
Mathematical Physics and Quantum Field Theory,
Electronic Journal of Differential Equations, Conf. 04, 2000, pp. 103–111
http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp)

On two reverse inequalities in the

Segal-Bargmann space ∗

Fernando Galaz-Fontes & Stephen Bruce Sontz

Dedicated to Eyvind H. Wichmann on his 70th birthday

Abstract

We review here two reverse inequalities in the Segal-Bargmann space:
a reverse hypercontractivity estimate due to Carlen and a reverse log-
Sobolev inequality due to the second author.

1 Notation and Definitions

We start with the scale of spaces

Ap := {φ : C
n → C : φ is holomorphic and ‖φ‖p <∞} ,

where 0 < p <∞ and ‖φ‖p :=
(∫
Cn dµn(z)|φ(z)|

p
)1/p
. Here

dµn(z) = π
−ne−|z|

2

dnxdny

is Gaussian measure on Cn, where dnxdny is the Lebesgue measure, and where
|z| is the Euclidean norm of z ∈ Cn. The spaces Ap for 1 ≤ p < ∞ are
Banach spaces with the norm ‖ · ‖p, and A2 is a Hilbert space known as the
Segal-Bargmann space. (See [1] and [7].) Moreover, A2 carries an irreducible
representation of the Weyl-Heisenberg group (exponentiated canonical commu-
tation relations) and as such is a Hilbert space ready for use in the quantum
mechanics of a system with n degrees of freedom. The infinitesimal form of this
representation is given by the following definitions of the creation and annihila-
tion operators:

a∗kφ(z) := zkφ(z)

akφ(z) :=
∂

∂zk
φ
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104 On two reverse inequalities

for k = 1, . . . , n, where z = (z1, . . . , zn) ∈ Cn and
∂
∂zk
= 1

2

(
∂
∂xk
− i ∂

∂yk

)
.

Moreover, the basic Hamiltonian operator in this formalism is defined by

N :=

n∑
k=1

a∗kak =

n∑
k=1

zk
∂

∂zk

and is known as the number operator. It is unitarily equivalent to the operator
Hharm −

n
2 I, where Hharm is the (isotropic, normalized) quantum harmonic

oscillator Hamiltonian with n degrees of freedom and I is the identity operator,
both acting in L2(Rn, dnx). It turns out that N , when realized as an operator
in A2, is an unbounded self-adjoint operator satisfying N ≥ 0. Consequently,
for t ≥ 0 by spectral theory we have a semigroup

{
e−tN

}
of contractions on

A2. But more is true; this semigroup also acts contractively on each Ap. To be
perfectly clear here, we define e−tNφ(z) := φ(e−tz) for any function φ : Cn → C
and any t ∈ R, where z ∈ Cn. This is valid since this formula is shown in [1]
to hold for f ∈ A2 and t ≥ 0 where e−tN is already defined. We actually
have the following hypercontractivity result, which is so called since it implies
contractivity in each Ap. It says that

‖e−tN‖Ap→Aq =

{
1 if 0 < q ≤ pe2t

∞ if q > pe2t

for 0 < p ≤ q and t ≥ 0. The credits for this result begin with Janson [5]
in 1983, continue with Carlen [2] and Zhou [10] in 1991, come back to Janson
[6] in 1997 and conclude with Gross [4] in 1998 whose proof is the most direct
in the sense that the method is essentially that of Gross’ original paper [3] on
log-Sobolev inequalities. In fact, we do get a log-Sobolev inequality from the
hypercontractivity result by taking p = 2 and q = pe2t = 2e2t (the “critical”
index) and considering the inequality

‖e−tNφ‖2e2t ≤ ‖φ‖2,

which holds for t ≥ 0. Differentiating this from the right at t = 0 (where it
becomes an equality) gives the log-Sobolev inequality

S(φ) ≤ 〈φ,Nφ〉 ,

where

S(φ) =

∫
Cn

dµn(z)|φ(z)|
2 log |φ(z)|2 − ‖φ‖22 log ‖φ‖

2
2

is the entropy of φ and

〈φ,Nφ〉 =
n∑
k=1

∫
Cn

dµn(z)
∣∣ ∂φ
∂zk

∣∣2

is the (expected) energy of φ. Here log means the natural logarithm (base e),
and we take 0 log 0 = 0. Note that both S(φ) and 〈φ,Nφ〉 are defined for all
φ ∈ A2, and that S(φ) ≥ 0 (by Jensen’s inequality) and 〈φ,Nφ〉 ≥ 0 hold. It is
possible that S(φ) =∞ and 〈φ,Nφ〉 =∞ for some φ ∈ A2. We will have more
to say about this later.
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2 Two Reverse Inequalities

The reverse hypercontractivity inequality due to Carlen [2] in the Segal-Bargmann
space says the following.

Theorem: [2] We have for all φ ∈ Ap

‖e−tNφ‖q ≤ (A(t, p, q))
n‖φ‖p, (1)

where A(t, p, q) = (1 − qe−2t/p)−1/q, provided that 0 < q < p and 12 log(q/p) <
t < 0. It seems that this is the only reverse hypercontractivity inequality that
is explicitly given in the literature.
In [2] Carlen notes but does not prove that the constant (A(t, p, q))n is not

optimal. However, it was recently shown in [9] that this indeed is so, though the
proof was by contradiction (i.e., assume that the constant (A(t, p, q))n is optimal
and derive from that a false statement) and so one gets no further improvement
in the constant. But now we have an improvement in the following result.

Proposition: For 0 < q < p and 12 log(q/p) < t < 0 we have

‖e−tNφ‖q ≤ (B(t, p, q))
n‖φ‖p (2)

for all φ ∈ Ap where

B(t, p, q) =

(
1−

q

p

)1/q (
pe2t − q

p− q

)1/p
A(t, p, q).

However, ‖e−tN‖Ap→Aq < (B(t, p, q))
n, that is to say, the constant in (2) is not

optimal.

Observation: The hypotheses on p, q and t imply that B(t, p, q) < A(t, p, q),
so that this is a better bound than Carlen’s, as claimed.

Proof: One simply calculates

‖e−tNφ‖qq =

∫
Cn

dµn(z)|e
−tNφ(z)|q

=

∫
Cn

dnx dny π−ne−|z|
2

|φ(e−tz)|q

= e2nt
∫
Cn

dnu dnv π−ne−|w|
2

e(1−e
2t)|w|2|φ(w)|q

≤ e2nt‖ |φ|q ‖r

{∫
Cn

dnu dnv π−n e−|w|
2

er
′(1−e2t)|w|2

}1/r′
,

where we have used w = u + iv = e−tz and Hölder’s inequality for 1 < r <∞.
Here the norm ‖ · ‖r is with respect to the measure µn. Taking r = p/q, we
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obtain

‖e−tNφ‖qq ≤ e
2nt‖φ‖qp

(
pe2t − q

p− q

)−n(1− qp )

since the Gaussian integral converges for p, q and t satisfying the hypotheses.
Now the result follows by simple algebra manipulations.

Now let us show that the constant (B(t, p, q))n is not optimal. As shown in
[9], the inequality

‖e−tNφ‖q ≤M(t, p, q, n)‖φ‖p,

where M(t, p, q, n) is the optimal constant for this inequality (i.e., the operator
norm ‖e−tN‖Ap→Aq ), does have an optimizer φ0 ∈ Ap. This means that φ0 6= 0
and

‖e−tNφ0‖q =M(t, p, q, n)‖φ0‖p.

This is shown using a standard compactness argument. If (B(t, p, q))n were
the optimal constant, then we would have equality at the step in the above
argument where we applied the Hölder inequality. This would imply that

|φ0(w)|
q = ce(r

′−1)(1−e2t)|w|2

for some constant c > 0 and all w ∈ Cn. But it is well known that a nonzero
holomorphic function can not satisfy such an equality. To see this, simply note
that we would have for all w ∈ Cn that

φ0(w) = c1e
iθ(w)ec2|w|

2

for some phase θ(w) ∈ R, some c1 > 0 and some c2 6= 0. Then taking the real
part of (say, the principal branch of) the logarithm of φ0(w) gives a harmonic
function (on some open subset of Cn). But on the other hand, this gives us
log c1 + c2|w|2, which is harmonic if and only if the constant c2 is zero. QED

The fact that (B(t, p, q))n is not optimal has to do with the fact that the in-
equality (2) actually holds for all φ in Lp(Cn, µn), since the proof of the inequal-
ity (2) given above never uses the holomorphicity of φ. Of course, the constant
(B(t, p, q))n is optimal for (2) if φ is allowed to run over all of Lp(Cn, µn).

Another observation about reverse hypercontractivity is that for the “criti-
cal” index we do not have a bounded operator. This is unlike the hypercontrac-
tivity result where we do have boundedness at the “critical” index, though not
compactness. Specifically, we have the next result.

Proposition: For 0 < p <∞ and t < 0, we have

‖e−tN‖Ap→Aq =∞

for q = pe2t.
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Proof: Let φα(z) = e
αz2 for real α and z ∈ Cn. Then

‖φα‖p =
(
1− α2p2

)−n/(2p)

provided that −1/p < α < 1/p. Since e−tNφα(z) = φα(e
−tz) = eαe

−2tz2 =

φαe−2t(z), we have that ‖e
−tNφα‖q = ‖φαe−2t‖q =

(
1− α2e−4tq2

)−n/(2q)
pro-

vided that −1/q < αe−2t < 1/q, which is equivalent to −1/p < α < 1/p since
q = pe2t. Next, note that

‖e−tNφα‖q
‖φα‖p

=
(
1− α2p2

)n(e2t−1)/(2pe2t)
.

But t < 0 implies that e2t − 1 < 0, and so taking the limit as |α| → 1/p gives
us +∞. QED

The other reverse inequality in the Segal-Bargmann space is a reverse log-
Sobolev inequality.

Theorem: For every c > 1 there exists a constant R(c) independent of the
dimension n such that

〈φ,Nφ〉 ≤ cS(φ) + nR(c)‖φ‖22 (3)

for all φ ∈ A2. One can take R(c) = −1 + c log
(
c
c−1

)
.

This was originally proved in [8], but Gross has given a more elegant proof,
reproduced in [9]. His proof gives the constant R(c) quoted here, which is better
than the constant found in [8]. However, the optimal value of the coefficient of
the norm term remains unknown. This seems to be the only reverse log-Sobolev
inequality in the literature.
Two applications of this reverse log-Sobolev inequality to the analysis of the

Segal-Bargmann transform can be found in [8]. Also, one surprising result of
the reverse log-Sobolev inequality together with the (regular) log-Sobolev in-
equality is that the entropy S(φ) is finite if and only if the energy 〈φ,Nφ〉 is
finite. However, the reverse log-Sobolev inequality may also be considered as a
“generalized” Heisenberg uncertainty principle, which may be its more funda-
mental role. The idea here is that, by a theorem of Stone and von Neumann, all
irreducible representations of the Weyl-Heisenberg group are unitarily equiv-
alent, and moreover by a unitary (and intertwining) operator that is unique
up to multiplication by a complex number of modulus one. So all properties
expressible in terms of the inner product and the creation and annihilation op-
erators alone are invariant under such Stone-von Neumann operators. However,
certain quantities are representation dependent and may not be preserved by
the Stone-von Neumann unitary operator. The usual example given in an in-
troductory physics course in quantum mechanics is the variance Var(φ) of a
state φ in L2(Rn, dnx), the position space. By going to the momentum space
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representation (which is in fact another representation of the Weyl-Heisenberg
group as is the position space), one finds that the Stone-von Neumann unitary
operator in this case is the Fourier transform F , and it is well known that the
Fourier transform does not preserve variance. In fact, we have the Heisenberg
inequality Var(φ)Var(Fφ) ≥ c > 0 for all states φ (i.e., ‖φ‖2 = 1) where c is a
constant independent of φ that depends only on how one normalizes Planck’s
constant. Other quantities (actually nonlinear functionals on the Hilbert space)
not necessarily preserved by the Stone-von Neumann unitary operator are the
Lp norm of a state and the entropy of a state, provided that the Hilbert space
carries enough extra structure to allow us to define these quantities, namely,
that it is the L2 space of a measure space. But the energy 〈φ,Nφ〉 in the
Segal-Bargmann space (which also is a nonlinear functional in φ ∈ A2) is pre-
served by the Stone-von Neumann unitary operators, since it has a definition
in terms of creation and annihilation operators. So inequalities (such as the
regular or reverse log-Sobolev inequalities) express relations that hold in one
particular representation, but not in all representations, and thereby serve to
distinguish that representation from the others. In this sense we can think of
such inequalities as “generalized” Heisenberg uncertainty principles. Returning
to the position and momentum representations, we see for example that the
Hausdorff-Young inequality (of the Fourier transform F on Euclidean space) is
a “generalized” Heisenberg inequality, which is related to the fact that F does
not preserve Lp norms for p 6= 2.

3 Differentiating Hypercontractivity

Much as the log-Sobolev inequality arises from the hypercontractivity inequal-
ity by differentiation, we would like to be able to derive the reverse log-Sobolev
inequality by differentiating the reverse hypercontractivity inequality. Unfortu-
nately, this does not work out as anticipated. Let us write

M(t, p, q) := ‖e−tN‖Ap→Aq

even though this notation omits the (possible) dependence on the dimension n.
(See [9] for a discussion of this dependence on n.) So we have

‖e−tNφ‖q ≤M(t, p, q)‖φ‖p (4)

for all φ ∈ Ap. Moreover, for
1
2 log(q/p) < t < 0 and 0 < q < p, we have that

M(t, p, q) is finite. However, it remains an open problem to find an explicit
formula forM(t, p, q). Proceeding with (4) above, we can not take q = pe2t (the
“critical” index) since we have already shown that M(t, p, q) =∞ in that case.
Instead, we choose some function s : (−ε, 0]→ (1,∞) for some ε > 0 such that:
(a) s(t) < pe2t for −ε < t < 0; (b) s(0) = p; and (c) the derivative of s from
the left at t = 0, denoted s′(0−), exists. (Here we are only considering the case
p > 1.) Using condition (a), we have

‖e−tNφ‖s(t) ≤M(t, p, s(t))‖φ‖p (5)
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for −ε < t < 0. Moreover, at t = 0 both the sides of this inequality become
‖φ‖p, using condition (b) and M(0, p, s(0)) = 1. So we can take the left-sided
derivative at t = 0 on both sides of (5) to get a new inequality. (Warning: The
sense of the inequality in (5) reverses on taking this derivative since t = 0 is
the right end point.) Using the chain rule together with condition (c), we get
formally

Re 〈φp, Nφ〉 ≤
1

p2
s′(0−)Sp(φ)− κp‖φ‖

p
p, (6)

where

κp :=
d

dt

∣∣∣∣
t=0−

M(t, p, s(t)).

Moreover, φp = sgn(φ)|φ|p−1, a usual notation in Lp analysis, and Sp(φ) :=
S(|φ|p/2) is called the index-p entropy of φ.
One would now like to take p = 2 so that Re 〈φp, Nφ〉 = 〈φ,Nφ〉 and S2(φ) =

S(φ), and then (6) reduces to what seems to be a perfectly well-behaved reverse
log-Sobolev inequality. But actually what is happening here is that κp = −∞
for p ≥ 2, that is, the derivative used to define κp does not exist as a finite
number. (The proof is given in [8].) But there may be an escape hatch here.
First, it may be that the argument above for (6) is nontrivial for 1 < p < 2,
namely, κp is finite. But to verify this it would behoove us to find an explicit
formula forM(t, p, q). Then one would hope that one could take the limit of (6)
as p increases to 2, and that the resulting limit would be the reverse log-Sobolev
inequality. The upshot of this paragraph is a conjectural approach to relating
reverse hypercontractivity to reverse log-Sobolev, but with some sturdy open
problems. The following proposition, which we have already referred to, may
be useful in addressing these problems.

Proposition: If 1 ≤ q < p and 12 log(q/p) < t < 0, then e−tN : Ap → Aq is a
compact operator and has a maximizer φ0 6= 0 in Ap.

The proof is given in [9]. If one could identify one of these maximizers φ0, then
one could read off the value of M(t, p, q) as ‖e−tNφ0‖q/‖φ0‖p. But this is also
an open problem which does not appear to be trivial.

We conclude with a list of open problems.

1. Is the derivation of (6) valid for 1 < p < 2?

2. Find an explicit formula for M(t, p, q).

3. Does an inequality of the form (6) hold for p 6= 2?

4. For each c > 1, what is the optimal constant for the coefficient of the norm
term in (3)? Does this optimal constant depend on n? Is there some value
of c > 1 such that this optimal constant is zero?

5. Find the optimal constant in the reverse hypercontractivity inequality (1).
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6. What are the maximizers in the last proposition? In particular, it would
be helpful to know if it is true that every n-dimensional maximizer can be
expressed as a product of one dimensional maximizers. Specifically, this
means that for any z = (z1, . . . , zn) ∈ Cn we can write any maximizer φ0
as in the above proposition in the form φ0(z) = ψ1(z1) · · ·ψn(zn), where
each ψj is a maximizer for dimension n = 1. This is what Zhou proves
in his article [10] for the case of (regular) hypercontractivity in the Segal-
Bargmann space.
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