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A PARTIAL SOLUTION FOR FEYNMAN’S PROBLEM:
A NEW DERIVATION OF THE WEYL EQUATION

ATSUSHI INOUE

ABSTRACT. Associating classical mechanics to a system of PDE, we give a
procedure for Feynman type quantization of a “Schrédinger type equation
with spin.” Mathematically, we construct a “good parametrix” for the Weyl
equation with an external electro-magnetic field. Main ingredients are a new
interpretation of the matrix structure using superanalysis and a reinterpreta-
tion of the method of characteristics as a quantization procedure of Feynman

type.

1. FEYNMAN’S PROBLEM FOR SPIN
1.1. Feynman’s path integral representation and his problem. Feynman
proposed to represent solutions of the Schrodinger equation
0
ih—u(t,q) = H(q,0y)u(t
g 8tU( 7Q) (qa q)u( 7Q)7 (11)
u(0,9) =u(q), ¢=(q1, " ,qm) ER™,

via the expression, called Feynman’s path integral (representation),

F(t,q.q) = / dpy e I L), (12)

Ct,q,q

Here H(q,0y), the Hamiltonian operator with mass M, is given formally as
—R2 m 52
H =—A . A= —
(Q7aq) IM +V( )7 Z:l 8qg7

and dp7y denotes the notorious Feynman measure on the path space
Craq ={7() € AC([0, 2] : R™) |7(0) = ¢, 7(t) = q}-

Here, AC denotes absolute continuity. For any path v € C; 4 4, the classical action
St(7y) is defined by

Si(y) = / dr L(7(), 3(r)) (1.3)
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where the Lagrangian function
i) =Lpp v C>(TR™ : R
corresponds to the Hamiltonian function

2
H(q,p) = % +V(q) € C*(T"R™ : R).

On the other hand, Feynman noted ([6], page 355) that

...... path integrals suffer grievously from a serious defect. They
do not permit a discussion of spin operators or other such oper-
ators in a simple and lucid way. They find their greatest use in
systems for which coordinates and their conjugate momenta are
adequate. Nevertheless, spin is a simple and vital part of real
quantum-mechanical systems. It is a serious limitation that the
half-integral spin of the electron does not find a simple and ready
representation. It can be handled if the amplitudes and quantities
are considered as quaternions instead of ordinary complex num-
bers, but the lack of commutativity of such numbers is a serious
complication.

[Problem for system of PDE]: We regard Feynman’s problem as calling for a
new methodology of solving systems of PDE. A system of PDE has two
non-commutativities,

(i) one from [0, q] = 1 (Heisenberg relation),

(ii) the other from [A, B] # 0 (matrix noncommutativity).

Non-commutativity from the Heisenberg relation is nicely controlled by using
Fourier transformations (the theory of pseudodifferential operators). Here, we want
to give a new method of treating matrix non-commutativity; after identify-
ing matrix operations as differential operators and using Fourier transformations,
we may develop a theory of pseudodifferential operators for supersmooth functions
on superspace R™I".

Opinion. For a given system of PDE, if we may reduce that system to scalar
PDEs by diagonalization, then we doubt whether it is truly necessary to use a
matrix representation. Therefore, if we need to represent some equations using
matrices, we should try to treat a system of PDE as it is, without diagonaliza-
tion. (Recall the Witten model, which is represented by two independent-looking
equations, has supersymmetry if treated as a systern.)

Remark. We may consider the method employed here as an attempt to extend
the “method of characteristics” to PDE with matrix-valued coefficients.

1.2. Method of Fujiwara. Unfortunately, the Feynman measure does not exist.
On the other hand, Fujiwara [7, 8] constructed the parametrix and the fundamental
solution of (1.1) using Feynman’s arguments conversely, that is, he made a part of
the argument of Feynman mathematically rigorous.

Let sup |D*V(q)| < C4, for |a] > 2. Then there exists a unique path vy in
qER’NL
C,q,q such that

inf St(’}/) = St(’YO) - SL(tv q, ql)7

V€Cs,q,q/
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which gives a solution of the Hamilton-Jacobi equation:
0 oS
—S+H — ] =0.
Ss+i(eF)

Introducing the van Vleck determinant
DL (ta q, q,) = det (8(17 8(1; SL (ta q, q,)) )

which is a solution of the continuity equation

0 0 i)
ai0s 3y (P (05;)) =0

(Fyu)(q) = (2mih)~™2 | dq' DY?(t,q,q')e™ 510y (g)). (1.4)
]R'm.

Theorem 1.1 (Fujiwara [7]). Fiz 0 < T < oo arbitrarily. Putting H = L?(R™ :
C) and denoting the set of bounded linear operators on H by B(H), we have the
following:

(1) F; defines a bounded linear operator in H:

[Frul < Cllul.
(2) For anyu € L2(R™:C), t, s, t+s € [-T,T],

lim || Fyu — u|| =0,
=0

he defined

ih 2 (Fuu)(a) = Hl@.2)u(a)

||Ft+s — FthH S C(t2 + 52).

(8) Moreover, there exists a limit limy_,o0 (Fy/3)" = E; in B(H), i.e., in the
operator norm of L2(R™ : C), which satisfies the initial value problem below:

ih%(Etu)(q) = H(q, 9)(Etu)(q),
(Eou)(q) = u(q).

Remarks. (i) In the above, L?-boundedness of the operator F; is crucial and is
proved using Cotlar’s lemma. This usage makes it difficult to prove the bounded-
ness of analogous operators in curved space. Therefore, it is an open problem to
“quantize” the Lagrangian on a curved manifold. The above procedure of Fujiwara
was modified for the heat equation on a curved manifold by Inoue-Maeda [18] to
explain mathematically the origin of the term (1/12)R, where R is the scalar cur-
vature of the configuration manifold.

(ii) Though in his papers [7, 8], Fujiwara allowed the time-dependence of V (¢, ¢q),
but we disregard the time-dependence in Theorem 1.1 for descriptional simplicity.

We call (1.4) a “good parametrix” since it has the following properties:
(1) The parametrix has explicit dependence on the classical quantities, i.e., Bohr
correspondence is exemplified. As a by-product, we may check easily whether we
may derive the heat equation from the Schrédinger equation by replacing 7 in (1.4)
with —i.
(2) The infinitesimal generator of the parametrix gives a Hamiltonian operator
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H(q,9,) which corresponds to the quantization of the Lagrangian L(v,%), or the
Weyl quantization for the symbol H (g, p).

[Problem 1] In (1.2) and (1.4), the Lagrangian is used. How can we connect
the above procedure directly to the Hamiltonian without using the Lagrangian? (A
partial solution of this problem is now given in [15].)

[Problem 2] How we may proceed when
(1) V has singularities like Coulomb potentials? or
(2) there exist many paths connecting points ¢ and ¢’ like the dynamics on the
circle?

2. PROBLEM AND RESULT

[Problem]: Find a good representation of

R x R® 3 (t,q) = ¥(t.q) = @ﬁg) €

satisfying the Weyl equation with the time-dependent external electro-magnetic
field

m%/,@, g) = H(®)$(t, q),

(2.1)
Y(t,q) = ¥(9),
where
3
H(t) = ¢ o; (?8% - ZAj(t,q)> — eAo(t,q),

and the Pauli matrices {o;} are represented by

(01 (0 —i /10
91=1\1 0) %27 \i o) 9= \o -1/

(i) What is the classical mechanics corresponding to (2.1)?
(ii) How about its quantization?

[Reduction]: We introduce new independent variables, called odd or fermion
variables, which are used to represent matrix structure (see the appendix on ele-
ments of superanalysis).
Then, we may reduce (2.1) to the super Weyl equation on PR32
L0 .
zhéu(t, z,0) = H(t)u(t, z,0),
u(tv x, 9) = Q(mv 9)7

where
3
N 0 h o0 €
H(t) = Cj§=1 0j (97 %> <;3—xj - ZAj(t,$)> —eAy(t,x).

Remark. Pauli claimed that “There exists no classical counter-part for a
quantum spinning particle.” In spite of this, we present another representation
which exhibits the “underlying Classical Mechanics.”
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Theorem 2.1 (A good parametrix for the Weyl equation). Assume that
sup |(1 + |q)!*1=02 A;(t, q)| < co. Then,

% il 1S(t,i;£727§71)]-"(#g) (&, E))

QB:‘I7

gives a good parametrix for (2.1). Here, S(t,t;2,0,¢,m) and D(t,t;x,0,§, )
are solutions of Hamilton-Jacobi and continuily equations, respectively. F is the
Fourier transformation of functions on SR3I2.

3. MAIN INGREDIENTS

3.1. How can we regard the method of characteristics as quantization?
On the region 2 in R™*!, we consider the following initial value problem:

0 G 0

o ult,g) + a;(t, q)z—ult, q :bt7QUtaq +ft7Qa

g7 (:0) + X 040,005 u(00) = et )+ 700 o
u(t, q) = u(q)-

Corresponding characteristics are given by

Lai(t) = a(t,a(0),

‘Jj(i)zﬂj (.7:1777”)
We denote the solution by
q(t) = qt.t;9) = (a1 (t), - ,am(t)) € R™.
The following theorem is well-known.
Theorem 3.1. Let a; € C'(2: R) and b, f € C(Q : R). For any point (t,q) € €,
we assume that u is C' in a neighborhood of q.

Then, in a neighborhood of (t,q), there exists a unique solution u(t,q) of (3.1).
More precisely, putting

t t El
Ult,g) = e TP { / dse BT p(s g) 4 u(g)} ,
t

that solution is represented by

u(t,q) =U(t,y(t,£;0))
where B(t,q) = b(t,q(t,t;q)), F(t,q) = f(t,q(t,t;q)) and g = y(t,1;q) is an inverse
function defined through q = q(t,t;q).

To understand the above theorem, we take the simplest example:

0 h o
ih—u(t =a—-—ul(t bqu(t
thagu(t, ) = a7 5 ult, ) + bgult, 9), (3.)
u(0,9) = u(q)-
From the right-hand side of above, we derive the (Weyl) symbol as a Hamiltonian:
h 0
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The classical mechanics associated to that Hamiltonian is given by
q(t) = Hy =a,
p(t) = —Hg = —b

with <Z( )> = <%> which is readily solved as

q(s) = q+as, p(s)=p—bs.

Putting U(t) = u(t, q(t)) for a solution u(t, q) of (3.2), we have ih-L U (t) = bq(t)U (t),
therefore
Ut ) u(q)e 7ih_1(bgt+2_1abt2)

As the inverse function of g = q(t, ) is given by ¢ = y(t,q) = q — at, we get

w(t,7) = Ut @)lymyieg = (@ — atye™" 0ot e,
Remark. In the above, we used only the path ¢(s) moving in the configuration

space R™.

Another point of view from the “Hamiltonian path-integral method”:
Put

t
So(t,q,p) = / ds [4(s)p(s) — H(q(s),p(s))] = —bgt — 2 abt?,
0
and
S(t:q,p) = gp + So(t, 4, )lg=y(t3) = Tp — apt — bgt + 27 'abt?.
Then, S(t,q, p) satisfies the Hamilton-Jacobi equation.

0 _
§S+ H(q,&jS) = 0,

5(0,4,p) = qp-
On the other hand, the van Vleck determinant, a scalar in this example, is
0?S(t,q, p)
ogop
This quantity satisfies the continuity equation:

9 b+ oy(DH,) =0,

ot
D(0,g,p) =1

D(t,q,p) =

where H,, = 6 ((j, gS)
P q
As an interpretation of Feynman’s idea, we understand the transition from clas-
sical to quantum mechanics by studying the quantity

u(t,q) = (2mih) /2 / dp DV2(t,g,p)e™ ST (p).
R

That is, in our case at hand, we should study the quantity defined by

u(t, ) = (2min) /2 / dp i STD )
R

= (2mih) ! //R2 dpdg eih*l(sﬁ»ﬁ@)*gg)g(g)

= u(g— at)emfl(—bat+2*1abt2)
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[Problem] Can we extend the above argument to a system of PDEs? For ex-
ample, Dirac, Weyl or Pauli equations, quantum mechanical equations with spin.

Remark.  Using the representation theory of the Heisenberg group, the pro-
cedure of geometric quantization produces the operator e~ tH@P+bQ+cl) copre-
sponding to the Hamiltonian ap + bq + c.

3.2. A new look for the matrix structure. The fact “Clifford algebra is rep-
resented on Grassmann algebra” is embodied as follows (here, we restrict ourselves
to 2 x 2 matrices):

We decompose a 2 x 2 matrix A as follows:

a b
)
_atd a-d(1 0\ b+c(0 1\ b-c(0 1
=Tyt <0 —1>+ 2 <1 0>+ 2 (—1 0>
:a+d]I2+a—d03+b+cal+b—cw2'
2 2 2 2

where the Pauli matrices {o;} satisfies the Clifford relation: o;0; +0;0; = 26;;.
Using the identification

#
<u0> (:> ug +u16105 = u(9)
U1 b

we have, for example,

0 up _ ~(u\ _ (o
b(9192 — m)ﬂ<ul> = b(ul + UQ(91(92) = <U0> =0 <U1>

Therefore, the action of A on a vector (ug,u;) is regarded as the action of a
differential operator
a+d

0 a—d 0 0 0?
A(@, %> = + 5 (1 — 913_91 — 928—92) + 0105 — b—391802

on a function u(6) = ug + u160102. Moreover, we may associate the complete Weyl
symbol A(f, ) as

.A(g,ﬂ') = a ; d — ia ; dh_l(alﬂl + 927‘(2) + ch105 + bh_27T17T2.

This is our interpretation of the fact above. (Though we may define A(6, Jy) and the
Fourier transformations w.r.t. odd variables such that the symbol A(f, ) doesn’t
contain 7, we take this form in this paper.)

Remark. o;(0,0p) are taken not only to be even operators but also to annihilate
the set {v1601 + v262}.

Remark. We may regard 6; ~ dz; and 6%,- ~ a%jj, ie, for j =1,2,

0j(U0 + u19192) = UOGj ~ de/\(U() + Uldzl/\dZQ) = uOde,

0 0
8—01(’1,1,0 + ’UJ1(91(92) = u10y ~ 8—21J(’U,0 + uldzl/\dzg) = uydzs,

0
—(up + u160102) = —u16; ~

0, (UQ + uldzl/\dZQ) = —u1dz].

0
s’



128 ATSUSHI INOUE

4. OUTLINE OF OUR PROCEDURE

For the sake of simplicity, we outline the case when H(¢) is independent of time ¢.
(I) We identify a “spinor” #(t,q) = “(¢1(t,q),¥2(t,q)) : R x R® — C? with an
even supersmooth function u(t, z, 0) = ug(t, z)+u (¢, z)0102 : RxR3? — &, . Here,
uo(t, z), u1(t,x) are the Grassmann continuation of 11 (¢, q), ¥2(t, q), respectively.
(II) We represent the matrices {0}, which act on u(t, z, ) as follows:
0 0?
"1< ae) 9192~ 56,06,
2

0 0
0, — 0,6
72(6. 55) = i(0162 + 891892)
0 0 0
( aa) ~ 058, a0,
(III) Therefore, we may correspond the differential operator given by

Wt 20 D) =S a (0 D) (EL @) rea @
j=1

c

which yields the superspace version of the Weyl equation

0 h o 0
zhgu(t,x,ﬁ) —H(m, . ,0, 80) (t,z,0),
u(0,z,0) = u(z, 0).
Moreover, the “complete Weyl symbol” of (4.1) is given by
H(x,&,0,m) =c(n + in2)0102 + ch™>(q1 — ing)mymy

— ich™ n3(0171 + Oam2) + Ao (),

(4.2)

where n; =& — (¢/c)A;(z).
(IV) We consider the classical mechanics corresponding to H(z, &, 0, 7) given by

d  OH(z,&0,m) _ OH(z,£,0,m)
& o @™t T T om
d9 _ OH(z,&,0,m) d _ OH(x,£,0,m)
= om At 90n
Proposition 4.1. There exists a unique global solution (xz(t),&(t),0(t),n(t)) o
above ODE with initial data (x(0),£(0),0(0),7(0)) = (z,&,0,7) € ROI4 = T*m312,

Proposition 4.2. For any fized (t,€, ), the map defined by
(z,0) = (z = =(t,z,§,0,7),0 = 0(t,z,&,0,m))

gives a supersmooth diffeomorphism from R312 — R3I12. Therefore, there exists the
inverse map given by

(z,0) = (z=y(t, 2, 0,n),0 =w(t,z,§0,m)),
which satisfies
z=ua(t,y(t,z,§,0,7),§ w(t,z,§,0,7),7),
0=0(t,y(t,z,§,0,m),§,w(t, z,§,0,m),7),
z =yt z(t,z,&0,m),§,0(t,2,8,0,m),m),
0=w(t z(tz,§0,m),§0(tz,6,0,m),m)
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Now, we put

t

&@ﬁéﬁﬂﬁ=0dﬂ@@%@»+@@h@»—H@@£GM%%M$R

and

z=y(t,z,£,0,7), 0=w(t,z,£,0,7)

oS 5 0S8
_S(t7£7 §7Q7£) + 7‘[(11,‘, %7 07 %)

8(0,z,¢,0,m) = (z[€) + (0]x).
Remark. This process of constructing solution of H-J equation is essentially due

to Jacobi.
Now, we put

)

%S 9%s
0z 0f Oz or
D(t,z,§,0,m) =sdet | 25" 525
000¢ 900n

Then, we get
Proposition 4.4. D(t,z,§,0,m) satisfies the following continuity equation.:
0 0 OH 0 OH
—D+ —(D— —(D—
ot +8i:< ag) aa( 87r)
D(Oa£7§7Q7E) =1

?

In the above, the argument of D is (t,z,§,0,m), and those of 86—7; and ‘?9—7: are

(z,25.9,93

s 92+ 0,55), respectively.

From here, we change the order of variables
(z,§,0,m) = (z,0,€,m).

We define an operator
U(t)u)(z,0) = (27ri7i)_3/2h// dgdﬂDl/Q(t,_, 6, §,E)emfls(t@vﬁéﬂ)fu(é, ).

The function u(t, #,0) = (U(t)u)(z, d) will be shown to be a desired good parametrix
for (2.2), identical with (4.2).
(V) On the other hand, using Fourier transformation, we have readily that

h o 0 -
"o 3550 55) =
where H is a (Weyl type) pseudo-differential operator with symbol H(z,&,0, ),
that is,

(Hu)(z,6)

_ (27T2h)_3h2 // d{dﬂdydw ezh1(<x—y§>+(0—w|ﬂ>)7_[<x_;—y’§7 G—Fvaﬂ')’u(y’(U)
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Theorem 4.5. (1) Fort € R, U(t) is a bounded operator in ﬁ?%,(%3|2) such that
for |t],[s] <1,

[UOU(s) Ul + )]l 5g2, o2y g2 ooy < CUE2 4+ []):

(2) Rt — U) € B(Lag(R32), £3(R312)) is continuous.

(8) There exists the limit E(t) = limy, 0o U(t/n) for any |t| < oo in the uniform
operator topology.

(4) Put u(t,z,0) = (E@t)u)(z,0), for u € Cos(R*?) with ug(q), ui(q) being com-
pactly supported. Then

o ult2,0) = Hu(t,2.0),
u(0,z,0) = u(z, ).

(VI) We interpret the above theorem using the identification maps
#
LY (R : C?) 2 £55(R°P).
b

That is, remarking b## = H and putting E(t) = b&(t)f, we have

Theorem 4.6. (1) For t € R, E(t) is a well defined unitary operator in L*(R3 :
C?).

(2) (i) R>t— E(t) € B(L2(R3 : C2), L3(R3 : C?)) is continuous.

(i) BE(t)E(s) =E(t+ s) for any t,s € R.

(iii) Put ¥(t,q) = b(E(t)H)| _p for v € C°(R? : C?). Then

Zg

$(0,q) = ¥(q).

Corollary 4.7. H is an essentially self-adjoint operator in L*(R3 : C?).

APPENDIX A. ELEMENTS FROM SUPERANALYSIS

In this appendix, we gather notion from superanalysis without proof. As is
well-known, we use very heavily Taylor expansion, integration by parts, change of
variables under integral sign and Fourier transformations when we perform real
analysis on R™. After defining non-commutative numbers 8 and €, called su-
pernumbers, we develop such tools on superspace |™™. We must emphasize the
reason why Rogers [34] used the Banach-Grassmann algebra B, which is obtained
from the sequence space ¢! by defining the product with Grassmann relations. It
is because not only she but also many others try to apply the general theory of
differential calculus on Banach space, which is not valid on Fréchet space in gen-
eral. On the other hand, de Witt [5] introduced his non-Hausdorff topology (called
coarse topology) on his supermanifolds, which is scarcely used by mathematicians,
because it seems difficult to find a firm foundation of differential calculus. Our
topology is just between coarse and Banach topology, which guarantees to develop
that calculus by the help of grading inherited from Grassmann relations, i.e., we
develop the theory of differential calculus on the Frechét space with Grassmann
grading.

A.1. Supernumbers, superspaces and linear algebra.
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A.1.1. Supernumbers. For symbols {o; };";1 satisfying the Grassmann relation

ojor+oro; =0, jk=1,2,---,

we put
C={X=) X;o'|X;eC}
IeT
where
T ={I=(ix) € {0,1}"| [I| = > ix < o0},
k
ol =gl T=(i1,ip--+), o°=1, 0=1(0,0,---)€L.

Besides trivially defined linear operations of sums and scalar multiplications, we
have a product operation in €: For

X=> X0/, Y=> Ygo¥,
JeJg KeT
we put

XY =) (XY)o' with (XY);= > (-1)7"X,v.
Iez I=J+K
Here, 7(I; J, K) is an integer defined by
olo¥ = (—1)T(I‘J’K)JI, I=J+K.

Proposition A.1 ([21, 10]). € forms an co-dimensional Fréchet-Grassmann alge-
bra over C, that is, an associative, distributive and non-commutative ring with
degree, which is endowed with the Fréchet topology.

Remark. (1) We call this € as super(complex)numbers. Degree in € is defined
by introducing subspaces

l={x= > X'} for j=0,1,--
I€T,|I|=j
which satisfy
¢ = @ﬁog[ﬂ? el . gkl — glit+k

(2) Define
proj;(X) =Xy for X = ZXIUI ec.
Iez
The topology in € is given by X — 0 in € if and only if proj;(X) — 0 in C, for any
Iel.
This topology is equivalent to the one introduced by the metric dist(X,Y) =
dist(X —Y) where dist(X) is defined by

oo

- 1 [proj;(X)| : IR
dist(X) = th r(I)=1+:Y 2% for IeT.
B = 2 0 T [prog, ()] " 7D =152 20 for e

(3) We introduce parity in € by setting
0 ifX:Z[eI,\I\:eVXIJI’

p(X)=<1 ifX:ZIeI,mzodeI,
undefined otherwise.
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X € ¢ is called homogeneous if it satisfies p(X) = 0 or = 1. We put

Coy = D32 = {X € €| p(X) =0},
Coa = B2 P = {X € ¢|p(X) =1},
c= Q:ev b Q:od = Q:ev X Q:od'

Analogous to €, we define, super(real)numbers as

R ={X ec¢|mpX e R}, RV =mnell
E)C{ev =NRN Q:eva 9{od =RN Q:od = €oda
R = 9%ev @%od = S)ﬁiev X 9ﬁiod'

We introduced the body (projection) map mg by
X = projs(X) = X5 = X = Xg forany X €€,
and the soul part Xg of X as
Xs=X—-Xg=)» X

[71>1

A.1.2. Superspaces. We define the (real) superspace R by
R = R x RY,
The distance between X,Y € ™" is defined by,
dist,n (X, Y) = disty,, (X =)

with
1 |proj;(z;)] - 1 |proj;(0x)|
di tTn,n j )
oo g (Z 270 T+ [projy (z,)] ) Z:l ; 21D 1+ [ proj; (6|

We use the following notation:

X = (Xa)3" = (2,0) e R™I"  with
= (Xa)Ao = (z;)] € RO, = (XA)A a1 = (Ok)i=1 € RO etc

We generalize the body map 7g from ™™ or /™0 to R™ by putting,
X = (:11,9) € mm‘” —r X =Xg = (:ZIB,O) = xp = TBX = (7TB$1,- e ,Wme) e R™,

We call z; € Rey and 0y € Roq as even and odd (alias bosonic and ferminionic)
variable, respectively.

Remark. Though the differential calculus on Fréchet spaces has some difficulties
in general (e.g. Yamamuro [47]), such calculus on Fréchet-Grassmann algebra holds
safely in our case, because of the grading of Grassmann generators. For example,
the implicit and inverse function theorems, and the chain rule for differentiation.
See, Inoue and Maeda [21], Inoue [10, 13, 17].
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A.1.3. Elementary Linear Algebra.

Definition A.1. A rectangular array M, whose cells are indexed by pairs consist-
ing of a row number and a column number, is called a supermatriz and denoted by
M € Mat((m|n) x (r|s) : €), if it satisfies the following:
A C
D B
where A, B, C and D are mxr, nxs, mx s and n X r matrices with elements
in €, respectively.
2. One of the following conditions is satisfied: Either
o p(M) =0, that is, p(Ajr) = 0 = p(Buw) and p(Cj,) =1 = p(Dyx) or
o p(M) =1, that is, p(Ajx) =1 = p(Buw) and p(Cj,) = 0= p(Dyk).
We call M is even denoted by Mate,((m|n) x (r|s) : €) (resp. odd denoted by
Matoq((m|n) x (r|s) : €)) if p(M) =0 (resp. p(M) =1). Therefore, we have

Mat((m|n) x (r|s) : €) = Matey((m|n) X (r|s) : €) @ Matoq((m|n) x (r|s) : €).

Moreover, we may decompose M as M = Mg + Ms where

1. A (m+n) x (r +s) matriz M 1is decomposed blockwisely as M =

A
OB BPB when p(M) =0,
Mg =
[l;)B C(;B when p(M) = 1.

The summation of two matrices in Mate, ((m|n) X (r]s) : €) or in Mateq((m|n) x
(r|s) : €) is defined as usual, but the sum of Mate, ((m|n)x (r|s) : €) and Mateq((m|n)x
(r|s) : €) is not defined in itself except at least one of them being zero matrix.

It is clear that if M is the (m+mn) x (r + s) matrix and N is the (r+ ) x (p+q)
matrix, then we may define the product M N and its parity p(M N) as

(MN)ij = > MgNyj, p(MN)=p(M)+p(N) mod 2.
k

For notational simplicity, we put Mat[m|n : €] = Mat((m|n) x (m|n) : €).

Definition A.2. Let M = [é g] € Mat[m|n : €]. We define the supertrace of
M by
str M =trA— (—=1)PM) ¢ B,
We get

Proposition A.2. (a) Let M, N € Mat|m|n : €] such that p(M)+p(N) = 0 mod 2.
Then, we have
str(M + N) = str M + str N.
(b) M is a matriz of size (m+n) X (r+s) and N is a matriz of size (r+s) x (m+n).
Then,
str(MN) = (—1)PADPIN) st (N M),

If M € Mat[m|n : €] is even, denoted by M € Matey[m|n : €], then M acts on
R™I™ linearly. Denoting this by Tz, we call it super linear transformation on /™I
and M is called the representative matrix of T}y.
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Proposition A.3. Let M € Matey[m|n : €] and assume det My # 0. Then, for
given'Y € ™",

TuX =Y
has the unique solution X € R™™  which is denoted by X = MY

Definition A.3. M € Mate,[m|n : € is called invertible or non-singular if My is
invertible, i.e., det Ag det Bg # 0, and denoted by M € GLgy[m|n : €].

Definition A.4. Let B = (Bji) be (£ x £)-matriz with elements in €y, denoted
by, B € Mat[{ : €oy]. As Coy is a commutative ring, we may define det B as usual:

det B = Z sgn(p) By p(1) - Be p(e)-
pEPL
Then, we have, as ordinary case,
det(AB) = det Adet B, det(exp A) = exp(tr A) for A, B € Mat[{: €,]. (A.1)
Definition A.5. Let M € Mate,[m|n : €] be given. When det Bg # 0, we put
sdet M = (det(A — CB™'D))(det B)™*
and call it superdeterminant or Berezinian of M.

Corollary A.4. When det Bg # 0 and sdet M # 0, then det Ag # 0.

Theorem A.5. Let M, N € Mate,[m|n : €].
(1) If M s invertible, then we have sdet M # 0. Moreover, if A is nonsingular,
then

(sdet M)~! = (det A)~!(det(B — DA™'C)).
(2) Multiplicativity of sdet on GLey[mn : €]:
sdet(MN) = sdet M sdet N.

(8) str and sdet are matriz invariants on GLey[m|n : €]: That is, for M, N €
GLey[m|n : €],
str M = str NMN 1
sdet M = sdet NM N~
(4) Moreover, we have
exp(str M) = sdet(exp M) for M € GLey[m|n : €].

A.2. Elementary analysis I. Differential Calculus.

A.2.1. Supersmooth functions.
Definition A.6. For any f(q) € C°(R™ : C), we put,

- 1
@)=Y —0sf(@n)ag € Coy forz=ap +as € RO
|a|=0
which is called the Grassmann continuation (or extension) of f(q), and denoted
simply by f(x).
Moreover, if 9(q) = ez 91(@)o” € C%(R™ : €), we define g(z) = Xz 1(w)o!
where gr(x) is the Grassmann continuation of gr(q).
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Definition A.7. We define functions u € ¢Ss7ev(f¥im|”), or u € Css(M™I" : €) by
w(X) =u(z, ) = Z Ug(z)0* = or simply Z uq ()0,
lal<n lal<n

which are called supersmooth functions on R™™. Here u,(x) is the Grassmann
continuation of u.(q) € C°(R™ : C), or us(q) € C®(R™ : €).

Ezample. For & = (&, ,&y) € RO = R,
Putting

€l = l¢ls +[¢ls with [¢ls= Y [¢lrat, [¢ls >0, [€]r €R,

|I|=even>2

we define |£| € Ry as follows:

we should have

l€* = Z(éj,B +&8)(&B +&s) = Zé?,B + Zéj,B(fj,S +&s) + ij,sfﬁ,
j=1 j=1 j=1

j=1
I I
&s = E §107, &js = § & 10

|I|=even>2 |I|=even>2

with &; 7 being the complex conjugate of ; ; in C. Therefore, |¢|p = {ZT:1 53273}1/2
and

2A¢|kclels + > 1€l (~1)TETD)

I+J—K

_Z2§]B§R§jK+ Z Zf]]gj, T(KIJ)

I+J=K j=1

which are solved by 1nduct10n with respect to the length |K|. For example, if
|K| =2, we have

€k = [€15" D & RE k-

j=1
If |[K| =4,
20¢1x = I€l5*( Zég BRG K+ Y Zég 1&5.(—1)7HED)
I+J=K j=1
- ) Z|§|I|€|J 1)TUEELD) - ete.
I+J=K j=1
Now, we define sin |¢| and cos|¢| as
_ — 1 — 1
sinfé| = >~ —sin (|&ls + ) [€l§,  coslé] = D — cos (J¢ln + ) €3
n=0 n=0

We may characterize these supersmooth functions as follows:

Definition A.8. A set U = wg(U) x RY, is called o superdomain if mg(U) is a
domain in R™. Let a function f from a superdomain U C R™" to € be given.
(i) It is called F-differentiable at X = (Xa)"}2}" in the direction Y = (Ya)'}2}"
if there exist
LI = f(x;v),
t=0
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We denote fp(X;Ya) = fx,(X;Ya) for A=1,--- ,m+mn and are called Fréchet
derivatives.

(i) f is called G-differentiable at X = (x,0) if there exist Fa(X) € € and
RA(X,Y) € € such that

m+4n m4n
F(X+Y)— f(X) = Z YaFa(X) + Z YaRA(X,Y),
A=1 A=1

which satisfy
d(Ra(X,Y),0) = 0 when dy,,(Y,0) — 0.

Proposition A.6. Let f be a function from a superdomain U C R™™ to €. Then,
the following are equivalent:
(i) f be supersmooth, denoted by Css(U : €),
(i) f is G-differentiable,
(iii) f is F-differentiable and there exist functions Fa(X) such that
[x, (X5Ya) =YaFs(X) forany A=1,---,m+n,
(iv) f is F-differentiable and satisfies
Zafy, (X;Ya) = (1POOPEDY L (X5 Z4) =0 for p(Xa) = p(Ya) = p(Za);
fx,(X5YaZa) = Zafx,(X;Ya) for p(Za)=0 and p(Xa)=p(Ya)
To understand the meaning of supersmoothness, we consider the dependence
with respect to the ‘coordinate’ more precisely.

Proposition A.7. Let f = >, fi(X)o! € Css(U : €) where U is a superdomain
in R™In. Let X = (XA)ZLL” be represented by Xa = >, XAJUI where A =
1,---,m+mn, Xa5€C for [I| #0 and X4 € R. Then, f(X), considered as a
function of countably many variables {X a,1} with values in €, satisfies the following
(Cauchy-Riemann type) equations.

8;A,If(X) = Ula)fA,of(X) for 1<A<m, |I| = even, (A2)
UKaXaA,Jf(X) +UJ8XA,Kf(X) =0form+1<A<m+n|J|=lkl = odd
Here, we define
0 d .
8XA,,f(X): T/ X+ an)l, o (A.3)
A A
. e N I
with Yoary = (0,---,0,1,0,---,0)0! € R™I" and Y1 0) = (0,---,0,1,0,---,0) €

R™I™ . Conversely, let a function f(X) = S fi(X)o! be given such that fr(X +

tY) € C=([0,1] : C) for each fired X, Y € U and f(X) satisfies the following

equations:
%f(X+tY2A,I))‘ O'I fO’I” 1§A§m, |J|:e1)en

d
= —f(X +tY(a,0))
dt “worl

t=0

d
+ol —f(X +tYak))| =0
t=0 dt t=0

for o m+1<A<m+n, |J|=odd=|K|

d
o Ef(X +tYa,0)
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Then, f € Css(U : €).

A.2.2. Derivations. For a given supersmooth function u(X) on 8", we define its

derivatives as follows: For j =1,2,--- ;mand k=1,2,--- ,n, we put
U;(X) = Z Oz, ua ()6,
la|<n
Upsm(X) = Z (= 1)@ gy ()60 SgmThgan
la|<n

where li(a) = Z;:ll a; and 0, ' = 0. U,(X) are called the partial derivatives of u
with respect to X,; at X = (z,0) and are denoted by

Uj(X) = %u(x,g) = 0p,u(z,0) for j=1,2,---,m,
J
Unn+s(X) = Wu(gc,a) = 0pu(z,0) for s=1,2,---,n

or simply by
Ug(X)=0x,u(X) for k=1,--- ,m+n.

For
a=(a,a), a=(a, - ,am) EN" a=(as, - ,a,) € {0,1}",
m n
o] =) oy, lal =) ak, |a]=al+]al,
j=1 k=1
we put

0% = 0205 with 02 =921 ...9%m, 9y = 8311 ...83:.
Emample. 892(91(9293 = —(91(93, 891893919293 = (92 7é —(92 = 893891 9192937 etc.

Remarks for the need of co number of Grassmann generators.

(i) Though € does not form a field because X? = 0 for any X € €,q, but if
X,Y € Csatisfy XY =0 for any Y € €,q, then X = 0. This property holds only
when the number of generators is infinite. By this, we may determine the derivative

% u(X) uniquely.

(ii) In general, we need at least countable number of operations in doing analysis.
If the number of Grassmann generators is finite, then the effect of odd variables
may vanish after finitely many operations.

(iii) Rothstein [41] claims that the super Lie algebra Der(Css(U)) is the free
module of Cgg(U) only when the number of the Grassmann generators is infinite
or null. (Though Rothstein used the Banach-Grassmann algebra introduced by
Rogers [34], but his argument is also applicable in our situation.)

A.2.3. Taylor expansions and Implicit function theorem.
Definition A.9. For a supersmooth function f, we define df by

m+n
d(X) = dx f(X) = 3 dX, 35)(;0

)

or

00,

df (z,0) = idxj% " En:dgs Of (x,0)
i=1 i

From Definition A.9, we get readily
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Proposition A.8. Let U be a superdomain in ™™, For f,g € Css(U : €), the
product fg belongs to Css(U : €) and the differentials dx f(X) and dxg(X) may
be regarded as continuous linear mappings from R™™ into €™, Moreover, they
satisfy the following:

(1) For any homogeneous elements A\, u € €, we have

dx (\f + ng)(X) = (~1)PMVPONdx f(X) + (-1)PWP O pudxg(X).  (A5)

(2) (Leibnitz formula)
Ox, [F(X)g(X)] = (0%, f(X))g(X) + (= 1)PXIPUED £(X) (0%, g(X)).  (A.6)
Proposition A.9 (Taylor’s formula). Let X = (z,0),Y = (y,w) € U C R™I"

satisfying Y + (X —Y) € U for 0 <t < 1. For f € Css(U : €), Taylor’s formula
holds. That is, for any positive integer p, we have

)~ Y Syt -w) R ) =n(XY)  (AT)

lal+lal<p, |a|<n

where

H(X,Y) = > (z—y)*(0 —w)" (A.8)

|a|+lal=p+1, |a|<n
1
[t 00ROy + to — y)w + 40— )
0 .

Definition A.10. Let U C R™" and U’ c R™1"" be superdomains and let p bea
continuous mapping from U to U’, denoted by

P(X) = (p1(X), o (X), Qa1 (K)o (X)) € I
¢ 1is called a supersmooth mapping from U to U’ if each ¢ (X) € Css(U : €) for
k=1,,m +n' and p(U) CU'.

Proposition A.10 (Composition of supersmooth mappings). Let U C R™"™ and
U < R be superdomains and let ® : U — U’ and ® : U — R™'I"" be
supersmooth mappings.

Then, the composition ¥ = ® o ® : U — g [n” gives a supersmooth mapping
and

dX\II(X) = [chI)/(Y)”y:q)(X)[dX(I)(X)] (Ag)

Definition A.11. Let U C R™" and U’ ¢ ™" be superdomains and let ¢ :
U — U’ be a supersmooth mapping represented by o(X) = (01(X), ++ , ©mr+n (X))
with ¢ (X) € Css(U : ).

(1) ¢ is called a supersmooth diffeomorphism if (i) ¢ is a homeomorphism between
U and U’ and (i) ¢ and ¢! are supersmooth mappings.

(2) For any f € Css(U' : ©), (9" F)(X) = (f 0 ¢)(X) = F((X)), called the pul
back of f, is well-defined and belongs to Css(U : €).

Remarks. (1) It is easy to see that if ¢ is a supersmooth diffeomorphism, then
¢ = g o ¢ is an (ordinary) C*° diffeomorphism from Up to Uf.
(2) If we introduce the topologies in Css(U’ : €) and Css(U : €) properly, ¢
gives a continuous linear mapping from Csg(U’ : €) to Cgs(U : €). Moreover, if

¢ : U — U’ is a supersmooth diffeomorphism, then ¢* defines an automorphism
from Cgs(U' : €) to Css(U : €).
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Proposition A.11 (Inverse function theorem). Let U be a superdomain in SR™I™
and let G(X) : U C R 5 "™ be a supersmooth mapping. We assume the
super matriz [dx G(X)] is invertible at X = Xp € mp(U).

Then, there exists a superdomain U’, a neighborhood of Y = G(X) and a unique
supersmooth mapping F satisfying F(G(X)) = X and we have

dyF(Y) = (dxG(X))™* \X:F(Y) in U’ (A.10)

Moreover, we have

Proposition A.12 (Implicit function theorem). Let ®(X,Y) : U x U’ — ¢™'I"
be a supersmooth mapping and ()N(, }N’) e U xU’', where U and U’ are superdomains
of R and R™' 1" respectively. Suppose ‘I>()~(,}N’) =0 and Oy ® = [0,,®, 0., ] is
a continuous and invertible supermatriz at (Xg,Ys) € n(U) x mp(U").

Then, there exist a superdomain V C U satisfying Xp € m8(V) and a unique
supersmooth mapping Y = f(X) on V such that Y = f(X) and ®(X, f(X)) =0 in
V. Moreover, we have

Oxf(X)=— [0y ®(X,Y)] ' [0x®(X,Y (A.11)

My—sx)-
A.3. Elementary analysis II. Integral Calculus.

A.3.1. Integration (even case). Now, we define the integration of a supersmooth
function u(x) on an even superdomain U, C R™I° which is similar to the integral
of holomorphic functions on a complex domain. (See, Rogers [34, 39].)

Definition A.12. Let u(x) be a supersmooth function defined on a even super
domain Us, C RO, Let A= A\ + As, p=up + ps € Uy and let a continuous and
piecewise Cl-curve c : [\, us] — Uey be given such that c(Ag) = A, c(us) = p.
We define

/da: u(z) = /)\HBdt u(c(t))e(t) e € (A.12)

B

and call it the integral of u along the curve c.
Using the integration by parts, we get the following fundamental result (see [5]).

Proposition A.13. Let u(t) € C®([Ap,us] : €) and let u(z) be the Grassmann
continuation of u(t). Suppose that there exists a function U(t) € C*([Ag, pB] : €)
satisfying U’ (t) = u(t) on [Ap, us).

Then, for any continuous and piecewise Cl-curve ¢ : [A\g,up] — Uey C RO
such that c(Ag) = A, c(uB) = u, we have

/ doulz) = U — Up). (A.13)

Corollary A.14. Let u(z) be a supersmooth function defined on a even superdo-
main Uy, C RO 4nto €. Let c1,c2 be continuous and piecewise C'-curves from
[AB, uB] — Uey such that A = c1(Ag) = ca(AB) and p = c1(up) = ca(ps). If ¢1 is
homotopic to co, then

/C dru(r) = / du(e). (A.14)
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Thus, if [Ag, uB] C m8(Uev), we have
1% 1B
/ dru(z) = / dt u(t). (A.15)
A by

B

Because of (A.15), we have

Definition A.13. (1) Let I., be a even superdomain in RO such that 7B (Lev)
= [1}Z,(aj,b;) C R™ with —0o < a; < b; < 0o, which is called a even supercube.
For u € Css(Iey : €), we define

by bm

/ dxu(x) = dgy--- dgm u(qr, -+ s qm) = / drgu(zp). (A.16)
Ty a WB(IEV)

1 am

(2) For any even superdomain Ues, C R™O such that mp(Uey) is of definite area,
we may put

/ dz u(z) :/ dxp u(xp) (A.17)
ev TrB(UeV)
foru € Csg(Uey : €).

A.3.2. Integration (odd case). It seems natural to put formally
do; = > djo’ for 0;= Y 00
I€T,|1|=0d I€T,|I|=0d

Therefore, we have df; A dfy, = df A db; for j # k. This suggests the integration
w.r.t. odd variables is quite different from the one w.r.t. ordinary variables. In
fact, it is defined as follows:

Let v be a polynomial of odd variables = (01, -- ,0,) € R, such that

v(01,-+,0,) = Z vp#®  with homogeneous v,0° € € for each b.
[b]<n
Denote by P, (€) the set of all v as above.

Definition A.14. For v € P, (<), we put
dov(f) = dby, ---dby v(01,--- ,0,) = (g, - - g, v)(0)
mo\n mo\n
and we call it the integral of v on O™,

Especially for odd integration, we have the following curious looking but well-
known relations

/ df,---df16,1---0, =1 and / db,---df1 1 =0 (Berezin integral).
il Al

o|n o|n

Moreover, we have

Proposition A.15. Given v, w € P,(€), we have the following:
1. (€-linearity ) For any homogeneous A, p € €,

dO(\v + pw)(0) = (=)™ [ dov(d) + (=)W | dhw(h).
ROIn ROIn SROIn
2. (Translational invariance) For any p € RO, we have

dfv(+ p) = dfv(6).
ROIn SROIn
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3. (Integration by parts) For v € P, (€) such that p(v) =1 or 0, we have
d0v(0)0p,w(0) = —(=1)P™) [ db (9p,v(0))w(H).
ROIn RoIn

4. (Linear change of variables) Let A = (Aji) with Ajr € Rev be invertible.
Then,

dfv(0) = (det A)~* dwv(A-w).
ROIn ROIn

5. (Iteration of integrals)

d9v(0):/ d9n~-d9k+1< dek---delv(el,---,Gk,9k+1,--~,9n)>.
R

ROIn O|ln—k ROk
6. (Odd change of variables) Let 6 = O(w) be an odd change of variables such
0
that 6(0) = 0 and det aaf:)) # 0. Then, for any v € P,(€),
w=0
d000) = | dov(O(w)) det— 2.
;|OIn ROIn Ow

7. Forv € P,(€) and w € R",
df (61 —w1) -+ (On — wn)v(0) = v(w).
MO|n

A.3.3. Integration (mized case). Finally, we define

Definition A.15. Let U = Usy x Ry C R™" be a superdomain and let u €
Css(U : @), that is, u(z,0) = Y uq(z)0® with us(z) € Css(Uey : €). Then, we

define
/mm‘n dzdf u(z,0) —ngx{LOgGU(x,H)}

= RncLlXB(aen .. -891u)(XB) (ﬂ-B(g{mM) _ Rm)

:/ d@{ dmu(m,@)} z/ dfdx u(x,0).
RO|n |m|0 mm|n

A.3.4. Change of variables under integral sign.
Theorem A.16. Let
r=z(y,w), 0=0(y,w)
be a supersmooth diffeomorphism from 9‘{;1'” to %;ln, Putting

A C Ox 00 Ox 00
A=—, B=—, C=—, D=_—

D B}’ By’ o’ ow’ dy’

we assume that either det A|,—o and det(B — DA™1C)|, =0, or det B|,—o and

det(A—CB™1D)|,=0, are non-zero for ally. Then, for any function f € Css(i)‘{?g‘n :

&) with compact support, we have the change of variables formula

/m‘ndmdﬁ f(z,0) :/m‘ndydw fz(y,w), 0(y,w))(sdet M) (y, w).
R R

|
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Remark. In case when we consider the integral on a superdomain with boundary

and functions with support intersecting with that boundary, there occurs some
difficulty which is exemplified as follows: Let I = (0,1) x ]2, C R!2, where

—_—

(0,1) = {z € Rey | mB(2) € (0,1)} C Rev. We have

/dydedwl y=0.
I

On the other hand, using the change of coordinates for 0 # a € R, and for j = 1,2

y=x+ abibs, w1 =01, wy =0y,

which maps I to I and yields sdet(g((i"g))) =1, we have

/dxd02d01 (z+ abi16:) = /N dra = a.
I (0,1)

The resolution of this difficulty is due to Rothstein [42], but we don’t mention

it here (see also Zirnbauer [48], Martellini and Teofilatto [32], Inoue and Nomura
[23]).

A4. A few elements from real analysis.

A.4.1. Scalar products and norms. Following [10], we introduce

¢Ss7ev(9‘im‘”) ={u(X) = Z g (x)0* ‘ ug(q) € C®(R™:C) for any a},

|a|=even<n
ZDSS’eV(mel”) ={u(X) = Z g ()0 ‘ua(q) € D(R™:C) for any a},
|a|=even<n
$Ss’ev(9{m|") ={u(X) = Z ug(2)0® ‘ua(q) e S(R™:C) for any a}, etc.
|a|=even<n

Let another set of odd variables {H_j}?zl satisfy 0;0 + 0,6, = Gjék + ékaj = gjék +
010; = 0. We define the conjugation u(z,0) = Y, us(z) 0 where 9 = 92 - .. 93
and u,(z) being the complex conjugate of u,(z). Then, we define

u,v) = i _€<0_‘9>U$ v\x = II:W'U x
wo) = [ dedo e e jow.0) = Y [ deu@ena),

la|<n
((ua v))k = Z (ag(uv 8;(”) = Z (8;1“% 890;'0!1)7
la|<k || +lal<k
(woe= D ((1+[Xs[)"?0%u, (1 +|Xs?)/?0%0)
la|+I<k
with
el = (uy),  Nullf = (s ullly = (@, w))r-

The space ¢§S,ev(9{m|”) is the completion onPSS’ev(,‘Rmm) in the norm || - ||.

Generally, we may identify vectors L?(R™ : C") with supersmooth functions
ﬁgs,ev(iﬁm‘”) with suitably related » and n. Without specifying this relation, we
consider only the case

#
LR C) 22 g (0.

(See, more precisely, [10, 13].)
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A.4.2. Fourier transformations. For i € R* and k € C*, v(z),w(§) € $SS,ev(%m|n)
and v(0), w(r) € P,(€), we put

(Fv)(€) = (2min) ™2 /m o (),

(Fow)(a) = (2mim) ™2 [ dg e ),

|m|0

(Fy0)(r) = B2, / do e~ 0Im)(9),

MO|n

(Fow)(0) = k”/QLn/ dm eik_lw‘”)w(ﬂ')

where
(z]€) = imjfj, (6|r) = Xn: Oph, 1y = e TR=D/4,
We put "~ -
Fuem) = e [ X e OEu() = YR OU(F) )

a

(Fo)@.0) = cun [ a2 XD0(E) = SD((Feva) @)[(For)0)

a

where
(X|Z) = (x[€) + BE~HO|7) € Rev,  Cmn = (2mih) /2K 2.,

Using these Fourier transformations, we may prove the Plancherel formula and
define pseudo-differential operators, Fourier integral operators analogously as the
standard cases. In §4 before, we take k& = h.

We introduce useful constants e(a, b) and e(a) as follows:

aaeb — (_1)e(a,b)9a+b, / de efik_1(0|7r)9a — (_Z-kfl)nf\a\(_1)e(a)ﬂ_ifa,
RO|n

with e(a) = nla] —|a| —1+[(n—1—a|)/2] +e(1—a,a) mod 2and 1= (1,---,1) €
{0,1}™.

REFERENCES

[1] K. Asada and D. Fujiwara, On some oscillatory integral transformations in L?(R™), Japanese
J. Math. 4(1978), pp. 299-361.

[2] F.A. Berezin and M.S. Marinov, Particle spin dynamics as the Grassmann variant of classical
mechanics, Annals of Physics 104(1977), pp. 336-362.

[3] Y. Choquet-Bruhat, Supergravities and Kaluza-Klein theories, pp. 31-48, in “Topological
properties and global structure of space-time” (eds. P. Bergman and V. de Sabbata), Plenum
Press, New York, 1986.

[4] H.O. Cordes, A wversion of Egorov’s theorem for systems of hyperbolic pseudo-differential
equations, J.Functional Analysis 48(1982), pp. 285-300.

(5] B. deWitt, Supermanifolds, London, Cambridge Univ. Press,1984.

[6] R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill Book
Co., New York, 1965.

(7] D. Fujiwara, A construction of the fundamental solution for the Schridinger equation, J.
D’Analyse Math. 35(1979), pp. 41-96.

, Remarks on convergence of the Feynman path integrals, Duke Math. J. 47(1980),

pp. 559-600.




144

[9]
(10]
(11]

(12]

13]

(14]

(15]
[16]

[17]
(18]

(19]
20]
(21]
(22]
23]
[24]

25]

(26]

(27]

(28]
[29]

(30]
(31]

(32]
(33]

(34]
(35]

(36]

ATSUSHI INOUE

J. Hoyos, M. Quiros, J. Ramirez Mittelbrunn and F.J. de Urries, Generalized supermanifolds.
LILIII, J Math.Phys. 25(1984), pp. 833-854.

A. Inoue, Foundations of real analysis on the superspace R™ " over co-dimensional Fréchet-
Grassmann algebra, J.Fac.Sci.Univ.Tokyo 39(1992), pp. 419-474

, Hamilton path-integral representation for the free Weyl equation, Proc. Japan Acad.
Ser. A72(1996), pp. 1-3.

, A new construction of a fundamental solution for the free Weyl equation —An
example of superanalysis, pp. 169-182, in “Nonlinear Waves” (eds. R. Agemi, Y. Giga and T.
Ozawa), Gakuto International Series, Mathematical Sciences and Applications vol.10(1997).
, On a construction of the fundamental solution for the free Weyl equation by
Hamiltonian path-integral method —an exactly solvable case with “odd variable coefficients”,
Téhoku J.Math.50(1998), pp. 91-118.

, On a construction of the fundamental solution for the free Dirac equation by
Hamiltonian path-integral method —the classical counterpart of Zitterbewegung, Japanese
J.Math.24(1998), pp. 297-334.

, On a “Hamiltonian path-integral” derivation of the Schrédinger equation, Osaka
J.Math. 36(1999), pp. 861-904.

, A new treatise for a system of PDE — A solution for Feynman’s problem to the free
Weyl equation as an ezample —, Preprint series of Math. TITECH #62(08-96).

, Introduction of Superanalysis and its Applications, book in preparation.

A. Inoue and Y. Maeda, On integral transformations associated with a certain Lagrangian—
as a prototype of quantization, J. Math. Soc. Japan 37(1985), pp. 219-244.

, Super oscillatory integrals and a path integral for a non-relativistic spinning particle,
Proc. Japan Acad. Ser. A63(1987), pp. 1-3.

, Studies of Schrédinger equations with spin using superanalysis 1. A general scheme
of constructing a fundamental solution, Preprint series of Univ. Warwick 1987.

, Foundations of calculus on super Euclidean space R™™ based on a Fréchet-
Grassmann algebra, Kodai Math.J.14(1991), pp. 72-112.

, On a derivation of the Pauli equation by Hamilton Path-Integral Method — an ap-
plication of superanalysis, in preparation.

A. Inoue and Y. Nomura, Some refinements of Wigner’s semi-circle law for Gaussian random
matrices using superanalysis, Asymptotic analysis, in press.

H. Kitada, On a construction of the fundamental solution for Schrédinger equations, J. Fac.
Sci. Univ. Tokyo 27(1980), pp. 193-226.

H. Kumano-go, A calculus of Fourier integral operators on R™ and the fundamental solution
for an operator of hyperbolic type, Commun.in Partial Differential Equations 1(1976), pp.
1-44.

H. Kumano-go, Pseudo-Differential Operators, Cambridge-Massachusetts-London, The MIT
Press, 1981.

H. Kumano-go, K. Taniguchi and Y. Tozaki, Multiple-products of phase functions for Fourier
integral operators with applications, Commun.in Partial Differential Equations 3(1978), pp.
349-380.

D.A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys 35(1980),
pp. 1-64.

J.L. Martin, Generalized classical dynamics, and the ‘classical analogue’ of a Fermi oscilla-
tor, Proc. Roy.Soc. A251(1959), pp. 536-542.

, The Feynman principle for a Fermi system, Proc. Roy.Soc. A251(1959), pp. 543-549.
J. Manes and B. Zumino, WKB method, SUSY quantum mechanics and the index theorem,
Nuclear Phys. B(FS16) 270(1986), pp. 651-686.

M.Martellini and P. Teofilatto, Global structure of the superstring partition function and
resolution of the supermoduli measure ambiguity, Phys.Lett. B211(1988), pp. 293-300.

S. Matsumoto and K. Kakazu, A note on topology of supermanifolds, J.Math.Phys. 27(1986),
pPp. 2690-2692.

A. Rogers, A global theory of supermanifolds, J.Math.Phys.21(1980), pp. 1352-1365.

, Integration on supermanifolds, pp. 149-160, in “Mathematical Aspects of Super-
space” (eds. H.-J. Seifert et al.), D. Reidel Pub.Com. 1984.

, Consistent superspace integration, J.Math.Phys.26(1985), pp. 385-392.




(37)
(38]
(39]

[40]

FEYNMAN’S PROBLEM 145

, On the existence of global integral forms on supermanifolds, J.Math.Phys.26(1985),
pp. 2749-2753.

, Graded manifolds, supermanifolds and infinite-dimensional Grassmann algebra,
Commun.Math.Phys.105(1986), pp. 375-384.

s Realizing the Berezin integral as a superspace contour integral,
J.Math.Phys.27(1986), pp. 710-717.

, Integration and global aspects of supermanifolds, pp. 199-219, in “Topological prop-
erties and global structure of space-time” (eds. P. Bergmann and V. de Sabbata), New York,
Plenum Press, 1986.

[41] M.J. Rothstein, The azioms of supermanifolds and a new structure arising from them,

42]

Trans.Amer.Math.Soc. 297(1986), pp. 159-180.
, Integration on non-compact supermanifolds, Trans.Amer.Math.Soc. 299(1987), pp.
387-396.

[43] K. Taniguchi, A remark on composition formula of certain Fourier integral operators, Math-

ematica Japonica 49(1999), pp. 81-90.

[44] V.S. Vladimirov and I.V. Volovich, Superanalysis I. Differential calculus, Theor. Math. Phys.

[45]

59(1983), pp. 317-335.
, Superanalysis II. Integral calculus, Theor. Math. Phys. 60(1984), pp. 743-765.

[46] K. Yagi, Super differential calculus, Osaka J.Math. 25(1988), pp. 243-257.
[47] S. Yamamuro, A Theory of Differentiation in Locally Convex Spaces, Memoirs Amer.Math.

Soc. 212 Amer. Math.Soc. Providence, Rhode Island, USA,1979.

[48] M.R. Zirnbauer, Riemannian symmetric superspaces and their origin in random-matriz the-

ory, J.Math.Phys.37(1996), pp. 4986-5018.

ATSUSHI INOUE

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY,
2-12-1, OH-OKAYAMA, MEGURO-KU, TOKYO, 152-0033, JAPAN
E-mail address: inoue@@math.titech.ac.jp



