≡ v̂(x)dx.
Then

v(P )S =

∫
X

ei〈x,P 〉Sv̂(x)dx =

∫
X

S(x)ei〈x,P 〉v̂(x)dx.

Let K be a compact subset of X and V a compact neighbourhood of the origin
in X . One can find functions J0, J1, . . . , JN of class C

∞ on X such that:

(i) 0 ≤ Jk ≤ 1 if 0 ≤ k ≤ N and
∑N
k=0 Jk(x) = 1 for all x ∈ X ;

(ii) K ∩ suppJ0 = ∅;

(iii) there are points x1, . . . , xN ∈ X and such that suppJk ⊂ xk + V if
1 ≤ k ≤ N .

Then we write:

v(P )S =
N∑
k=1

S(xk)

∫
X

Jk(x)e
i〈x,P 〉v̂(x)dx

+

N∑
k=1

∫
X

[S(x)− S(xk)]Jk(x)e
i〈x,P 〉v̂(x)dx

+

∫
X

S(x)J0(x)e
i〈x,P 〉v̂(x)dx.

Let vk ∈ S(X∗) be defined by v̂k(x) = Jk(x)v̂(x); then the first sum above is∑N
k=1 S(xk)vk(P ). Denote Kk = suppJk and let L be the integral of |v̂|. We

estimate the last two terms as follows :

‖
N∑
k=1

∫
X

[S(x)− S(xk)]Jk(x)e
i〈x,P 〉v̂(x)dx‖ ≤ sup

1≤k≤N
sup
x∈Kk

‖S(x)− S(xk)‖L

because
∑N
k=1 Jk(x) ≤ 1, and

‖

∫
X

S(x)J0(x)e
i〈x,P 〉v̂(x)dx‖ ≤ ‖S‖

∫
X\K

|v̂(x)|dx.

If K is large enough the second member in the last inequality can be made
< ε/2. Finally, we have

sup
x∈Kk

‖S(x)− S(xk)‖ ≤ sup
y∈V
‖S(y)− S‖

and this can be made < ε/(2L) because the function S(·) is continuous. ♦

Corollary 2.2 If A ⊂ Cbu(X) is a translation invariant subspace, then [[A ·
C0(X

∗)]] = [[C0(X
∗) · A]]. In particular, if A is a translation invariant ∗-

subalgebra of Cbu(X) then [[A · C0(X∗)]] is a C∗-subalgebra of B(X).
If A is a C∗-subalgebra of Cbu(X) stable under translations then A is

equipped with a continuous action of the additive group X , so the “abstract”
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C∗-cross product A oX is well defined. It can be shown (see [4]) that A oX
is canonically isomorphic to the C∗-subalgebra [[A · C0(X∗)]] of B(X). For this
reason we shall call this subalgebra cross product of A by X and we use the
notation

AoX = [[A · C0(X
∗)]]. (2.1)

Our next purpose is to explain the relevance of this notion in the setting
of “algebras of energy observables” considered in [4]. More precisely, we show
that AoX coincides with the C∗-algebra generated by the Hamiltonians of the
form H = H0 + V where H0, the kinetic energy, is fixed, while the interaction
is given by a potential V of “type A” in a sense that we shall specify below. So
AoX can be thought as the algebra of all Hamiltonians describing the motion
of a system subject to a certain type (A) of interactions.
Let us fix a C∗-algebra stable under translations and containing the constants

A ⊂ Cbu(X). We set

A∞ = {ϕ ∈ A ∩ C∞(X) : all the derivatives of ϕ belong to A}.

We notice that A∞ is a dense ∗-subalgebra of A. Indeed, let π ∈ C∞c (X) with∫
π(x)dx = 1 and let us set θε(x) = ε−nθ(x/ε) if ε > 0. Then θε ∗ ϕ → ϕ in
sup norm as ε → 0 if ϕ ∈ A, because ϕ is uniformly continuous. So it suffices
to prove that all the derivatives of θε ∗ ϕ belong to A. Identifying X = Rn and
taking ε = 1, we have for α ∈ Nn:

(θ ∗ ϕ)(α) = θ(α) ∗ ϕ =

∫
θ(α)(−y)τyϕdy.

The integral converges in norm in Cbu(X) and A is a closed subspace, so (θ ∗
ϕ)(α) ∈ A.

Theorem 2.3 Let A ⊂ Cbu(X) be a translation invariant C
∗-subalgebra con-

taining the constant functions and let h : X∗ → R be a continuous function such
that |h(k)| → ∞ when k → ∞ in X∗. Then the C∗-subalgebra of B(X) gener-
ated by the self-adjoint operators of the form h(P + k) + V (Q), where k ∈ X∗

and V : X → R belongs to A∞, coincides with AoX.

Proof. Let C be the C∗-algebra generated by the operators H = h(P + k) +
V (Q) ≡ H0 + V (Q), with k ∈ X∗ and V ∈ A∞. By making a series expansion
for large z

(z −H)−1 =
∑
n≥0

(z −H0)
−1[V (Q)(z −H0)

−1]n

we easily get C ⊂ A o X . It remains to prove the opposite inclusion. Let
z ∈ C \ h(X∗). Then for µ ∈ R small enough we have z /∈ σ(Hµ) if Hµ =
h(P+k)+µV (Q). The function µ 7→ (Hµ−z)−1 is norm derivable at µ = 0 with
derivative −(H0−z)−1V (Q)(H0−z)−1. Hence (H0−z)−1V (Q)(H0−z)−1 ∈ C.
Let θ ∈ Cc(R) with θ(0) = 1 and ε > 0. Then θ(εH0)(H0 − z) = ε−1θ1(εH0) if
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θ1(t) = θ(t)(t − z/ε). Since εH0 is affiliated to C, we get θ(εH0)(H − z) ∈ C.
Thus:

θ(εH0)V (Q)(H0 − z)
−1 = θ(εH0)(H0 − z) · (H0 − z)

−1V (Q)(H0 − z)
−1 ∈ C.

We can write (H0 − z)−1 = limn→∞ ψn(P ) (norm limit) with ψn ∈ Cc(X
∗).

Then, for each s > 0, ψn(P ) is a continuous map from L2(X) into the Sobolev
space Hs(X) and V (Q) ∈ B(Hs(X)). Clearly limε→0 θ(εH0) = 1 in norm in
B(Hs(X), L2(X)). Thus we see that limε→0 θ(εH0)V (Q)ψn(P ) = V (Q)ψn(P )
in norm in B(L2(X)) for each n. On the other hand, we have ‖V (Q)ψn(P ) −
V (Q)(H0−z)−1‖ → 0 as n→∞. It follows then that limε→0 θ(εH0)V (Q)(H0−
z)−1 = V (Q)(H0 − z)−1 in norm in B(L2(X)).
This argument proves that

V (Q)(h(P + k)− z)−1 = V (Q)(H0 − z)
−1 ∈ C

for each k ∈ X∗. This clearly implies V (Q)ξ(H0) ∈ C for ξ ∈ Cc(R).
The set of ψ ∈ C0(X∗) such that V (Q)ψ(P ) ∈ C is norm closed and contains

all the functions of the form ψ(P ) = ξ(h(P + k)) with ξ ∈ Cc(R) and k ∈
X∗. The family consisting of such functions is a ∗-subalgebra of C0(X∗) which
separates the points of X∗ (because |h(p+ k)| → ∞ if k → ∞). By the Stone-
Weierstrass theorem, we see that this family is dense in C0(X

∗). So we have
V (Q)ψ(P ) ∈ C ∀ψ ∈ C0(X∗). Here V is an arbitrary function in A∞. Since
A∞ is dense in A, we finally obtain ϕ(Q)ψ(P ) ∈ C for all ϕ ∈ A, ψ ∈ C0(X∗).
♦

Corollary 2.4 Let h : X∗ → R be an elliptic polynomial of order m. Then
the C∗-algebra of operators on H(X) generated by the self-adjoint operators
H = h(P ) +W , where W is a symmetric differential operator of order < m
with coefficients in A∞, is equal to AoX.

Proof. If V ∈ A∞, and if we identify X∗ = Rn, we have

h(P + k) + V (Q) = h(P ) +
∑
|α|≥1

kα

α!
h(α)(P ) + V (Q) ≡ h(P ) +W

so we may use the preceding theorem.

3 Graded C∗-Algebras

In this paper we are interested in C∗-algebras which are graded by a semilattice
L. The case when L is finite is presented in Section 8.4 from [1]. Below we
extend the formalism to the case of infinite L. Note that in the present context
it is convenient to interchange the rôles of the lower and upper bounds in the
definition of the grading, which explains some differences in notations with
respect to [1].
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Let L be an arbitrary semilattice, i.e. L is a partially ordered set such that
the lower bound a∧b exists for all a, b ∈ L. If L has a least or a greatest element,
we denote it minL or maxL respectively. We denote by F(L) the family of finite
subsets F ⊂ L such that a ∧ b ∈ F if a, b ∈ F (the empty set belongs to F(L)).
So each F ∈ F(L) is a finite semilattice for the order relation induced by L, in
particular it has a least element minF . We equip F(L) with the order relation
given by inclusion. Since F1∩F2 ∈ F(L) if F1,F2 ∈ F(L), the set F(L) becomes
a semilattice. Note that for each finite part F ⊂ L the set of elements of the
form a1 ∧ · · · ∧ an with a1, · · ·, an ∈ F belongs to F(L) and contains F .
A L-graded C∗-algebra is a C∗-algebra C equipped with a linearly indepen-

dent family {C(a)}a∈L of C∗-subalgebras such that:

(i) C(a) · C(b) ⊂ C(a ∧ b) for all a, b ∈ L

(ii) if F ∈ F(L) then C(F) :=
∑
a∈F C(a) is a closed subspace of C

(iii)
⋃
F∈F(L)C(F) ≡

∑
a∈L C(a) is dense in C.

It is clear that for each F ∈ F(L) the space C(F) is a C∗-subalgebra of C
and is equipped with a canonical structure of F -graded C∗-algebra. The set of
C∗-subalgebras of C (ordered by inclusion) is a semilattice and F 7−→ C(F)
is an injective morphism of semilattices (i.e. C(F1 ∩ F2) = C(F1) ∩ C(F2)).
In particular, we have C(F1) ⊂ C(F2) if F1 ⊂ F2 and C coincides with the
inductive limit of {C(F) : F ∈ F(L)}, a directed system of C∗-algebras.
We use the notation C(F) =

∑
a∈F C(a) for an arbitrary subset F of L. If F

is ∧-stable then C(F) is a ∗-algebra, but is not complete in general. In particular
C is just the closure of the ∗-algebra C(L). For a ∈ L set La = {b | a ≤ b},
L′a = {b | a 6≤ b} and let Ca, Ja be the closure of C(La) and C(L

′
a) respectively.

Note that C(La) is a ∗-subalgebra of C and C(L′a) is a self-adjoint ideal in C.
Hence Ca, Ja are C

∗-subalgebras of C and Ja is also a closed self-adjoint ideal
in C.

Theorem 3.1 For all a ∈ L one has C = Ca + Ja and Ca ∩ Ja = {0}. The
projection Pa : C → Ca determined by this linear direct sum decomposition is a
morphism, in particular ‖Pa‖ = 1.

Proof. We clearly have C(L) = C(La)+C(L′a) as a linear direct sum. Let P
◦
a

be the projection of C(L) onto C(La) determined by this decomposition. Thus,
if T ∈ C(L) is given by T =

∑
b∈L T (b), where T (b) 6= 0 only for a finite number

of b, we have P◦a [T ] =
∑
a≤b T (b). Then P

◦
a [T ]

∗ = P◦a [T
∗] and if S =

∑
b∈L S(b)

with S(b) 6= 0 only for a finite number of b, then

ST =
∑
b,c

S(b)T (c) =
∑
d∈L

∑
b∧c=d

S(b)T (c).

Thus

P◦a [ST ] =
∑
a≤d

∑
b∧c=d

S(b)T (c) =
∑
a≤b∧c

S(b)T (c)
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=
∑

a≤b, a≤c

S(b)T (c) = P◦a [S] P
◦
a [T ].

Hence P◦a is a morphism of the ∗-algebra C(L) onto its ∗-subalgebra C(La).
Let F ∈ F(L) such that a ∈ F and T (b) = 0 if b /∈ F (we saw before that

such a F exists). Then P◦a |C(F) is a morphism of the C
∗-algebra C(F) onto

the C∗-algebra C(Fa), with Fa = F ∩ La. Such a morphism always has norm
≤ 1. Hence we have ‖P◦a [T ]‖ ≤ ‖T ‖. Since this is valid for each T ∈ C(L) and
C(L) is dense in C, we see that P◦a extends to a morphism Pa : C → Ca with
Pa[T ] = T if T ∈ Ca. In particular, Pa is also a linear projection of C onto Ca
with ‖Pa‖ ≤ 1. Since Ca 6= {0} (because C(a) 6= {0}) we have in fact ‖Pa‖ = 1.
We have C(L′a) = kerP

◦
a ⊂ kerPa. Since C(L) is dense in C, C(L

′
a) =

(1 − Pa)C(L), and 1− Pa is a continuous surjective map of C onto kerPa, we
get that C(L′a) is dense in kerPa. So kerPa = Ja. ♦

One can reformulate the preceding theorem in the following terms: the map
P◦a : C → C defined by P◦a [

∑
b T (b)] =

∑
a≤b T (b) extends to a norm 1 projection

Pa of C onto Ca which is also a morphism. Not also that the family of C∗-
subalgebras {Ca}a∈L is decreasing: if a ≤ b then Cb ⊂ Ca and

PaPb = PbPa = Pb (3.1)

If L has a least element minL then C(minL) is a closed self-adjoint ideal in
C, hence one may construct the quotient C∗-algebra

Ĉ := C/C(minL). (3.2)

We shall give a more explicit description of this object when L is an atomic
semilattice. We recall that an atom of L is an element a 6= minL such that
b ≤ a ⇒ b = minL or b = a. We denote by M the set of atoms of L and we
say that L is atomic if each b 6= minL is minorated by an atom. Then we can
associate to C a second C∗-algebra, namely

C̃ :=
⊕
a∈M

Ca (3.3)

where the direct sum is in the C∗-algebra sense. Observe that there is a natural
morphism P : C → C̃, namely

P [T ] = (Pa[T ])a∈M.

Theorem 3.2 Assume that the semilattice L has a least element and is atomic.
Then the kernel of the morphism P is equal to C(minL).

Proof. First we note that the result is known (and easy to prove) if L is finite,
see Theorem 8.4.1 in [1]; this particular case will be needed below. Clearly
Pa[T ] = 0 if T ∈ C(minL) and a 6= minL, so C(minL) ⊂ KerP . Reciprocally,
let T ∈ C such that Pa[T ] = 0 for all a ∈ M. Then for each ε > 0 there
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is F ∈ F(L) and there is S ∈ C(F) such that ‖T − S‖ ≤ ε. We assume,
without loss of generality, that minL ∈ F , hence F is a finite semilattice with
minF = minL. If b 6= minL is an element of F then there is a ∈ M such that
a ≤ b, hence Pb[T ] = PbPa[T ] = 0. We get

‖Pb[S]‖ = ‖Pb[T − S]‖ ≤ ‖T − S‖ ≤ ε.

Here Pb is the projection associated to the algebra C. However, it is clear (see
the remark after the proof of Theorem 3.1) that the restriction of Pb to C(F)
coincides with the canonical projection of the F -graded algebra C(F) onto its
subalgebra C(Fb), Fb = {c ∈ F : b ≤ c}.

Let N be the set of atoms of F . Then according to Theorem 8.4.1 from [1],
the map U 7→ (Pb[U ])b∈N , sending C(F) into

⊕
b∈N C(Fb), has C(minF) =

C(minL) as its kernel. The map C(F)/C(minL) →
⊕
b∈N C(Fb) will be an

isometry and since ‖Pb[S]‖ ≤ ε for each b ∈ N , the image of S in the quotient
space C(F)/C(minL) has norm ≤ ε. From the definition of the quotient norm
it follows that there is S0 ∈ C(minL) such that ‖S − S0‖ ≤ 2ε (in fact ≤ ε).
Thus, we see that for each ε > 0 there is S0 ∈ C(minL) such that

‖T − S0‖ = ‖T − S + S − S0‖ ≤ 3ε.

Since C(minL) is closed we get T ∈ C(minL). ♦

The preceding theorem gives us a canonical embedding Ĉ ⊂ C̃, more pre-
cisely

C/C(minL) ↪→
⊕
a∈M

Ca. (3.4)

Although easy to prove, this result is important: it allows one to compute
the essential spectrum and to prove the Mourre estimate under very general
assumptions. The range of the map (3.4) can be explicitly described, but this
is irrelevant for our purposes.

4 C∗-Algebras Associated to Subspaces

4.1

Let X be a finite-dimensional real vector space and Y a linear subspace. We
denote πY = πXY the canonical surjection of X onto the quotient vector space
X/Y and Y ⊥ the set of x∗ ∈ X∗ such that 〈y, x∗〉 = 0 ∀y ∈ Y . We have
canonical identifications (X/Y )∗ = Y ⊥ and X∗/Y ⊥ = Y ∗.
We shall embed C0(X/Y ) ⊂ Cb(X) with the help of the map ϕ 7−→ ϕ ◦ πY .

Since Cb(X) ⊂ B(X), we shall have

C0(X/Y ) ⊂ Cbu(X/Y ) ⊂ Cbu(X) ⊂ B(X). (4.1)

For ϕ ∈ Cb(X/Y ) we shall denote ϕ(QY ) = (ϕ ◦ πY )(Q) the operator in B(X)
associated to it. Sometimes it is important to specify in the notations the space
X ; then we set ϕ(QY ) = ϕ(Q

X
Y ).
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The relation Y ∗ = X∗/Y ⊥ implies

Cb(Y
∗) = Cb(X

∗/Y ⊥) ⊂ Cb(X
∗) ⊂ B(X). (4.2)

For ψ ∈ Cb(Y ∗) we denote ψ(PY ) or ψ(PXY ) the operator in B(X) associated
to it; we have ψ(PXY ) = ΦX∗ [ψ(Q

X∗

Y ⊥ ]. Observe, in particular, that the group
C∗-algebra C0(Y

∗) of the additive group Y is embedded in B(X).

Let G(X) be the Grassmannian of X , i.e. the lattice of all vector subspaces
of X with inclusion as order relation. Note that for Y, Z ∈ G(X) one has
Y ∧Z = Y ∩Z and Y ∨Z = Y +Z. For each Y ∈ G(X) we have a C∗-subalgebra
C0(X/Y ) of Cb(X) as explained above. In particular C0(X/O) = C0(X) and
C0(X/X) = C. Note that each C0(X/Y ) is translation invariant, i.e. it is stable
under all the automorphisms τx, x ∈ X .
If F ⊂ G(X) is a family of vector subspaces of X then we set

CX0 (F) =
∑
Y ∈F

C0(X/Y ). (4.3)

This is the linear subspace of Cbu(X) generated by
⋃
Y ∈F C0(X/Y ). Note that

CX0 (∅) = {0} and C
X
0 (Y ) ≡ C

X
0 ({Y }) = C0(X/Y ).

Lemma 4.1 (a) The family {C0(X/Y ) : Y ∈ G(X)} of C∗-subalgebras of
Cb(X) is linearly independent.
(b) If F ⊂ G(X) is finite then CX0 (F) is a closed subspace of Cbu(X).
(c) For each Y, Z ∈ G(X) the set C0(X/Y ) · C0(X/Z) is a dense subalgebra of
C0(X/(Y ∩ Z)).

Proof. We give a detailed proof of this simple lemma because the same ar-
gument will be used later on in order to prove Theorem 4.5. Let F ⊂ G(X)
be finite and for each Y ∈ F let ϕY ∈ C0(X/Y ). Denote ϕY : X/Y → C the
function such that ϕY = ϕY ◦ πY . Then for each ω ∈ X one has (τωϕY )(x) =
ϕY (πY (x)+πY (ω)) for all x ∈ X . Hence, if we set Fω = {Y ∈ F : ω ∈ Y }, then

lim
λ→∞

τλω [
∑
Y ∈F

ϕY ] =
∑
Y ∈Fω

ϕY (4.4)

pointwise on X . In particular

‖
∑
Y ∈Fω

ϕY ‖ ≤ ‖
∑
Y∈F

ϕY ‖ (4.5)

where ‖ · ‖ is the sup norm.
Let us prove that there is a number C such that for all Z ∈ F and all {ϕY }

as above

‖ϕZ‖ ≤ C‖
∑
Y ∈F

ϕY ‖. (4.6)
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This clearly implies (a) and (b). If the set

Z0 = Z \
⋃
Y 6=Z

Y =
⋂
Y 6=Z

[Z \ (Y
⋂
Z)]

is not empty then (4.5) with a choice ω ∈ Z0 gives (4.6) (with C = 1). Since
Y ∩ Z are linear subspaces of Z one has Z0 = ∅ if and only if there is Y ∈ F
such that Z ⊂ Y strictly. This cannot happen if Z is a maximal element in F ,
hence (4.6) holds for such elements. Let F1 be the set of Y ∈ F which are not
maximal elements in F . Then we clearly get ‖

∑
Y ∈F1

ϕY ‖ ≤ C1‖
∑
Y ∈F ϕY ‖

for some constant C1. By what we already proved we see then that (4.6) holds
for the maximal elements Z of F1, etc.
We now prove (c). Let E = (X/Y ) × (X/Z) equipped with the direct

sum vector space structure. If ϕ ∈ C0(X/Y ) and ψ ∈ C0(X/Z) then ϕ ⊗ ψ
denotes the function (s, t) 7−→ ϕ(s)ψ(t), which belongs to C0(E). The subspace
generated by the functions of the form ϕ ⊗ ψ is dense in C0(E) by the Stone-
Weierstrass theorem. Let F be a linear subspace of E. Since each function in
C0(F ) extends to a function in C0(E) we see that the restrictions (ϕ ⊗ ψ) | F
generate a dense linear subspace of C0(F ).
Let us denote by π the map x 7−→ (πY (x), πZ (x)), so π is a linear map from

X to E with kernel V = Y ∩ Z. Let F be the range of π. Then there is a
linear bijective map π̃ : X/V → F such that π = π̃ ◦ πV . So θ 7−→ θ ◦ π̃ is
an isometric isomorphism of C0(F ) onto C0(X/V ). Hence for ϕ ∈ C0(X/Y )
and ψ ∈ C0(X/Z) the function θ = (ϕ⊗ ψ) ◦ π̃ belongs to C0(X/V ), it has the
property θ◦πV = ϕ◦πY ·ψ ◦πZ , and the functions of this form generate a dense
linear subspace of C0(X/V ). ♦

We say that F ⊂ G(X) is ∩-stable if Y, Z ∈ F ⇒ Y ∩ Z ∈ F (so F is a
generalized flag of subspaces of X). Such a F is a semilattice when equipped
with the order relation given by inclusion. We denote by F(X) = F(G(X)) the
set of finite ∩-stable subsets of G(X).

Corollary 4.2 If F ∈ F(X) then CX0 (F) is a C
∗-subalgebra of Cbu(X) equipped

with a natural structure of F-graded C∗-algebra. This algebra is unital if and
only if X ∈ F . For F1,F2 ∈ F(X) one has

CX0 (F1)
⋂
CX0 (F2) = C

X
0 (F1

⋂
F2). (4.7)

In particular, one has CX0 (F1) ⊂ C
X
0 (F2) if and only if F1 ⊂ F2.

4.2

We are ready to define the noncommutative versions of the algebras C0(X/Y ):
they are cross products of algebras of the form C0(X/Y ) by the natural action τ
of the additive group X . These algebras have been first introduced, in a rather
different form, by Perry, Sigal and Simon in [PSS]. The connection between
our formulation and theirs is clarified by Proposition 4.7 below. See also the
introductions of chapters 8 and 9 in [1].
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Definition 4.3 If Y is a subspace of X then CX0 (Y ) = C0(X/Y ) o X is the
C∗-subalgebra of B(X) obtained as norm closure of C0(X/Y ) · C0(X∗). For
each subset F ⊂ G(X) let CX0 (F) be the linear subspace of B(X) generated by
the algebras CX0 (Y ) with Y ∈ F , so

CX0 (F) =
∑
Y ∈F

CX0 (Y ). (4.8)

Observe that CX0 (F) = [[C
X
0 (F) · C0(X

∗)]] = [[C0(X
∗) · CX0 (F)]]. So for

∩-stable F we have CX0 (F) = C
X
0 (F)oX .

To each vector subspace Y of X we have thus associated a C∗-subalgebra
CX0 (Y ) of B(X). The only one which is abelian is

CX0 (X) = C0(X
∗) = {ϕ(P ) | ϕ ∈ C0(X

∗)}. (4.9)

The algebra CX0 (O) is generated by C0(X) ·C0(X
∗) and, since the operators of

the form ϕ(Q)ψ(P )) with ϕ ∈ C0(X), ψ ∈ C0(X∗) are compact, we have

CX0 (O) = K(X). (4.10)

The algebras which play the main rôle in the N -body problem (as presented
in ch. 9 of [1]) are of the form CX0 (F) with finite F and will be studied in this
section. The next one is devoted to the case F = G(X).
We shall need an extension of the automorphism τx of Cb(X) to an automor-

phism of B(X): we set τx[S] = e
i〈x,P 〉Se−i〈x,P 〉 for each x ∈ X and S ∈ B(X).

Observe that for ϕ ∈ C0(X/Y ) and ψ ∈ C0(X∗) one has

τx[ϕ(QY )ψ(P )] = ϕ(QY + πY (x))ψ(P ).

This immediately gives the next lemma.

Lemma 4.4 (i) If y ∈ Y and S ∈ CX0 (Y ) then τy[S] = S;
(ii) if S ∈ CX0 (Y ) and πY (x) → ∞ then τx[S] → 0 in the strong operator
topology.

Theorem 4.5 (a) The family {CX0 (Y ) : Y ∈ G(X)} of C
∗-subalgebras of B(X)

is linearly independent.
(b) If F ⊂ G(X) is finite then CX0 (F) is (norm) closed in B(X).
(c) If Y, Z ∈ G(X) then CX0 (Y ) · C

X
0 (Z) is a dense linear subspace of the C

∗-
algebra CX0 (Y ∩ Z).

Proof. Let F ⊂ G(X) be finite and for each Y ∈ F let T (Y ) ∈ CX0 (Y ). Then

s− lim
λ→∞

τλω [
∑
Y ∈F

T (Y )] =
∑
Y ∈Fω

T (Y ) (4.11)

where the notations are as in the proof of Lemma 4.1. Indeed, this is an im-
mediate consequence of (i) and (ii) above. Now (a) and (b) follow by the same
argument as in Lemma 4.1.
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We shall deduce (c) from the corresponding assertion of Lemma 4.1. By
Corollary 2.2 CX0 (Y ) is the norm closed linear space generated by the operators
of the form ψY (P )ϕY (QY ), with ψY ∈ C0(X

∗) and ϕY ∈ C0(X/Y ). On the
other hand CX0 (Z) is, by definition, the norm closure of the linear space gen-
erated by the operators of the form ϕZ(QZ)ψZ(P ), with ϕZ ∈ C0(X/Z) and
ψZ ∈ C0(X

∗). By Lemma 4.1 one has ϕY (QY )ϕZ(QZ) = ϕV (QV ) for some
ϕV ∈ C0(X/V ), where V = Y ∩ Z. So

ψY (P )ϕY (QY ) · ϕZ(QZ)ψZ(P ) = ψY (P ) · ϕV (QV )ψZ(P )

which clearly belongs to CX0 (Y ∩ Z). This proves that C
X
0 (Y ) · C

X
0 (Z) ⊂

CX0 (Y ∩ Z).
Elements of the form ψ1(P )ϕV (QV )ψ2(P ), with ψ1, ψ2 ∈ C0(X∗) and ϕV ∈

C0(X/V ), clearly generate C
X
0 (Y ∩ Z) (because those elements of the form

ϕV (QV )ψ1(P )ψ2(P ) do and we may use Lemma 2.1). Hence the density of
CX0 (Y ) · C

X
0 (Z) in C

X
0 (Y ∩ Z) follows immediately from Lemma 4.1. ♦ The

following result is an immediate consequence of Theorem 4.5

Theorem 4.6 If F ∈ F(X) then CX0 (F) is a C
∗-subalgebra of B(X). If we

equip F with the order relation given by inclusion then the family {CX0 (Y )}Y ∈F
of C∗-subalgebras of CX0 (F) provides C

X
0 (F) with a structure of F-graded C

∗-
algebra.

4.3

The choice of a supplementary subspace Z of Y in X will give us a canonical iso-
morphism between C(X/Y ) and the C∗-tensor product of the algebras C0(Y

∗)
and K(Z):

C(X/Y ) ∼= C0(Y
∗)⊗K(Z). (4.12)

In order to define in a precise way this isomorphism let us introduce some
notations. Since X = Y + Z (direct sum) we have a canonical identification of
X∗ with Y ∗ ⊕Z∗. Let iY , iZ be the inclusion maps of Y, Z into X respectively.
By taking adjoints we get an isomorphism (i∗Y , i

∗
Z) : X

∗ → Y ∗⊕Z∗ and we may
define for any functions u : Y ∗ → C and v : Z∗ → C the function u⊗v : X∗ → C
by (u ⊗ v)(x∗) = u(i∗Y x

∗)v(i∗Zx
∗). If u ∈ C0(Y

∗), v ∈ C0(Z
∗) then clearly

u⊗v ∈ C0(X∗). Moreover, the projection pZ : X → Z determined by the direct
sum decompositionX = Y +Z factorizes to an isomorphism p[Z : X/Y → Z and
if for w : Z → C we define w[ : X/Y → C by w[ = w ◦ p[Z , then w

[ ∈ C0(X/Y )
if w ∈ C0(Z).

Proposition 4.7 There is a linear continuous map C0(Y
∗)⊗K(Z)→ CX0 (Y )

such that for each u ∈ C0(Y ∗), v ∈ C0(Z∗) and w ∈ C0(Z) the element u(PY )⊗[
w(QZ)v(PZ)

]
is sent into w[(QY )(u ⊗ v)(PX). This map is uniquely defined

and is an isomorphism.
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Proof. The uniqueness of the map and its surjectivity follow immediately from
the fact that the elements of the form u(P Y )⊗

[
w(QZ)v(PZ)

]
and w[(QY )(u⊗

v)(PX) span dense linear subspaces in C0(Y
∗)⊗K(Z) and CX0 (Y ) respectively.

To prove the existence and the isomorphism properties observe that we get an
isomorphism J : H(X) → H(Y ) ⊗ H(Z) by setting (J f)(y, z) = f(y + z). It
remains to check that

u(P Y )⊗
[
w(QZ)v(PZ)

]
· J = J · w[(QY )(u ⊗ v)(P

X)

which is a straightforward consequence of the definitions. ♦
The preceding tensor product decomposition of H(X) also gives canoni-

cal isomorphisms C0(X/Y ) ∼= 1 ⊗ C0(Z) and C0(X
∗) ∼= C0(Y

∗) ⊗ C0(Z
∗).

This induces a linear isomorphism of the vector spaces C0(X/Y ) · C0(X∗) and
C0(Y

∗) ⊗ [C0(Z) · C0(Z∗)] which extends to the isomorphism between CX0 (Y )
and C0(Y

∗)⊗K(Z) indicated above.
If X is equipped with a scalar product α and if H(X) is identified with

H(Y ) ⊗ H(Y ⊥α ), where Y
⊥
α is the orthogonal space of Y in X , then C

X
0 (Y )

will be equal to C0(Y
∗)⊗K(Y ⊥α ). The algebras C0(Y

∗) and C0(Y
∗)⊗K(Y ⊥α )

are denoted T(Y ) and T (Y ⊥α ) in [1]. If α is replaced by a new scalar product
β, so that Y has a different orthogonal subspace Y ⊥β , then C0(Y

∗) ⊗ K(Y ⊥β )

gives (after the identification H(X) = H(Y ) ⊗ H(Y ⊥β )) the same algebra as

C0(Y
∗) ⊗ K(Y ⊥α ) (cf. Proposition 4.7). So the algebra T (Y

⊥
α ) is determined

by Y , independently of any Euclidean structure on X . Our present notation
CX0 (Y ) stresses this fact.

5 The Algebra CX0

5.1

In this section we shall study the C∗-algebra

CX0 := norm closure in B(X) of C
X
0 (G(X)). (5.1)

For this we apply in the present context the general theory of Section 3: we
take L = G(X) and C(Y ) = CX0 (Y ) for Y ∈ G(X). So the algebra C

X
0 is

G(X)-graded and can be identified with the inductive limit of the family of
C∗-algebras {CX0 (F) | F ∈ F(X)}. Indeed, if we order F(X) by the inclusion
relation then CX0 (F1) ⊂ C

X
0 (F2) if and only if F1 ⊂ F2 and⋃
F∈F(X)

CX0 (F) = C
X
0 (G(X)) (5.2)

is a dense ∗-subalgebra of CX0 . Moreover, for all F1,F2 in F(X) we have

CX0 (F1) ∩ C
X
0 (F2) = C

X
0 (F1 ∩ F2). (5.3)

If Y ∈ G(X) then we denote by CXY and J
X
Y the norm closures in B(X)

of the spaces
∑
Y⊂Z C

X
0 (Z) and

∑
Y 6⊂Z C

X
0 (Z) respectively. Observe that the
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notations are consistent: if Y = O = {0} then CXO = C
X
0 . In the next theorem,

which is an immediate consequence of Theorem 3.1, we point out a canonical
projection (in the sense of linear spaces) of CX0 onto its subspace C

X
Y .

Theorem 5.1 CXY is a C
∗-subalgebra of CX0 , J

X
Y is a closed self-adjoint ideal

in CX0 , and C
X
0 is equal to their direct sum: C

X
0 = CXY + J

X
Y and C

X
Y

⋂
JXY =

{0}. The linear projection PY of the linear space CX0 onto its linear subspace
CXY determined by the preceding direct sum decomposition is a morphism (in
particular it is an operator of norm 1).
The family {CXY | Y ∈ G(X)} of C

∗-subalgebras of CX0 is decreasing

Y ⊂ Z ⇒ CXZ ⊂ C
X
Y (5.4)

and has a least element CXX = C0(X
∗). Clearly (5.4) implies

PZPY = PY PZ = PZ . (5.5)

Our purpose now is to describe the quotient of the algebra CX0 with respect
to the ideal CX0 (O) = K(X) of compact operators. The next result is an
immediate consequence of Theorem 3.2.

Theorem 5.2 Let P(X) be the projective space associated to X, i.e. the set of

all one dimensional subspaces of X. Denote by C̃X0 the C
∗-direct sum of the

algebras CXY with Y ∈ P(X):

C̃X0 =
⊕

Y ∈P(X)

CXY . (5.6)

Let P : CX0 → C̃X0 be defined by

P [T ] =
⊕

Y ∈P(X)

PY [T ]. (5.7)

Then P is a morphism and its kernel is equal to K(X).

So P induces an embedding of the C∗-algebra CX0 /K(X) into C̃
X
0 . We shall

identify CX0 /K(X) with a subalgebra of C̃
X
0 :

CX0 /K(X) ⊂ C̃
X
0 . (5.8)

5.2

We shall make here some final remarks concerning the algebra CX0 . First we
give another description of the maps PY . Observe that by Theorem 4.5(a) each
T ∈ CX0 (G(X)) can be written in a unique way as a sum T =

∑
Z∈F T (Z) with

F ⊂ G(X) finite and T (Z) ∈ CX0 (Z), T (Z) 6= 0. For such a T we have

PY [T ] =
∑

Z∈F ,Z⊃Y

T (Z) (5.9)
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and this property uniquely characterizes PY . If ω ∈ Y is such that ω /∈ Z if
Z ∈ F and Y 6⊂ Z (such a choice is possible because F is finite), then

s− lim
λ→∞

τλω [T ] =
∑
Z⊃Y

T (Z),

by Lemma 4.4. In other terms, for T as above we have

PY [T ] = s− lim
λ→∞

τλω[T ]. (5.10)

In particular we get:

Lemma 5.3 If Y is a one dimensional subspace of X and ω ∈ Y \ {0} then
one has for all T ∈ CX0 :

PY [T ] = s− lim
λ→∞

τλω[T ]. (5.11)

In particular, we see that the main assertion of Theorem 5.2, namely the
relation KerP = K(X), is equivalent to the following one: for T ∈ CX0 one has
T ∈ K(X) if and only if w − limλ→∞ τλω [T ] = 0 for each ω ∈ X \ {0}.

Notice that there is an abelian version of the algebra CX0 , namely the closure
CX0 in Cb(X) of

∑
Y⊂X C0(X/Y ), and everything we have done applies to C

X
0

too. In particular, for f ∈ CX0 we have: f ∈ C0(X) if and only if limλ→∞ f(x+
λω) = 0 for each ω ∈ X \ {0}. A geometric proof of this not obvious fact (if
dimX > 2) has been shown to us by Radu-Alexandru Todor. We thank him
for that.
Certain partitions of unity introduced by Froese and Herbst in [3] have

proved to be very useful in the usual treatment of N -body Hamiltonians. We
shall briefly present them and their relation with the algebras CX0 (F). Below
we assume that a Euclidean norm is given on X .
Let χ : X → R be a C∞ function, homogeneous of degree zero outside

the unit sphere. Since the algebra CX0 is generated by functions of the form
ϕ(Q)ψ(P ) (or ψ(P )ϕ(Q)) with ψ ∈ S(X∗), it is easy to prove that [χ(Q), T ] ∈
K(X) for all T ∈ CX0 .
Now let Z ⊂ X be a subspace and assume that χ(z) = 0 if z ∈ Z, |z| ≥ 1.

Then for each ϕ ∈ C0(X/Z) the function χ ·ϕ ◦πZ belongs to C0(X) (indeed, if
x→∞ and πZ(x) is bounded, then x/|x| approaches Z), hence χ(Q)ϕ(QZ)ψ(P )
is a compact operator. It follows that χ(Q)T and Tχ(Q) are compact operators
if T ∈ CX0 (Z).
Let us fix F ∈ F(X) with O,X ∈ F and let Y ∈ F , Y 6= X . A C∞ function

χ
Y : X → R which is homogeneous of degree zero on |x| ≥ 1 is called (according
to Froese-Herbst) Y -reducing if: for each Z ∈ F with Y 6⊂ Z and each z ∈ Z,
|z| ≥ 1, one has χY (z) = 1. By what we said above, we see that

(i) [χY (Q), T ] ∈ K(X) ∀T ∈ C(F)

(ii) χY (Q)T and TχY (Q) belong to K(X) if T ∈ C(F ′Y ) =
∑
Z∈F ,Y 6⊂Z C

X
0 (Z).
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Let N be the set of atoms of F . An F -reducing partition of unity on X is
a family {χY }Y ∈N such that χY is Y -reducing and

∑
Y ∈N

χ2
Y = 1 on X . In [3]

such families are constructed. From (i) and (ii) above we then get: if S ∈ C(F)
and if we denote SY = PY [S] its canonical projection onto C(FY ), then there
is K ∈ K(X) such that

S = K +
∑
Y ∈N

χY (Q)SY χY (Q). (5.12)

It is clear that F cannot be replaced by an infinite semilattice in the preced-
ing construction. However, these partitions can be used to give an alternate and
more elementary proof of the main assertion of Theorem 5.2, namely that T is
compact if T ∈ CX0 and w − limλ→∞ τλω [T ] = 0 for each ω ∈ X \ {0}. Indeed,
for each ε > 0 we can find F as above and S ∈ C(F) such that ‖T − S‖ ≤ ε.
Note that we can assume T and S self-adjoint. Write S =

∑
{S(Z) : Z ∈ F}

with S(Z) ∈ CX0 (Z), hence SY =
∑
{S(Z) : Z ∈ F , Z ⊃ Y }, and let Fω =

{Z ∈ F : ω ∈ Z} for ω ∈ X \ {0}. Then s − limλ→∞ τλω[S] =
∑
Z∈Fω

S(Z)
and from the Fatou lemma we get ‖

∑
Z∈Fω

S(Z)‖ ≤ ε. For each Y ∈ N we can
find ω ∈ Y \ {0} such that ω /∈ Y ′ if Y ′ ∈ N \ {Y }. Hence we get ‖SY ‖ ≤ ε,
or −ε ≤ SY ≤ ε, for each Y ∈ N . Then −ε ≤

∑
χY (Q)SY χY (Q) ≤ ε be-

cause
∑
χ
Y (Q)

2 = 1. So from (5.12) we see that there is K ∈ K(X) such that
‖S −K‖ < ε. This implies ‖T −K‖ ≤ 2ε, which proves the assertion.
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