Mathematical Physics and Quantum Field Theory,

Electronic Journal of Differential Equations, Conf. 04, 2000, pp. 75-85
http://ejde.math.swt.edu or http://ejde.math.unt.edu

ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp)

Twisting gravitational waves and eigenvector
fields for SL(2,C) on an infinite jet *

J. D. Finley, III

Abstract

A system of coupled vector-field-valued partial differential equations is
presented, the solutions to which would determine two coupled, infinite-
dimensional vector-field realizations of the group SL(2,C). While the gen-
eral solution is (partially) presented, the complicated nature of that so-
lution is deplored, and the hope expressed that someone can replace it
by something much more natural. The problem arises out of searches for
Béacklund transforms of a system of PDE’s that describe twisting, Petrov
type N solutions of Einstein’s vacuum field equations.

1 The Connection with Gravitational Waves

I have long considered it an honor to have been guided by Eyvind Wichmann
during my studies in Berkeley. I am therefore very pleased to be here at this
symposium to honor him and his work, and to present some questions about
infinite-dimensional group representations. Certainly my strong interests in this
area were nurtured by Professor Wichmann’s many excellent class handouts on
group representations and the importance of symmetries in physics.

While the subject of this paper revolves around questions concerning real-
izations of the (complex version of the) rotation group, it is appropriate to first
give some indications of the context in which these questions first arose, which
is a part of the classical theory of gravitation as described by Einstein’s vacuum
field equations. Working in Mexico City, Jerzy Plebariski [3] and I have had a
very long-term interest in realistic Petrov Type N solutions of these equations.
These are the sort that would be appropriate for a description of the gravi-
tational radiation emitted by a compact source, such as an exploding star, or
simply a binary star system. Such a solution is characterized by a special direc-
tion in spacetime, a 4-vector field, that describes the world line of the radiation
in question. Such a vector must be of zero length since the radiation moves at
the same (local) speed as that of light. In order to support the proposal that the

* Mathematics Subject Classifications: 17B80, 37K10, 17B66, 83C35.

Key words: Backlund transformations, Einstein equations, gravitational waves.
(©2000 Southwest Texas State University and University of North Texas.
Published July 12, 2000.

75



76 Twisting gravitational waves

radiation has been emitted by a compact source, it is essential that the “wave-
fronts” associated with this direction should not be “plane,” which generates
the mathematical requirement on the vector field that it should have a non-zero
value of the “twist.” This requirement arranges for the wavefronts to retain
some essential details of how they were created, thereby allowing observations
to have some of the character of a telescope. This interesting physical problem
has been seriously considered by many people. Nonetheless, only one solution
is known [8], and it is not asymptotically flat [12].

Our approach to this problem has its origin in the theory of complexified
spacetimes often referred to by the name hyperheavens, or HH spaces. [1] Such a
space is distinguished by the fact that it contains (at least) one congruence of null
strings, i.e., completely null, totally geodesic, complex-valued, two-dimensional
surfaces, which in the generic case has a non-zero expansion. This expansion
picks out a special direction on any given leaf of the congruence, thereby de-
termining an affine parameter, p = ¢!, which can be used as one of the four
coordinates needed for a local specification of the spacetime. Such a restriction
on the space of solutions for Einstein’s field equations causes those solutions
to be determined by a single “Debye-type” potential function W required to
satisfy a single non-linear partial differential equation, the hyperheavenly equa-
tion, thereby reducing greatly the effort required to solve the complete set of
vacuum field equations which, otherwise, would constitute ten coupled PDE’s
in ten unknown functions.

In the case in question, the insistence that the solution be of Petrov Type
N is what picks out the unique direction field for the propagation of the ra-
diation, and also gives us completely the dependence of the potential function
W on the affine parameter, p, reducing the problem to one in only three inde-
pendent variables. A further simplification of the problem—in hopes of finding
a new, interesting solution—may be obtained by asking that the wavefronts
have a symmetry, i.e., to ask that the spacetime admit a Killing vector. This
reduces the number of independent variables to only two, which allows the in-
troduction of very powerful methods to find solutions via Backlund transforms,
zero-curvature conditions, etc. One common approach to the determination of
such transforms has been the creation of an Estabrook-Wahlquist prolongation
structure [2]. My former student, Denis Khetselius worked on creating just such
a structure for the twisting, Petrov type N, vacuum equations with one Killing
vector.

The reduction of the hyperheavenly equation to this case [4, 9] leaves one
with two unknown functions of 2 (complex) variables, F(v, s), and z = z(v, s),
which must satisfy a triplet of nonlinear, second-order partial differential equa-
tions. These equations may be presented in a way that is linear in each of the
variables separately, thereby either illuminating or obscuring some of the diffi-
culty of the problem; however, in order to do this, one must use a non-holonomic
basis for the derivatives. We therefore agree to begin on some larger manifold,
where we treat all three of x, v, and s as coordinates and F' a function of them
all, but then project downward to the physical variables in two different ways.
We use 03 as the derivative with respect to s, holding v constant, i.e., with {v, s}
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as the choice for the two independent variables and x = z(v, s) as a function
of them, but also make an alternate choice where we choose {z, s} as the two
independent variables and take v = v(z, s) as the dependent function, indicating
this choice of derivative with respect to s, holding = constant, by the symbol
03. We may “explain” these derivative choices by the following differential, and
also show their (non-zero) commutator:

dF = Fydv + Fods = Fpda' + Fads = Z2de + $2dv (1.1)
[02,03] = 22(03 — O2) = —222(05 — D2) , (1.2)

U3

where the function x23 is the physical twist of the problem, which we need to be
non-zero. Using subscripts to denote partial derivatives in this (nonholonomic)
basis the type N equations—to be solved—are

F33 —vF =0,
(2* — Az, F =0, (1.3)
To3(Fos + F32) + @223 F3 + To33Fs + 22033F = 0,

Of course the symbol x, above denotes the derivative of x with respect to v;
however, in this basis it may be replaced by its equivalent, the ratio —xs/vs.
As well there are two gauge functions, A and -, of only one variable, which may
be allowed into the problem. In the simplest case they could be chosen to be
simply x and v, respectively. However, there may be some use in the freedom
they represent, which may be described by the following equations:

A2#0=A3, ’72:075’}/3 (14)

Lastly, one must admit that the system as presented is not yet involutive, [3] but
has yet one integrability condition other than just the equations themselves
(and of course their derivatives):

2 —
Fons + 222 (Fys — vF) + 7F, — {ﬂ;— +2(22) } (F,—F3)=0.  (L5)

2 Zero-Curvature Prolongations for Nonlinear
PDE’s

Our current desire is to obtain non-trivial solutions of this system of equa-
tions. The preferred method would be to determine a Backlund transform via a
zero-curvature relation and Estabrook-Wahlquist prolongation structures. We
therefore give a very brief description of how this process is implemented [5, 6].
To begin with, we think of a k-th order system of PDE’s as a variety, Y, of
a finite jet bundle, J*) (M, N), with M the (space of) independent variables
and N the dependent-variables. With this geometric approach, we can look for
point symmetries or contact symmetries directly on Y; by prolonging to the
infinite jet space, we may determine generalized symmetries. However, to de-
termine the non-local symmetries that generate Backlund transformations, we
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must prolong the system yet further, to a fiber space over J>°. We label the
fibers W, supposing that there will exist vertical flows that map solution spaces
of one PDE into another, this one being satisfied by the dependence of the fiber
coordinates, w*, on the independent variables. The compatibility conditions
for such flows to exist are referred to as “zero-curvature conditions.”

Solutions of these conditions may be found using the tangent structure or
the co-tangent structure, over J*° x W. For a vector-field presentation, we
choose a commuting basis, {e,}, for tangent vectors over M, and lift them to
the total derivative operators, D,, over J°°. When they are restricted to the
variety Y °°, which is the lift of the original PDE’s, we denote that restriction
by D,. The further prolongation into the fibers W requires the addition of
some vector fields vertical with respect to the fibers, which we may denote by
X, = > XA(8/0w?), with the X2 functions of both the jet variables and the
{wA}. Tt is the insistence that these prolonged total derivatives, D, + X,, still
commute, that ensures that the w* can act as pseudopotentials for that PDE:
[10)

= (Du(XE) - Do(X)) 5o + (X, X,

YO X W

(2.1)
As an identity in the jet coordinates, these equations determine several indepen-
dent equations. Their solution describes the X, as linear combinations of vector
fields W, with coefficients depending on coordinates for Y ¢ J®*) (M, N). The
w?-dependence is encoded within a set of commutation relations among the
{W,}, considered as vector fields within the entire algebra of vector fields over
W. The smallest subalgebra generated by the W that faithfully reproduces
the linear independence, and the values, of those commutators is the general
solution to the covering problem, and will allow Backlund transforms for those
equations. As the construction gives the X, the “form” of a connection, it is
reasonable to refer to these equations as “zero-curvature” requirements; it is,
however, a generalization of the more usual approach [13, 11], since the X,’s
are still only elements of an abstract Lie algebra of vector fields, with neither
coordinates, nor even their number yet determined.

OZ[Da+Xa,Db+Xb]|

3 Simple Vector-Field Flows

Since the zero-curvature equations involve the solutions of vector-field-valued
PDE’s, it is worth commenting on some simpler cases first. As well I note that
this is again an area of research where I had considerable guidance and training
from Professor Wichmann. The simplest sort of a flow equation for a vector
field may be written simply as

Z.=[F,Z], withF,=0. (3.1)

Locally, on the tangent bundle of a manifold the geometric picture that goes
with this differential equation is the following. The vector fields Z and F are
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two directions, in the neighborhood of a point, with F the tangent vector for a
curve I'r with parameter u. The equation describes the “Lie-dragging” of Z,
along this curve. Taking the initial value as Q = Z(0), we may write down the
well-known solution to this equation:

Z(u) = eMFQ= Z %(ad F)"Q (32)
= Q+u[F, Q]+ u’[F,[F, Q] +

A more general case is given by the following situation, where both the
(unknown) vector fields are being dragged, but in different directions. More
precisely, we may take A, R as vertical vector fields over a fiber bundle, but
with dependence on disjoint base manifold variables:

A=AP(w,2)0,0, R=RP(w,u)do ,[A,R]= A, +R,. (33)
The general solution of this problem is given [6, 7] by the following somewhat
complicated set of equations, along with a set of constraints on the initial values:

T > J} m+1
A(m)—Aoz/ dze—?2dRo A Z (adRo)" A,
0

m=0

R (u,v) — Ro( d v AR, — Y (+“k+1 (ad Ag)"
o we Z F+ 1) (ad Ag)"Rq, (3.4a)
k=

where Ay, Ry and either of A; or Ry may be freely chosen, with the other
being determined by the relation that connects them:

A; —R; =[Rp,A]. (3.4d)
The constraints are the following doubly countable collection:
[AmH,RkH} =0, VEkm=0,1,2,..., (3.4¢)

where A, is the coefficient of ™ /(m)! in the series expansion above for A(z),
with the same idea for Ry.

4 Systems of PDE’s for Vector-fields, for Type
N

Having given this background, I may now introduce the advertised system of
vector-field-valued PDE’s associated with sL(2, C), which was originally discov-
ered by Denis Khetselius, who received his Ph.D. in 1996, [5] for his work on
the twisting type N prolongation problem associated with the equations given
earlier. From the point of view of Estabrook and Wahlquist, following Car-
tan, he rewrote the equations as a first-order system. The underlying manifold
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then had 2 independent variables, 4 dependent variables, and an additional 13
jet variables, needed to describe a differential system with fourteen 2-forms in
the co-tangent bundle. At an early step in the calculations, he showed that
the entire structure would lose its relationship to the original system of PDE’s
unless the associated fibers of pseudopotentials were infinite dimensional. [7]
The structure was then expanded in terms of an infinite series in powers of the
“twist” variable, xo3.

However, this is not today’s talk. Rather I want to discuss some of the
structure of his results already at the zero-th level in the twist variable, which
relate to the underlying rotational symmetry of the problem. At this point
he found himself searching for two pair of vertical vector fields that depended,
disjointly, on 4 and 2 jet variables:

é'i(wA,a,b,e,f), Mi(wA,u,h); 1=1,2. (4.1)

They were required to be solutions of a system of PDE’s that seriously general-
izes the earlier, “two-direction” flow problem:

(ady + e0f)Er — (udp) My = [E1, M4],
(004 + fOe)E1 — (uOh) M2 = [E1, Ma] , (4.2)
(aOp + €0f)Er — (hOy) M1 = [E2, M4],
(b0q + fOe)E2 — (hOy) Mz = [E2, M) .

Each of these 4 equations is of the form we have already discussed, so that the
earlier method may be applied. However, they are seriously coupled together,
which causes many compatibility equations, which we want now to uncover, and
try to understand.

Each of the two different pairs of (first-order) differential operators consti-
tutes a pair of generators, analogous to J, for a realization of the Lie algebra
SL(2,C), in their respective variable spaces:

(L1, L2} = {(ady + edy), (b0y + fOe)} and {A1, Ao} = {udn, hdy} . (4.3)

Therefore, each pair generates a third such operator, completing the (usual)
generators for SL(2,C). In different language, treated as a system of first-order
operators, the elements of each pair “conspire” to include their various (non-
zero) commutators—as integrability conditions. As well the commutators of
the original unknown functions enter the picture. In this way we end up with a
system of nine equations:

Ejgi — .Ai./\/lj = [&,Mj] s Vi,j =+,0,— , (4.4)
where we have given names as follows:
Ly =a0p+edy, L_ =00+ fOe,
Lo=[Ly, L] =0a0,+ed. — b0y — fO5,
Er=&, E-=&, &=[E+,€6], (4.5)
Ar =udy, A_=hd,, Ao=[Ar, A_]=hoy —ud,,
M+EM1, M_EMQ, MQE[MJ,_,M_],
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To better relate these tangent vectors to the more usual matrix representations
of this algebra, put the coordinates h and u into a vector, b4 = (h,u)”, and
take (S;)” p as the usual three 2 x 2 matrices representing the generators. Then
the differential operators A; are simply

0

. pBgNA T
A= hP(S) 5

so that we can see that they are the lift of the defining 2 x 2 matrix representation
to the tangent bundle. In a similar way, we may write the tangent-vector fields
L; as coming from a reducible, 4-dimensional representation, with the variables
{a,b,e, f} as homogeneous coordinates for the group manifold, $3 c C*. In
that case the quantity s = af + eb is the radius squared for that S, and is a
characteristic variable for all the £;.

However, there are still more integrability conditions. They arise be-
cause of the remaining commutators of the still-to-be-determined vector fields,
&; and M. The commutators of each pair of these vector fields have, a priori,
no requirements on them, so that their closure is an infinite-dimensional free
algebra. In principle we could continue writing down all the integrability condi-
tions imposed by that general free algebra. However, it seems useful to require
it to follow the behavior of the differential operators; i.e., we are led to consider
eliminating any additional commutators by reducing this infinite-dimensional
algebra down to its smallest interesting constituent, sL(2,C).

The standard approach to this problem is to divide out the the free algebra
by the Serre relations, i.e., by the ideal generated by the vanishing of the sL(2,C)
commutation relations. However, to surely ascertain what we are discarding,
we first write these divisors in the following form

Hy = [[M+,M_], Mi] F2My,
J+ = [[€+,€_],8i] F284 . (4.6)

With that notation the next set of integrability conditions are the following
first-order differential equations:

AHy =[He, &), L;Tx = [T+, Mj] (4.7)

The obvious solution given by the vanishing of the divisors does not seem par-
ticularly egregious, so that we now append to our problem the additional as-
sumption that they do in fact vanish. In that case the M; and, separately, the
&; are also realizations of sL(2,C), each in terms of their respective variables,
and the w4, but with a form determined by solving the PDE’s.

That assumption puts the system into involution, i.e., all compatibility con-
ditions are now listed, and we can begin to consider the integration of the system.
However, it turns out that these reasonably “pretty” and “simple-appearing”
equations have solutions that look terrible, and which have a presentation that
is very coordinate-dependent! Therefore, although I will in fact describe the
general solution to the problem, I propose to first consider a rather simpler
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question, by looking at the subcase. where we forget the dependence of the &;
on the jet variables, which reduces the system to merely the following triplet of
equations, since the subscript on M is no longer relevant, the equations being
the same for different values of it:

AM+[EM] =0, Vi=+,0,—. (4.8)

These equations may be interpreted as asking for “eigenvector fields” of the
“angular-momentum” operators, 4;, in the infinite-dimensional fibers where M
resides. In this question the &; are independent of the jet variables, so that it
might be thought that their ad-action, on the M, is like the action of the usual
‘spin’-operators. Then the entire equation says that M is an eigenvector of the
“total angular momentum” operators, with eigenvalue zero:

{A; +adEIM =0, (4.9a)

or, in a “cleaner” viewpoint on the problem, to ask for invariant vector-field-
valued functions, under the action of sL(2,C), i.e., to require

e—i@ a’ (Aj+ad 5)')/\/[ =M. (49b)

There should be “nice” expressions for quantities of this type, I believe. How-
ever, I have not been able to find them. Nonetheless, not having the “nice”
expressions, the alternative is to simplify proceed directly, using the techniques
discussed earlier. Perhaps the forms so obtained are in fact acceptably “nice.”
However, their current presentation has more coordinate-dependence than I
think is reasonable. The result may be written in several distinct, equivalent
forms:

M = e—(h/u) ad £4 e—(lnu) ad & ZJr
ef(lnu) ad & ef(uh) ad &4 ZJr , (410)
along with the constraint [Z, ,£_] =0,
or the equally valid forms

M = e @W/hadé— +(nh)ad& 7z
e+(1n h)ad & e—(uh) ad E_ 7.

along with the constraint [Z_ ,£,.] =0.

Was that result acceptable? If so, then let us now consider the very next level
of simplicity for the equations. Consider the case when the M; are independent
of {u,h}, instead of the other way around, just discussed. Then our system
reduces to the triplet,

[;18 = —[Mz,g] = —{adMi}S . (4.11)

The more geometrical forms for these equations have, basically, the same struc-
ture as above, except that now there are more jet variables involved in the
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differential operators, i.e., the equations are built over a larger matrix represen-
tation:

{L;+adM;}£=0,
e—i@aj([,j+ad./\/lj)g -

Direct integration of these equations gives more complicated forms, and also
several alternative, equivalent choices. However, now let me present just one of
the various choice for the form of this solution:

gj — e—(b/a) ad M_ e(ac/s) ad M4 e(lna) ad Mg Hj(S) ] (4.12)

This is more complicated than the previous one, as perhaps it should be: it has
more variables and larger matrices, but it does also have a larger number of
distinct forms, related to ordering, but which I defer.

We should now return to the original problem, where we maintain both sets
of indices. We can also completely integrate this system; however, the results
involve a number of integrations, and the appearance of the solutions depends on
their order. This leaves open to doubt their optimal presentation. Nonetheless,
as an example, here are two of them:

& _1 hn+1
M. = K_ +Z nn+1 (ad Wo)" [W_,Y_]

o n+1

2 —e/ —(Inh)ad W,
—h HZ: n+1 (ad W )" {e @ OY_} o (4.13)
ng _ —(b/a) ad Ky e(ea/s)adK_ —(lna)adKOW

—Ina)"*!

+e—(b/a) ad K+ (ea/s)ad K_ Z
(n+1)!

(ad KQ)nY

e n+1
e (b/a)ad Ky 7 7(?2/?1)' (adK_)"Y_

e —b n+1
Z / Y (adK.)"Y. .

The other elements in the solution have the same general structure as the ones
presented here. However, as before, it is still true that one may equivalently
write out the M; in terms of the variables {h/e,Ine}, instead of {e/h,Inh}.
One may also use other variables for the &;.

I truly wonder how can such very “pretty” and “simple-appearing” equations
have solutions that look so “nasty.” Surely there should be presentations which
are less coordinate-dependent! Perhaps the simpler versions, involving only
invariant vector-field valued quantities, truly are in the literature somewhere?
Nonetheless, I have yet to find them, and would ask that someone help guide
me in the right direction. However, I doubt that this is the case for these more
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complicated questions, involving two sets of indices. Perhaps they are questions
involving the “direct product” of two different “spin” representations, but I do
not know.
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