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A PARTIAL SOLUTION FOR FEYNMAN’S PROBLEM:

A NEW DERIVATION OF THE WEYL EQUATION

ATSUSHI INOUE

Abstract. Associating classical mechanics to a system of PDE, we give a
procedure for Feynman type quantization of a “Schrödinger type equation
with spin.” Mathematically, we construct a “good parametrix” for the Weyl
equation with an external electro-magnetic field. Main ingredients are a new
interpretation of the matrix structure using superanalysis and a reinterpreta-
tion of the method of characteristics as a quantization procedure of Feynman
type.

1. Feynman’s problem for spin

1.1. Feynman’s path integral representation and his problem. Feynman
proposed to represent solutions of the Schrödinger equation

i~
∂

∂t
u(t, q) = H(q, ∂q)u(t, q),

u(0, q) = u(q), q = (q1, · · · , qm) ∈ R
m,

(1.1)

via the expression, called Feynman’s path integral (representation),

F (t, q, q′) =

∫
Ct,q,q′

dFγ e
i~−1

∫
t
0
L(γ(τ),γ̇(τ))dτ . (1.2)

Here H(q, ∂q), the Hamiltonian operator with mass M , is given formally as

H(q, ∂q) =
−~2

2M
∆+ V (·), ∆ =

m∑
`=1

∂2

∂q2`
,

and dFγ denotes the notorious Feynman measure on the path space

Ct,q,q′ = {γ(·) ∈ AC([0, t] : R
m) | γ(0) = q′, γ(t) = q}.

Here, AC denotes absolute continuity. For any path γ ∈ Ct,q,q′ , the classical action
St(γ) is defined by

St(γ) =

∫ t
0

dτ L(γ(τ), γ̇(τ)) (1.3)
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where the Lagrangian function

L(γ, γ̇) =
M

2
|γ̇|2 − V (γ) ∈ C∞(TRm : R),

corresponds to the Hamiltonian function

H(q, p) =
|p|2

2M
+ V (q) ∈ C∞(T ∗Rm : R).

On the other hand, Feynman noted ([6], page 355) that

...... path integrals suffer grievously from a serious defect. They
do not permit a discussion of spin operators or other such oper-
ators in a simple and lucid way. They find their greatest use in
systems for which coordinates and their conjugate momenta are
adequate. Nevertheless, spin is a simple and vital part of real
quantum-mechanical systems. It is a serious limitation that the
half-integral spin of the electron does not find a simple and ready
representation. It can be handled if the amplitudes and quantities
are considered as quaternions instead of ordinary complex num-
bers, but the lack of commutativity of such numbers is a serious
complication.

[Problem for system of PDE]: We regard Feynman’s problem as calling for a
new methodology of solving systems of PDE. A system of PDE has two
non-commutativities,
(i) one from [∂q, q] = 1 (Heisenberg relation),
(ii) the other from [A,B] 6= 0 (matrix noncommutativity).
Non-commutativity from the Heisenberg relation is nicely controlled by using

Fourier transformations (the theory of pseudodifferential operators). Here, we want
to give a new method of treating matrix non-commutativity; after identify-
ing matrix operations as differential operators and using Fourier transformations,
we may develop a theory of pseudodifferential operators for supersmooth functions
on superspace Rm|n.
Opinion. For a given system of PDE, if we may reduce that system to scalar

PDEs by diagonalization, then we doubt whether it is truly necessary to use a
matrix representation. Therefore, if we need to represent some equations using
matrices, we should try to treat a system of PDE as it is, without diagonaliza-
tion. (Recall the Witten model, which is represented by two independent-looking
equations, has supersymmetry if treated as a system.)
Remark. We may consider the method employed here as an attempt to extend

the “method of characteristics” to PDE with matrix-valued coefficients.

1.2. Method of Fujiwara. Unfortunately, the Feynman measure does not exist.
On the other hand, Fujiwara [7, 8] constructed the parametrix and the fundamental
solution of (1.1) using Feynman’s arguments conversely, that is, he made a part of
the argument of Feynman mathematically rigorous.
Let sup

q∈Rm
|DαV (q)| ≤ Cα, for |α| ≥ 2. Then there exists a unique path γ0 in

Ct,q,q′ such that

inf
γ∈Ct,q,q′

St(γ) = St(γ0) = SL(t, q, q
′),
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which gives a solution of the Hamilton-Jacobi equation:

∂

∂t
S +H

(
q,
∂S

∂q

)
= 0.

Introducing the van Vleck determinant

DL(t, q, q
′) = det

(
∂qi∂q′jSL(t, q, q

′)
)
,

which is a solution of the continuity equation

∂

∂t
DL +

∂

∂q

(
DLHp

(
q,
∂S

∂q

))
= 0,

he defined

(Ftu)(q) = (2πi~)
−m/2

∫
Rm

dq′D
1/2
L (t, q, q

′)ei~
−1SL(t,q,q

′)u(q′). (1.4)

Theorem 1.1 (Fujiwara [7]). Fix 0 < T < ∞ arbitrarily. Putting H = L2(Rm :
C) and denoting the set of bounded linear operators on H by B(H), we have the
following:
(1) Ft defines a bounded linear operator in H:

‖Ftu‖ ≤ C‖u‖.

(2) For any u ∈ L2(Rm : C), t, s, t+ s ∈ [−T, T ],

lim
t→0
‖Ftu− u‖ = 0,

i~
∂

∂t
(Ftu)(q)

∣∣∣∣
t=0

= H(q, ∂q)u(q),

‖Ft+s − FtFs‖ ≤ C(t
2 + s2).

(3) Moreover, there exists a limit limk→∞(Ft/k)
k = Et in B(H), i.e., in the

operator norm of L2(Rm : C), which satisfies the initial value problem below:

i~
∂

∂t
(Etu)(q) = H(q, ∂q)(Etu)(q),

(E0u)(q) = u(q).

Remarks. (i) In the above, L2-boundedness of the operator Ft is crucial and is
proved using Cotlar’s lemma. This usage makes it difficult to prove the bounded-
ness of analogous operators in curved space. Therefore, it is an open problem to
“quantize” the Lagrangian on a curved manifold. The above procedure of Fujiwara
was modified for the heat equation on a curved manifold by Inoue-Maeda [18] to
explain mathematically the origin of the term (1/12)R, where R is the scalar cur-
vature of the configuration manifold.
(ii) Though in his papers [7, 8], Fujiwara allowed the time-dependence of V (t, q),
but we disregard the time-dependence in Theorem 1.1 for descriptional simplicity.

We call (1.4) a “good parametrix” since it has the following properties:
(1) The parametrix has explicit dependence on the classical quantities, i.e., Bohr
correspondence is exemplified. As a by-product, we may check easily whether we
may derive the heat equation from the Schrödinger equation by replacing ~ in (1.4)
with −i.
(2) The infinitesimal generator of the parametrix gives a Hamiltonian operator
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H(q, ∂q) which corresponds to the quantization of the Lagrangian L(γ, γ̇), or the
Weyl quantization for the symbol H(q, p).
[Problem 1] In (1.2) and (1.4), the Lagrangian is used. How can we connect

the above procedure directly to the Hamiltonian without using the Lagrangian? (A
partial solution of this problem is now given in [15].)
[Problem 2] How we may proceed when

(1) V has singularities like Coulomb potentials? or
(2) there exist many paths connecting points q and q′ like the dynamics on the
circle?

2. Problem and Result

[Problem]: Find a good representation of

R× R3 3 (t, q)→ ψ(t, q) =

(
ψ1(t, q)
ψ2(t, q)

)
∈ C2

satisfying the Weyl equation with the time-dependent external electro-magnetic
field

i~
∂

∂t
ψ(t, q) = H(t)ψ(t, q),

ψ(t, q) = ψ(q),
(2.1)

where

H(t) = c

3∑
j=1

σσσj

(
~

i

∂

∂qj
−
ε

c
Aj(t, q)

)
− εA0(t, q),

and the Pauli matrices {σσσj} are represented by

σσσ1 =

(
0 1
1 0

)
, σσσ2 =

(
0 −i
i 0

)
, σσσ3 =

(
1 0
0 −1

)
.

(i)What is the classical mechanics corresponding to (2.1)?
(ii) How about its quantization?

[Reduction]: We introduce new independent variables, called odd or fermion
variables, which are used to represent matrix structure (see the appendix on ele-
ments of superanalysis).
Then, we may reduce (2.1) to the super Weyl equation on R3|2:

i~
∂

∂t
u(t, x, θ) = Ĥ(t)u(t, x, θ),

u(t, x, θ) = u(x, θ),
(2.2)

where

Ĥ(t) = c
3∑
j=1

σj

(
θ,

∂

∂θ

)(
~

i

∂

∂xj
−
ε

c
Aj(t, x)

)
− εA0(t, x).

Remark. Pauli claimed that “There exists no classical counter-part for a
quantum spinning particle.” In spite of this, we present another representation
which exhibits the “underlying Classical Mechanics.”
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Theorem 2.1 (A good parametrix for the Weyl equation). Assume that

sup |(1 + |q|)|α|−1∂αq Aj(t, q)| <∞. Then,

ψ(t, q) = [
(
(2πi~)−3/2~

∫∫
R3|2

dξdπD1/2(t, t;x, θ, ξ, π)

× ei~
−1S(t,t;x,θ,ξ,π)F(#ψ)(ξ, π)

)∣∣∣
xB=q

,

gives a good parametrix for (2.1). Here, S(t, t;x, θ, ξ, π) and D(t, t;x, θ, ξ, π)
are solutions of Hamilton-Jacobi and continuity equations, respectively. F is the
Fourier transformation of functions on R3|2.

3. Main ingredients

3.1. How can we regard the method of characteristics as quantization?
On the region Ω in Rm+1, we consider the following initial value problem:

∂

∂t
u(t, q) +

m∑
j=1

aj(t, q)
∂

∂qj
u(t, q) = b(t, q)u(t, q) + f(t, q),

u(t, q) = u(q).

(3.1)

Corresponding characteristics are given by

d

dt
qj(t) = aj(t, q(t)),

qj(t) = qj (j = 1, · · · ,m).

We denote the solution by

q(t) = q(t, t; q) = (q1(t), · · · , qm(t)) ∈ R
m.

The following theorem is well-known.

Theorem 3.1. Let aj ∈ C1(Ω : R) and b, f ∈ C(Ω : R). For any point (t, q) ∈ Ω,
we assume that u is C1 in a neighborhood of q.
Then, in a neighborhood of (t, q), there exists a unique solution u(t, q) of (3.1).

More precisely, putting

U(t, q) = e
∫ t
t
dτ B(τ,q)

{∫ t
t

ds e
−
∫ s
t
dτ B(τ,q)

F (s, q) + u(q)

}
,

that solution is represented by

u(t, q̄) = U(t, y(t, t; q̄))

where B(t, q) = b(t, q(t, t; q)), F (t, q) = f(t, q(t, t; q)) and q = y(t, t; q̄) is an inverse
function defined through q̄ = q(t, t; q).

To understand the above theorem, we take the simplest example:

i~
∂

∂t
u(t, q) = a

~

i

∂

∂q
u(t, q) + bqu(t, q),

u(0, q) = u(q).
(3.2)

From the right-hand side of above, we derive the (Weyl) symbol as a Hamiltonian:

H(q, p) = e−i~
−1qp

(
a
~

i

∂

∂q
+ bq

)
ei~

−1qp = ap+ bq.
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The classical mechanics associated to that Hamiltonian is given by

q̇(t) = Hp = a,

ṗ(t) = −Hq = −b

with

(
q(0)
p(0)

)
=

(
q

p

)
which is readily solved as

q(s) = q + as, p(s) = p− bs.

Putting U(t) = u(t, q(t)) for a solution u(t, q) of (3.2), we have i~ d
dt
U(t) = bq(t)U(t),

therefore
U(t, q) = u(q)e−i~

−1(bqt+2−1abt2).

As the inverse function of q = q(t, q) is given by q = y(t, q̄) = q̄ − at, we get

u(t, q) = U(t, q)|q=y(t,q̄) = u(q − at)e
−i~−1(bqt−2−1abt2).

Remark. In the above, we used only the path q(s) moving in the configuration
space Rm.

Another point of view from the “Hamiltonian path-integral method”:
Put

S0(t, q, p) =

∫ t
0

ds [q̇(s)p(s)−H(q(s), p(s))] = −bqt− 2−1abt2,

and
S(t, q, p) = q p+ S0(t, q, p)|q=y(t,q) = qp− apt− bqt+ 2

−1abt2.

Then, S(t, q̄, p) satisfies the Hamilton-Jacobi equation.

∂

∂t
S +H(q̄, ∂q̄S) = 0,

S(0, q̄, p) = q̄ p.

On the other hand, the van Vleck determinant, a scalar in this example, is

D(t, q, p) =
∂2S(t, q, p)

∂q∂p
= 1.

This quantity satisfies the continuity equation:

∂

∂t
D + ∂q̄(DHp) = 0,

D(0, q, p) = 1

where Hp =
∂H
∂p

(
q̄, ∂S
∂q̄

)
.

As an interpretation of Feynman’s idea, we understand the transition from clas-
sical to quantum mechanics by studying the quantity

u(t, q) = (2πi~)−1/2
∫
R

dpD1/2(t, q, p)ei~
−1S(t,q,p)û(p).

That is, in our case at hand, we should study the quantity defined by

u(t, q) = (2πi~)−1/2
∫
R

dp ei~
−1S(t,q,p)û(p)

= (2πi~)−1
∫∫

R2
dpdq ei~

−1(S(t,q,p)−q p)u(q)

= u(q − at)ei~
−1(−bqt+2−1abt2).



FEYNMAN’S PROBLEM 127

[Problem] Can we extend the above argument to a system of PDEs? For ex-
ample, Dirac, Weyl or Pauli equations, quantum mechanical equations with spin.
Remark. Using the representation theory of the Heisenberg group, the pro-

cedure of geometric quantization produces the operator e−i~
−1t(aPPP+bQQQ+cIII) corre-

sponding to the Hamiltonian ap+ bq + c.

3.2. A new look for the matrix structure. The fact “Clifford algebra is rep-
resented on Grassmann algebra” is embodied as follows (here, we restrict ourselves
to 2× 2 matrices):
We decompose a 2× 2 matrix A as follows:

A =

(
a b
c d

)

=
a+ d

2
I2 +

a− d

2

(
1 0
0 −1

)
+
b+ c

2

(
0 1
1 0

)
+
b− c

2

(
0 1
−1 0

)

=
a+ d

2
I2 +

a− d

2
σσσ3 +

b+ c

2
σσσ1 +

b− c

2
iσσσ2.

where the Pauli matrices {σσσj} satisfies the Clifford relation: σσσiσσσj +σσσjσσσi = 2δij .
Using the identification(

u0
u1

)
]
→←
[
u0 + u1θ1θ2 = u(θ)

we have, for example,

[
(
θ1θ2 −

∂2

∂θ1∂θ2

)
]

(
u0
u1

)
= [(u1 + u0θ1θ2) =

(
u1
u0

)
= σσσ1

(
u0
u1

)
.

Therefore, the action of A on a vector t(u0, u1) is regarded as the action of a
differential operator

A
(
θ,

∂

∂θ

)
=
a+ d

2
+
a− d

2

(
1− θ1

∂

∂θ1
− θ2

∂

∂θ2

)
+ cθ1θ2 − b

∂2

∂θ1∂θ2

on a function u(θ) = u0 + u1θ1θ2. Moreover, we may associate the complete Weyl
symbol A(θ, π) as

A(θ, π) =
a+ d

2
− i

a− d

2
~−1

(
θ1π1 + θ2π2

)
+ cθ1θ2 + b~

−2π1π2.

This is our interpretation of the fact above. (Though we may defineA(θ, ∂θ) and the
Fourier transformations w.r.t. odd variables such that the symbol A(θ, π) doesn’t
contain ~, we take this form in this paper.)
Remark. σj(θ, ∂θ) are taken not only to be even operators but also to annihilate

the set {v1θ1 + v2θ2}.
Remark. We may regard θj ∼ dzj and

∂
∂θj
∼ ∂
∂zj
c, i.e., for j = 1, 2,

θj(u0 + u1θ1θ2) = u0θj ∼ dzj∧(u0 + u1dz1∧dz2) = u0dzj ,

∂

∂θ1
(u0 + u1θ1θ2) = u1θ2 ∼

∂

∂z1
c(u0 + u1dz1∧dz2) = u1dz2,

∂

∂θ2
(u0 + u1θ1θ2) = −u1θ1 ∼

∂

∂z2
c(u0 + u1dz1∧dz2) = −u1dz1.
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4. Outline of our procedure

For the sake of simplicity, we outline the case when H(t) is independent of time t.
(I) We identify a “spinor” ψ(t, q) = t(ψ1(t, q), ψ2(t, q)) : R × R3 → C2 with an

even supersmooth function u(t, x, θ) = u0(t, x)+u1(t, x)θ1θ2 : R×R3|2 → Cev. Here,
u0(t, x), u1(t, x) are the Grassmann continuation of ψ1(t, q), ψ2(t, q), respectively.
(II) We represent the matrices {σσσj}, which act on u(t, x, θ) as follows:

σ1

(
θ,
∂

∂θ

)
= θ1θ2 −

∂2

∂θ1∂θ2
,

σ2

(
θ,

∂

∂θ

)
= i
(
θ1θ2 +

∂2

∂θ1∂θ2

)
,

σ3

(
θ,

∂

∂θ

)
= 1− θ1

∂

∂θ1
− θ2

∂

∂θ2
.

(III) Therefore, we may correspond the differential operator given by

H
(
x,
~

i

∂

∂x
, θ,

∂

∂θ

)
= c

3∑
j=1

σj

(
θ,

∂

∂θ

)(
~

i

∂

∂xj
−
ε

c
Aj(x)

)
+ εA0(x) (4.1)

which yields the superspace version of the Weyl equation

i~
∂

∂t
u(t, x, θ) = H

(
x,
~

i

∂

∂x
, θ,

∂

∂θ

)
u(t, x, θ),

u(0, x, θ) = u(x, θ).
(4.2)

Moreover, the “complete Weyl symbol” of (4.1) is given by

H(x, ξ, θ, π) =c(η1 + iη2)θ1θ2 + c~
−2(η1 − iη2)π1π2

− ic~−1η3(θ1π1 + θ2π2) + εA0(x),

where ηj = ξj − (ε/c)Aj(x).
(IV) We consider the classical mechanics corresponding to H(x, ξ, θ, π) given by

d

dt
xj =

∂H(x, ξ, θ, π)

∂ξj
,
d

dt
ξk = −

∂H(x, ξ, θ, π)

∂xk
,

d

dt
θl = −

∂H(x, ξ, θ, π)

∂πl
,
d

dt
πm = −

∂H(x, ξ, θ, π)

∂θm
.

Proposition 4.1. There exists a unique global solution (x(t), ξ(t), θ(t), π(t)) of
above ODE with initial data (x(0), ξ(0), θ(0), π(0)) = (x, ξ, θ, π) ∈ R6|4 = T ∗R3|2.

Proposition 4.2. For any fixed (t, ξ, π), the map defined by

(x, θ)→ (x = x(t, x, ξ, θ, π), θ = θ(t, x, ξ, θ, π))

gives a supersmooth diffeomorphism from R3|2 → R3|2. Therefore, there exists the
inverse map given by

(x, θ)→ (x = y(t, x, ξ, θ, π), θ = ω(t, x, ξ, θ, π)),

which satisfies
x = x(t, y(t, x, ξ, θ, π), ξ, ω(t, x, ξ, θ, π), π),

θ = θ(t, y(t, x, ξ, θ, π), ξ, ω(t, x, ξ, θ, π), π),

x = y(t, x(t, x, ξ, θ, π), ξ, θ(t, x, ξ, θ, π), π),

θ = ω(t, x(t, x, ξ, θ, π), ξ, θ(t, x, ξ, θ, π), π).
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Now, we put

S0(t, x, ξ, θ, π) =

∫ t
0

ds {〈ẋ(s)|ξ(s)〉 + 〈θ̇(s)|π(s)〉 − H(x(s), ξ(s), θ(s), π(s))},

and

S(t, x, ξ, θ, π) = 〈x|ξ〉+ 〈θ|π〉+ S0(t, x, ξ, θ, π)
∣∣∣
x=y(t,x,ξ,θ,π), θ=ω(t,x,ξ,θ,π)

Proposition 4.3. S(t, x, ξ, θ, π) satisfies the Hamilton-Jacobi equation:

∂

∂t
S(t, x, ξ, θ, π) +H

(
x,
∂S

∂x̄
, θ̄,

∂S

∂θ̄

)
= 0,

S(0, x, ξ, θ, π) = 〈x̄|ξ〉+ 〈θ̄|π〉.

Remark. This process of constructing solution of H-J equation is essentially due
to Jacobi.
Now, we put

D(t, x, ξ, θ, π) = sdet


 ∂2S
∂x̄ ∂ξ

∂2S
∂x̄ ∂π

∂2S
∂θ̄ ∂ξ

∂2S
∂θ̄ ∂π


 .

Then, we get

Proposition 4.4. D(t, x, ξ, θ, π) satisfies the following continuity equation:

∂

∂t
D +

∂

∂x̄

(
D
∂H

∂ξ

)
+

∂

∂θ̄

(
D
∂H

∂π

)
= 0,

D(0, x, ξ, θ, π) = 1.

In the above, the argument of D is (t, x, ξ, θ, π), and those of ∂H
∂ξ
and ∂H

∂π
are

(x̄, ∂S
∂x̄
, θ̄, ∂S

∂θ̄
), respectively.

From here, we change the order of variables

(x, ξ, θ, π)→ (x, θ, ξ, π).

We define an operator

(U(t)u)(x̄, θ̄) = (2πi~)−3/2~

∫∫
dξdπD1/2(t, x, θ, ξ, π)ei~

−1S(t,x,θ,ξ,π)Fu(ξ, π).

The function u(t, x̄, θ̄) = (U(t)u)(x̄, θ̄) will be shown to be a desired good parametrix
for (2.2), identical with (4.2).
(V) On the other hand, using Fourier transformation, we have readily that

H
(
x,
~

i

∂

∂x
, θ,

∂

∂θ

)
= Ĥ

where Ĥ is a (Weyl type) pseudo-differential operator with symbol H(x, ξ, θ, π),
that is,

(Ĥu)(x, θ)

= (2πi~)−3~2
∫∫

dξdπdydω ei~
−1(〈x−y|ξ〉+〈θ−ω|π〉)H

(
x+ y

2
, ξ,

θ + ω

2
, π

)
u(y, ω).
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Theorem 4.5. (1) For t ∈ R, U(t) is a bounded operator in /L2SS(R
3|2) such that

for |t|, |s| � 1,

‖U(t)U(s)− U(t+ s)‖B( /L2SS(R3|2), /L2SS(R3|2)) ≤ C(|t|
2 + |s|2).

(2) R 3 t→ U(t) ∈ B( /L2SS(R
3|2), /L2SS(R

3|2)) is continuous.
(3) There exists the limit E(t) = limn→∞ U(t/n) for any |t| < ∞ in the uniform
operator topology.
(4) Put u(t, x, θ) = (E(t)u)(x, θ), for u ∈ /CSS(R

3|2) with u0(q), u1(q) being com-
pactly supported. Then

i~
∂

∂t
u(t, x, θ) = Ĥu(t, x, θ),

u(0, x, θ) = u(x, θ).

(VI) We interpret the above theorem using the identification maps

L2(R3 : C2)
]
→←
[
/L2SS(R

3|2).

That is, remarking [Ĥ] = H and putting E(t) = [E(t)], we have

Theorem 4.6. (1) For t ∈ R, E(t) is a well defined unitary operator in L2(R3 :
C2).
(2) (i) R 3 t→ E(t) ∈ B(L2(R3 : C2), L2(R3 : C2)) is continuous.
(ii) E(t)E(s) = E(t+ s) for any t, s ∈ R.
(iii) Put ψ(t, q) = [

(
E(t)]ψ

)∣∣
xB=q

, for ψ ∈ C∞0 (R
3 : C2). Then

i~
∂

∂t
ψ(t, q) = Hψ(t, q),

ψ(0, q) = ψ(q).

Corollary 4.7. H is an essentially self-adjoint operator in L2(R3 : C2).

Appendix A. Elements from superanalysis

In this appendix, we gather notion from superanalysis without proof. As is
well-known, we use very heavily Taylor expansion, integration by parts, change of
variables under integral sign and Fourier transformations when we perform real
analysis on Rm. After defining non-commutative numbers R and C, called su-
pernumbers, we develop such tools on superspace Rm|n. We must emphasize the
reason why Rogers [34] used the Banach-Grassmann algebra B∞, which is obtained
from the sequence space `1 by defining the product with Grassmann relations. It
is because not only she but also many others try to apply the general theory of
differential calculus on Banach space, which is not valid on Fréchet space in gen-
eral. On the other hand, de Witt [5] introduced his non-Hausdorff topology (called
coarse topology) on his supermanifolds, which is scarcely used by mathematicians,
because it seems difficult to find a firm foundation of differential calculus. Our
topology is just between coarse and Banach topology, which guarantees to develop
that calculus by the help of grading inherited from Grassmann relations, i.e., we
develop the theory of differential calculus on the Frechét space with Grassmann
grading.

A.1. Supernumbers, superspaces and linear algebra.
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A.1.1. Supernumbers. For symbols {σj}∞j=1 satisfying the Grassmann relation

σjσk + σkσj = 0, j, k = 1, 2, · · · ,

we put

C = {X =
∑
I∈I

XIσ
I
∣∣ XI ∈ C}

where

I = {I = (ik) ∈ {0, 1}
N
∣∣ |I| =∑

k

ik <∞},

σI = σi11 σ
i2
2 · · · , I = (i1, i2, · · · ), σ0̃ = 1, 0̃ = (0, 0, · · · ) ∈ I.

Besides trivially defined linear operations of sums and scalar multiplications, we
have a product operation in C: For

X =
∑
J∈J

XJσ
J , Y =

∑
K∈I

YKσ
K ,

we put

XY =
∑
I∈I

(XY )Iσ
I with (XY )I =

∑
I=J+K

(−1)τ(I;J,K)XJYK .

Here, τ(I; J,K) is an integer defined by

σJσK = (−1)τ(I;J,K)σI , I = J +K.

Proposition A.1 ([21, 10]). C forms an ∞-dimensional Fréchet-Grassmann alge-
bra over C, that is, an associative, distributive and non-commutative ring with
degree, which is endowed with the Fréchet topology.

Remark. (1) We call this C as super(complex)numbers. Degree in C is defined
by introducing subspaces

C[j] = {X =
∑

I∈I,|I|=j

XIσ
I} for j = 0, 1, · · ·

which satisfy
C = ⊕∞j=0C

[j], C[j] · C[k] ⊂ C[j+k].

(2) Define

projI(X) = XI for X =
∑
I∈I

XIσ
I ∈ C.

The topology in C is given by X → 0 in C if and only if projI(X)→ 0 in C, for any
I ∈ I.
This topology is equivalent to the one introduced by the metric dist(X,Y ) =

dist(X − Y ) where dist(X) is defined by

dist(X) =
∑
I∈I

1

2r(I)
| projI(X)|

1 + | projI(X)|
with r(I) = 1 +

1

2

∞∑
k=1

2kik for I ∈ I.

(3) We introduce parity in C by setting

p(X) =



0 if X =

∑
I∈I,|I|=evXIσ

I ,

1 if X =
∑
I∈I,|I|=odXIσ

I ,

undefined otherwise.
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X ∈ C is called homogeneous if it satisfies p(X) = 0 or = 1. We put

Cev = ⊕
∞
j=0C

[2j] = {X ∈ C | p(X) = 0},

Cod = ⊕
∞
j=0C

[2j+1] = {X ∈ C | p(X) = 1},

C ∼= Cev ⊕ Cod ∼= Cev × Cod.

Analogous to C, we define, super(real)numbers as

R = {X ∈ C |πBX ∈ R}, R
[j] = R ∩ C[j],

Rev = R ∩ Cev, Rod = R ∩ Cod = Cod,

R ∼= Rev ⊕Rod ∼= Rev ×Rod.

We introduced the body (projection) map πB by

πBX = proj0̃(X) = X0̃ = X
[0] = XB for any X ∈ C,

and the soul part XS of X as

XS = X −XB =
∑
|I|≥1

XIσ
I .

A.1.2. Superspaces. We define the (real) superspace Rm|n by

Rm|n = Rmev ×R
n
od.

The distance between X,Y ∈ Rm|n is defined by,

distm|n(X,Y ) = distm|n(X − Y )

with

distm|n(X) =

m∑
j=1

(∑
I∈I

1

2r(I)
| projI(xj)|

1 + | projI(xj)|

)
+

n∑
k=1

(∑
I∈I

1

2r(I)
| projI(θk)|

1 + | projI(θk)|

)
.

We use the following notation:

X = (XA)
m+n
A=1 = (x, θ) ∈ R

m|n with

x = (XA)
m
A=1 = (xj)

m
j=1 ∈ R

m|0, θ = (XA)
m+n
A=m+1 = (θk)

n
k=1 ∈ R

0|n, etc.

We generalize the body map πB from R
m|n or Rm|0 to Rm by putting,

X = (x, θ) ∈ Rm|n −→ πBX = XB = (xB, 0) ∼= xB = πBx = (πBx1, · · · , πBxm) ∈ R
m.

We call xj ∈ Rev and θk ∈ Rod as even and odd (alias bosonic and ferminionic)
variable, respectively.
Remark. Though the differential calculus on Fréchet spaces has some difficulties

in general (e.g. Yamamuro [47]), such calculus on Fréchet-Grassmann algebra holds
safely in our case, because of the grading of Grassmann generators. For example,
the implicit and inverse function theorems, and the chain rule for differentiation.
See, Inoue and Maeda [21], Inoue [10, 13, 17].
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A.1.3. Elementary Linear Algebra.

Definition A.1. A rectangular array M , whose cells are indexed by pairs consist-
ing of a row number and a column number, is called a supermatrix and denoted by
M ∈ Mat((m|n)× (r|s) : C), if it satisfies the following:

1. A (m + n) × (r + s) matrix M is decomposed blockwisely as M =

[
A C
D B

]
where A, B, C and D are m×r, n×s, m×s and n×r matrices with elements
in C, respectively.

2. One of the following conditions is satisfied: Either
• p(M) = 0, that is, p(Ajk) = 0 = p(Buv) and p(Cjv) = 1 = p(Duk) or
• p(M) = 1, that is, p(Ajk) = 1 = p(Buv) and p(Cjv) = 0 = p(Duk).

We call M is even denoted by Matev((m|n) × (r|s) : C) (resp. odd denoted by
Matod((m|n)× (r|s) : C)) if p(M) = 0 (resp. p(M) = 1). Therefore, we have

Mat((m|n)× (r|s) : C) = Matev((m|n)× (r|s) : C)⊕Matod((m|n)× (r|s) : C).

Moreover, we may decompose M as M =MB +MS where

MB =




[
AB 0

0 BB

]
when p(M) = 0,

[
0 CB

DB 0

]
when p(M) = 1.

The summation of two matrices in Matev((m|n)× (r|s) : C) or in Matod((m|n)×
(r|s) : C) is defined as usual, but the sum of Matev((m|n)×(r|s) : C) andMatod((m|n)×
(r|s) : C) is not defined in itself except at least one of them being zero matrix.
It is clear that if M is the (m+n)× (r+ s) matrix and N is the (r+ s)× (p+ q)

matrix, then we may define the product MN and its parity p(MN) as

(MN)ij =
∑
k

MikNkj , p(MN) = p(M) + p(N) mod 2.

For notational simplicity, we put Mat[m|n : C] = Mat((m|n)× (m|n) : C).

Definition A.2. Let M =

[
A C
D B

]
∈ Mat[m|n : C]. We define the supertrace of

M by

strM = trA− (−1)p(M) trB.

We get

Proposition A.2. (a) LetM,N ∈Mat[m|n : C] such that p(M)+p(N) ≡ 0 mod 2.
Then, we have

str(M +N) = strM + strN.

(b)M is a matrix of size (m+n)×(r+s) and N is a matrix of size (r+s)×(m+n).
Then,

str(MN) = (−1)p(M)p(N) str(NM).

If M ∈ Mat[m|n : C] is even, denoted by M ∈ Matev[m|n : C], then M acts on
Rm|n linearly. Denoting this by TM , we call it super linear transformation on R

m|n

and M is called the representative matrix of TM .
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Proposition A.3. Let M ∈ Matev[m|n : C] and assume detMB 6= 0. Then, for
given Y ∈ Rm|n,

TMX = Y

has the unique solution X ∈ Rm|n, which is denoted by X =M−1Y .

Definition A.3. M ∈ Matev[m|n : C] is called invertible or non-singular if MB is
invertible, i.e., detAB detBB 6= 0, and denoted by M ∈ GLev[m|n : C].

Definition A.4. Let B = (Bjk) be (` × `)-matrix with elements in Cev, denoted
by, B ∈Mat[` : Cev]. As Cev is a commutative ring, we may define detB as usual:

detB =
∑
ρ∈℘`

sgn(ρ)B1 ρ(1) · · ·B` ρ(`).

Then, we have, as ordinary case,

det(AB) = detAdetB, det(expA) = exp(trA) for A,B ∈Mat[` : Cev]. (A.1)

Definition A.5. Let M ∈Matev[m|n : C] be given. When detBB 6= 0, we put

sdetM = (det(A− CB−1D))(detB)−1

and call it superdeterminant or Berezinian of M .

Corollary A.4. When detBB 6= 0 and sdetM 6= 0, then detAB 6= 0.

Theorem A.5. Let M,N ∈Matev[m|n : C].
(1) If M is invertible, then we have sdetM 6= 0. Moreover, if A is nonsingular,

then

(sdetM)−1 = (detA)−1(det(B −DA−1C)).

(2) Multiplicativity of sdet on GLev[m|n : C]:

sdet(MN) = sdetM sdetN.

(3) str and sdet are matrix invariants on GLev[m|n : C]: That is, for M, N ∈
GLev[m|n : C],

strM = strNMN−1

sdetM = sdetNMN−1.

(4) Moreover, we have

exp(strM) = sdet(expM) for M ∈ GLev[m|n : C].

A.2. Elementary analysis I. Differential Calculus.

A.2.1. Supersmooth functions.

Definition A.6. For any f(q) ∈ C∞(Rm : C), we put,

f̃(x) =

∞∑
|α|=0

1

α!
∂αq f(xB)x

α
S ∈ Cev for x = xB + xS ∈ R

m|0

which is called the Grassmann continuation (or extension) of f(q), and denoted
simply by f(x).
Moreover, if g(q) =

∑
I∈I gI(q)σ

I ∈ C∞(Rm : C), we define g(x) =
∑
I∈I gI(x)σ

I

where gI(x) is the Grassmann continuation of gI(q).
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Definition A.7. We define functions u ∈ /CSS,ev(R
m|n), or u ∈ CSS(Rm|n : C) by

u(X) = u(x, θ) =
∑
|a|≤n

ũa(x)θ
a = or simply

∑
|a|≤n

ua(x)θ
a,

which are called supersmooth functions on Rm|n. Here ua(x) is the Grassmann
continuation of ua(q) ∈ C∞(Rm : C), or ua(q) ∈ C∞(Rm : C).

Example. For ξ = (ξ1, · · · , ξm) ∈ Rm|0 = Rmev, we define |ξ| ∈ Rev as follows:
Putting

|ξ| = |ξ|B + |ξ|S with |ξ|S =
∑

|I|=even≥2

|ξ|Iσ
I , |ξ|B ≥ 0, |ξ|I ∈ R,

we should have

|ξ|2 =
m∑
j=1

(ξj,B + ξj,S)(ξj,B + ξj,S) =

m∑
j=1

ξ2j,B +

m∑
j=1

ξj,B(ξj,S + ξj,S) +

m∑
j=1

ξj,Sξj,S,

ξj,S =
∑

|I|=even≥2

ξj,Iσ
I , ξj,S =

∑
|I|=even≥2

ξj,Iσ
I

with ξj,I being the complex conjugate of ξj,I in C. Therefore, |ξ|B = {
∑m
j=1 ξ

2
j,B}

1/2

and

2|ξ|K |ξ|B +
∑

I+J=K

|ξ|I |ξ|J (−1)
τ(K;I,J)

=
m∑
j=1

2ξj,B<ξj,K +
∑

I+J=K

m∑
j=1

ξj,Iξj,J (−1)
τ(K;I,J)

which are solved by induction with respect to the length |K|. For example, if
|K| = 2, we have

|ξ|K = |ξ|
−1
B

m∑
j=1

ξj,B <ξj,K .

If |K| = 4,

2|ξ|K = |ξ|
−1
B

(
2

m∑
j=1

ξj,B <ξj,K +
∑

I+J=K

m∑
j=1

ξj,Iξj,J(−1)
τ(K;I,J)

−
∑

I+J=K

m∑
j=1

|ξ|I |ξ|J(−1)
τ(K;I,J)

)
, etc.

Now, we define sin |ξ| and cos |ξ| as

sin |ξ| =
∞∑
n=0

1

n!
sin
(
|ξ|B +

nπ

2

)
|ξ|nS , cos |ξ| =

∞∑
n=0

1

n!
cos
(
|ξ|B +

nπ

2

)
|ξ|nS .

We may characterize these supersmooth functions as follows:

Definition A.8. A set U = πB(U) × Rnod is called a superdomain if πB(U) is a
domain in Rm. Let a function f from a superdomain U ⊂ Rm|n to C be given.
(i) It is called F-differentiable at X = (XA)

m+n
A=1 in the direction Y = (YA)

m+n
A=1

if there exist
d

dt
f(X + tY )

∣∣∣∣
t=0

= f ′F (X ;Y ).
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We denote f ′F (X ;YA) = f ′XA(X ;YA) for A = 1, · · · ,m+ n and are called Fréchet
derivatives.
(ii) f is called G-differentiable at X = (x, θ) if there exist FA(X) ∈ C and

RA(X,Y ) ∈ C such that

f(X + Y )− f(X) =
m+n∑
A=1

YAFA(X) +

m+n∑
A=1

YARA(X,Y ),

which satisfy
d(RA(X,Y ), 0)→ 0 when dm|n(Y, 0)→ 0.

Proposition A.6. Let f be a function from a superdomain U ⊂ Rm|n to C. Then,
the following are equivalent:
(i) f be supersmooth, denoted by CSS(U : C),
(ii) f is G-differentiable,
(iii) f is F-differentiable and there exist functions FA(X) such that

f ′XA(X ;YA) = YAFA(X) for any A = 1, · · · ,m+ n,

(iv) f is F-differentiable and satisfies

ZAf
′
XA
(X ;YA)− (−1)

p(YA)p(ZA)YAf
′
XA
(X ;ZA) = 0 for p(XA) = p(YA) = p(ZA),

f ′XA(X ;YAZA) = ZAf
′
XA(X ;YA) for p(ZA) = 0 and p(XA) = p(YA).

To understand the meaning of supersmoothness, we consider the dependence
with respect to the ‘coordinate’ more precisely.

Proposition A.7. Let f =
∑
I fI(X)σ

I ∈ CSS(U : C) where U is a superdomain
in Rm|n. Let X = (XA)

m+n
A=1 be represented by XA =

∑
I XA,Iσ

I where A =
1, · · · ,m + n, XA,I ∈ C for |I| 6= 0 and XA,0 ∈ R. Then, f(X), considered as a
function of countably many variables {XA,I} with values in C, satisfies the following
(Cauchy-Riemann type) equations.

∂

∂XA,I
f(X) = σI

∂

∂XA,0
f(X) for 1 ≤ A ≤ m, |I| = even, (A.2)

σK
∂

∂XA,J
f(X) + σJ

∂

∂XA,K
f(X) = 0 for m+ 1 ≤ A ≤ m+ n |J | = |k| = odd.

Here, we define

∂

∂XA,I
f(X) =

d

dt
f(X + tY(A,I))

∣∣
t=0

, (A.3)

with Y(A,I) = (

A︷ ︸︸ ︷
0, · · · , 0, 1, 0, · · · , 0)σI ∈ Rm|n and Y(A,0) = (

A︷ ︸︸ ︷
0, · · · , 0, 1, 0, · · · , 0) ∈

Rm|n. Conversely, let a function f(X) =
∑
I fI(X)σ

I be given such that fI(X +
tY ) ∈ C∞([0, 1] : C) for each fixed X,Y ∈ U and f(X) satisfies the following
equations:

d

dt
f(X + tY(A,I))

∣∣∣∣
t=0

=
d

dt
f(X + tY(A,0))

∣∣∣∣
t=0

σI for 1 ≤ A ≤ m, |J | = even

σK
d

dt
f(X + tY(A,J))

∣∣∣∣
t=0

+ σJ
d

dt
f(X + tY(A,K))

∣∣∣∣
t=0

= 0

for m+ 1 ≤ A ≤ m+ n, |J | = odd = |K|.
(A.4)
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Then, f ∈ CSS(U : C).

A.2.2. Derivations. For a given supersmooth function u(X) on Rm|n, we define its
derivatives as follows: For j = 1, 2, · · · ,m and k = 1, 2, · · · , n, we put

Uj(X) =
∑
|a|≤n

∂xjua(x)θ
a,

Uk+m(X) =
∑
|a|≤n

(−1)lk(a)ua(x)θ
a1
1 · · · θ

ak−1
k · · · θann

where lk(a) =
∑k−1
j=1 aj and θ

−1
k = 0. Uκ(X) are called the partial derivatives of u

with respect to Xκ at X = (x, θ) and are denoted by

Uj(X) =
∂

∂xj
u(x, θ) = ∂xju(x, θ) for j = 1, 2, · · · ,m,

Um+s(X) =
∂

∂θs
u(x, θ) = ∂θsu(x, θ) for s = 1, 2, · · · , n

or simply by
Uκ(X) = ∂Xκu(X) for κ = 1, · · · ,m+ n.

For
a = (α, a), α = (α1, · · · , αm) ∈ N

m, a = (a1, · · · , an) ∈ {0, 1}
n,

|α| =
m∑
j=1

αj , |a| =
n∑
k=1

ak, |a| = |α|+ |a|,

we put
∂aX = ∂

α
x ∂
a
θ with ∂αx = ∂

α1
x1 · · ·∂

αm
xn , ∂aθ = ∂

a1
θ1
· · · ∂anθn .

Example. ∂θ2θ1θ2θ3 = −θ1θ3, ∂θ1∂θ3θ1θ2θ3 = θ2 6= −θ2 = ∂θ3∂θ1θ1θ2θ3, etc.

Remarks for the need of ∞ number of Grassmann generators.
(i) Though C does not form a field because X2 = 0 for any X ∈ Cod, but if

X,Y ∈ C satisfy XY = 0 for any Y ∈ Cod, then X = 0. This property holds only
when the number of generators is infinite. By this, we may determine the derivative
∂aXu(X) uniquely.
(ii) In general, we need at least countable number of operations in doing analysis.

If the number of Grassmann generators is finite, then the effect of odd variables
may vanish after finitely many operations.
(iii) Rothstein [41] claims that the super Lie algebra Der (CSS(U)) is the free

module of CSS(U) only when the number of the Grassmann generators is infinite
or null. (Though Rothstein used the Banach-Grassmann algebra introduced by
Rogers [34], but his argument is also applicable in our situation.)

A.2.3. Taylor expansions and Implicit function theorem.

Definition A.9. For a supersmooth function f , we define df by

df(X) = dXf(X) =

m+n∑
κ=1

dXκ
∂f(X)

∂Xκ
,

or

df(x, θ) =

m∑
j=1

dxj
∂f(x, θ)

∂xj
+

n∑
s=1

dθs
∂f(x, θ)

∂θs
.

From Definition A.9, we get readily
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Proposition A.8. Let U be a superdomain in Rm|n. For f, g ∈ CSS(U : C), the
product fg belongs to CSS(U : C) and the differentials dXf(X) and dXg(X) may
be regarded as continuous linear mappings from Rm|n into Cm+n. Moreover, they
satisfy the following:
(1) For any homogeneous elements λ, µ ∈ C, we have

dX(λf + µg)(X) = (−1)
p(λ)p(X)λdXf(X) + (−1)

p(µ)p(X)µdXg(X). (A.5)

(2) (Leibnitz formula)

∂Xκ [f(X)g(X)] = (∂Xκf(X))g(X) + (−1)
p(Xκ)p(f(X))f(X)(∂Xκg(X)). (A.6)

Proposition A.9 (Taylor’s formula). Let X = (x, θ), Y = (y, ω) ∈ U ⊂ Rm|n

satisfying Y + t(X − Y ) ∈ U for 0 ≤ t ≤ 1. For f ∈ CSS(U : C), Taylor’s formula
holds. That is, for any positive integer p, we have

f(x, θ)−
∑

|α|+|a|≤p, |a|≤n

1

α!
(x− y)α(θ − ω)a∂αx ∂

a
θ f(y, ω) = τp(X,Y ) (A.7)

where

τp(X,Y ) =
∑

|α|+|a|=p+1, |a|≤n

(x − y)α(θ − ω)a (A.8)

×

∫ 1
0

dt
1

p!
(1− t)p∂αx ∂

a
θ f(y + t(x − y), ω + t(θ − ω)).

Definition A.10. Let U ⊂ Rm|n and U ′ ⊂ Rm
′|n′ be superdomains and let ϕ be a

continuous mapping from U to U ′, denoted by

ϕ(X) = (ϕ1(X), · · · , ϕm′(X), ϕm′+1(X), · · · , ϕm′+n′(X)) ∈ R
m′|n′ .

ϕ is called a supersmooth mapping from U to U ′ if each ϕκ(X) ∈ CSS(U : C) for
κ = 1, · · · ,m′ + n′ and ϕ(U) ⊂ U ′.

Proposition A.10 (Composition of supersmooth mappings). Let U ⊂ Rm|n and
U ′ ⊂ Rm

′|n′ be superdomains and let Φ : U → U ′ and Φ′ : U ′ → Rm
′′|n′′ be

supersmooth mappings.
Then, the composition Ψ = Φ′ ◦ Φ : U → Rm

′′|n′′ gives a supersmooth mapping
and

dXΨ(X) = [dY Φ
′(Y )]

∣∣
Y=Φ(X)

[dXΦ(X)]. (A.9)

Definition A.11. Let U ⊂ Rm|n and U ′ ⊂ Rm
′|n′ be superdomains and let ϕ :

U → U ′ be a supersmooth mapping represented by ϕ(X) = (ϕ1(X), · · · , ϕm′+n′(X))
with ϕκ(X) ∈ CSS(U : C).
(1) ϕ is called a supersmooth diffeomorphism if (i) ϕ is a homeomorphism between
U and U ′ and (ii) ϕ and ϕ−1 are supersmooth mappings.
(2) For any f ∈ CSS(U ′ : C), (ϕ∗f)(X) = (f ◦ ϕ)(X) = f(ϕ(X)), called the pull
back of f , is well-defined and belongs to CSS(U : C).

Remarks. (1) It is easy to see that if ϕ is a supersmooth diffeomorphism, then
ϕB = πB ◦ ϕ is an (ordinary) C∞ diffeomorphism from UB to U

′
B.

(2) If we introduce the topologies in CSS(U ′ : C) and CSS(U : C) properly, ϕ∗

gives a continuous linear mapping from CSS(U ′ : C) to CSS(U : C). Moreover, if
ϕ : U → U ′ is a supersmooth diffeomorphism, then ϕ∗ defines an automorphism
from CSS(U ′ : C) to CSS(U : C).
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Proposition A.11 (Inverse function theorem). Let U be a superdomain in Rm|n

and let G(X) : U ⊂ Rm|n → Rm|n be a supersmooth mapping. We assume the

super matrix [dXG(X)] is invertible at X = X̃B ∈ πB(U).
Then, there exists a superdomain U ′, a neighborhood of Ỹ = G(X̃) and a unique

supersmooth mapping F satisfying F (G(X)) = X and we have

dY F (Y ) = (dXG(X))
−1
∣∣
X=F (Y )

in U ′. (A.10)

Moreover, we have

Proposition A.12 (Implicit function theorem). Let Φ(X,Y ) : U × U ′ → Cm
′|n′

be a supersmooth mapping and (X̃, Ỹ ) ∈ U ×U ′, where U and U ′ are superdomains
of Rm|n and Rm

′|n′ , respectively. Suppose Φ(X̃, Ỹ ) = 0 and ∂Y Φ = [∂yjΦ, ∂ωrΦ] is

a continuous and invertible supermatrix at (X̃B, ỸB) ∈ πB(U)× πB(U ′).
Then, there exist a superdomain V ⊂ U satisfying X̃B ∈ πB(V ) and a unique

supersmooth mapping Y = f(X) on V such that Ỹ = f(X̃) and Φ(X, f(X)) = 0 in
V. Moreover, we have

∂Xf(X) = − [∂YΦ(X,Y )]
−1[∂XΦ(X,Y )]

∣∣
Y=f(X)

. (A.11)

A.3. Elementary analysis II. Integral Calculus.

A.3.1. Integration (even case). Now, we define the integration of a supersmooth
function u(x) on an even superdomain Uev ⊂ Rm|0, which is similar to the integral
of holomorphic functions on a complex domain. (See, Rogers [34, 39].)

Definition A.12. Let u(x) be a supersmooth function defined on a even super
domain Uev ⊂ R1|0. Let λ= λB + λS, µ=µB + µS ∈ Uev and let a continuous and
piecewise C1-curve c : [λB, µB] → Uev be given such that c(λB) = λ, c(µB) = µ.
We define ∫

c

dxu(x) =

∫ µB
λB

dt u(c(t))ċ(t) ∈ C (A.12)

and call it the integral of u along the curve c.

Using the integration by parts, we get the following fundamental result (see [5]).

Proposition A.13. Let u(t) ∈ C∞([λB, µB] : C) and let u(x) be the Grassmann
continuation of u(t). Suppose that there exists a function U(t) ∈ C∞([λB, µB] : C)
satisfying U ′(t) = u(t) on [λB, µB].
Then, for any continuous and piecewise C1-curve c : [λB, µB] → Uev ⊂ R1|0

such that c(λB) = λ, c(µB) = µ, we have∫
c

dxu(x) = U(λ)− U(µ). (A.13)

Corollary A.14. Let u(x) be a supersmooth function defined on a even superdo-
main Uev ⊂ R1|0 into C. Let c1, c2 be continuous and piecewise C1-curves from
[λB, µB] → Uev such that λ = c1(λB) = c2(λB) and µ = c1(µB) = c2(µB). If c1 is
homotopic to c2, then ∫

c1

dxu(x) =

∫
c2

dxu(x). (A.14)
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Thus, if [λB, µB] ⊂ πB(Uev), we have∫ µ
λ

dxu(x) =

∫ µB
λB

dt u(t). (A.15)

Because of (A.15), we have

Definition A.13. (1) Let Iev be a even superdomain in R
m|0 such that πB(Iev)

=
∏m
j=1(aj , bj) ⊂ R

m with −∞ < aj < bj < ∞, which is called a even supercube.
For u ∈ CSS(Iev : C), we define∫

Iev

dxu(x) =

∫ b1
a1

dq1 · · ·

∫ bm
am

dqm u(q1, · · · , qm) =

∫
πB(Iev)

dxB u(xB). (A.16)

(2) For any even superdomain Uev ⊂ Rm|0 such that πB(Uev) is of definite area,
we may put ∫

Uev

dxu(x) =

∫
πB(Uev)

dxB u(xB) (A.17)

for u ∈ CSS(Uev : C).

A.3.2. Integration (odd case). It seems natural to put formally

dθj =
∑

I∈I,|I|=od

dθj,Iσ
I for θj =

∑
I∈I,|I|=od

θj,Iσ
I .

Therefore, we have dθj ∧ dθk = dθk ∧ dθj for j 6= k. This suggests the integration
w.r.t. odd variables is quite different from the one w.r.t. ordinary variables. In
fact, it is defined as follows:
Let v be a polynomial of odd variables θ= (θ1, · · · , θn) ∈ Rnod such that

v(θ1, · · · , θn) =
∑
|b|≤n

vbθ
b with homogeneous vbθ

b ∈ C for each b.

Denote by Pn(C) the set of all v as above.

Definition A.14. For v ∈ Pn(C), we put∫
R0|n
dθ v(θ) =

∫
R0|n
dθn · · ·dθ1 v(θ1, · · · , θn) = (∂θn · · ·∂θ1v)(0)

and we call it the integral of v on R0|n.

Especially for odd integration, we have the following curious looking but well-
known relations∫

R0|n
dθn · · ·dθ1 θ1 · · · θn = 1 and

∫
R0|n
dθn · · · dθ1 1 = 0 (Berezin integral).

Moreover, we have

Proposition A.15. Given v, w ∈ Pn(C), we have the following:

1. (C-linearity ) For any homogeneous λ, µ ∈ C,∫
R0|n
dθ(λv + µw)(θ) = (−1)np(λ)λ

∫
R0|n
dθ v(θ) + (−1)np(µ)µ

∫
R0|n
dθ w(θ).

2. (Translational invariance) For any ρ ∈ R0|n, we have∫
R0|n
dθ v(θ + ρ) =

∫
R0|n
dθ v(θ).
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3. (Integration by parts) For v ∈ Pn(C) such that p(v) = 1 or 0, we have∫
R0|n
dθ v(θ)∂θsw(θ) = −(−1)

p(v)

∫
R0|n
dθ (∂θsv(θ))w(θ).

4. (Linear change of variables) Let A = (Ajk) with Ajk ∈ Rev be invertible.
Then, ∫

R0|n
dθ v(θ) = (detA)−1

∫
R0|n
dω v(A · ω).

5. (Iteration of integrals)∫
R0|n
dθ v(θ) =

∫
R0|n−k

dθn · · · dθk+1

(∫
R0|k
dθk · · · dθ1 v(θ1, · · · , θk, θk+1, · · · , θn)

)
.

6. (Odd change of variables) Let θ = θ(ω) be an odd change of variables such

that θ(0) = 0 and det
∂θ(ω)

∂ω

∣∣∣∣
ω=0

6= 0. Then, for any v ∈ Pn(C),∫
R0|n
dθ v(θ) =

∫
R0|n
dω v(θ(ω)) det−1

∂θ(ω)

∂ω
.

7. For v ∈ Pn(C) and ω ∈ R0|n,∫
R0|n
dθ (θ1 − ω1) · · · (θn − ωn)v(θ) = v(ω).

A.3.3. Integration (mixed case). Finally, we define

Definition A.15. Let U = Uev × Rnod ⊂ R
m|n be a superdomain and let u ∈

CSS(U : C), that is, u(x, θ) =
∑
ua(x)θ

a with ua(x) ∈ CSS(Uev : C). Then, we
define ∫

Rm|n
dxdθ u(x, θ) =

∫
Rm|0

dx

{∫
R0|n
dθ u(x, θ)

}

=

∫
Rm
dXB(∂θn · · ·∂θ1u)(XB) (πB(R

m|0) = Rm)

=

∫
R0|n
dθ

{∫
Rm|0

dxu(x, θ)

}
=

∫
Rm|n

dθdxu(x, θ).

A.3.4. Change of variables under integral sign.

Theorem A.16. Let

x = x(y, ω), θ = θ(y, ω)

be a supersmooth diffeomorphism from R
m|n
Y to R

m|n
X . Putting

M =

[
A C
D B

]
, A =

∂x

∂y
, B =

∂θ

∂ω
, C =

∂x

∂ω
, D =

∂θ

∂y
,

we assume that either detA|ω=0 and det(B − DA−1C)|ω=0, or detB|ω=0 and

det(A−CB−1D)|ω=0, are non-zero for all y. Then, for any function f ∈ CSS(R
m|n
X :

C) with compact support, we have the change of variables formula∫
R
m|n
X

dxdθ f(x, θ) =

∫
R
m|n
Y

dydω f(x(y, ω), θ(y, ω))(sdetM)(y, ω).
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Remark. In case when we consider the integral on a superdomain with boundary
and functions with support intersecting with that boundary, there occurs some

difficulty which is exemplified as follows: Let I = (̃0, 1) × R2od ⊂ R
1|2, where

(̃0, 1) = {x ∈ Rev |πB(x) ∈ (0, 1)} ⊂ Rev. We have∫
I

dydω2dω1 y = 0.

On the other hand, using the change of coordinates for 0 6= α ∈ Rev and for j = 1, 2

y = x+ αθ1θ2, ω1 = θ1, ω2 = θ2,

which maps I to I and yields sdet(∂(y,ω)
∂(x,θ) ) = 1, we have∫

I

dxdθ2dθ1 (x+ αθ1θ2) =

∫
(̃0,1)

dxα = α.

The resolution of this difficulty is due to Rothstein [42], but we don’t mention
it here (see also Zirnbauer [48], Martellini and Teofilatto [32], Inoue and Nomura
[23]).

A.4. A few elements from real analysis.

A.4.1. Scalar products and norms. Following [10], we introduce

/CSS,ev(R
m|n) = {u(X) =

∑
|a|=even≤n

ua(x)θ
a
∣∣ ua(q) ∈ C∞(Rm : C) for any a},

/DSS,ev(R
m|n) = {u(X) =

∑
|a|=even≤n

ua(x)θ
a
∣∣ua(q) ∈ D(Rm : C) for any a},

/SSS,ev(R
m|n) = {u(X) =

∑
|a|=even≤n

ua(x)θ
a
∣∣ua(q) ∈ S(Rm : C) for any a}, etc.

Let another set of odd variables {θ̄j}nj=1 satisfy θjθk + θkθj = θj θ̄k + θ̄kθj = θ̄j θ̄k +

θ̄kθ̄j = 0. We define the conjugation u(x, θ) =
∑
a ua(x) θ

a where θa = θ̄ann · · · θ̄
a1
1

and ua(x) being the complex conjugate of ua(x). Then, we define

(u, v) =

∫
Rm|2n

dxdθ dθ̄ e〈θ̄|θ〉u(x, θ)v(x, θ) =
∑
|a|≤n

∫
Rm|0

dxua(x)va(x),

((u, v))k =
∑
|a|≤k

(∂aXu, ∂
a
Xv) =

∑
|α|+|a|≤k

(∂αx ua, ∂
α
x va),

(((u, v)))k =
∑
|a|+l≤k

((1 + |XB|
2)l/2∂aXu, (1 + |XB|

2)l/2∂aXv)

with
‖u‖2 = (u, u), ‖u‖2k = ((u, u))k, |||u|||2k = (((u, u)))k.

The space /L2SS,ev(R
m|n) is the completion of /DSS,ev(R

m|n) in the norm ‖ · ‖.

Generally, we may identify vectors L2(Rm : Cr) with supersmooth functions

/L2SS,ev(R
m|n) with suitably related r and n. Without specifying this relation, we

consider only the case

L2(R3 : C2)
]
→←
[
/L2SS,ev(R

3|2).

(See, more precisely, [10, 13].)
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A.4.2. Fourier transformations. For ~ ∈ R× and k̄ ∈ C×, v(x), w(ξ) ∈ /SSS,ev(R
m|n)

and v(θ), w(π) ∈ Pn(C), we put

(Fev)(ξ) = (2πi~)
−m/2

∫
Rm|0

dx e−i~
−1〈x|ξ〉v(x),

(F̄ew)(x) = (2πi~)
−m/2

∫
Rm|0

dξ ei~
−1〈x|ξ〉w(ξ),

(Fov)(π) = k̄
n/2ιn

∫
R0|n

dθ e−ik̄
−1〈θ|π〉v(θ),

(F̄ow)(θ) = k̄
n/2ιn

∫
R0|n

dπ eik̄
−1〈θ|π〉w(π)

where

〈x|ξ〉 =
m∑
j=1

xjξj , 〈θ|π〉 =
n∑
k=1

θkπk, ιn = e
−πin(n−2)/4.

We put

(Fu)(ξ, π) = cm,n

∫
Rm|n

dX e−i~
−1〈X|Ξ〉u(X) =

∑
a

[(Feua)(ξ)][(Foθ
a)(π)],

(F̄v)(x, θ) = cm,n

∫
Rm|n

dΞ ei~
−1〈X|Ξ〉v(Ξ) =

∑
a

[(F̄eva)(x)][(F̄oπ
a)(θ)]

where

〈X |Ξ〉 = 〈x|ξ〉+ ~k̄−1〈θ|π〉 ∈ Rev, cm,n = (2πi~)
−m/2k̄n/2ιn.

Using these Fourier transformations, we may prove the Plancherel formula and
define pseudo-differential operators, Fourier integral operators analogously as the
standard cases. In §4 before, we take k̄ = ~.
We introduce useful constants e(a, b) and e(a) as follows:

θaθb = (−1)e(a,b)θa+b,

∫
R0|n

dθ e−ik̄
−1〈θ|π〉θa = (−ik̄−1)n−|a|(−1)e(a)π1̃−a,

with e(a) ≡ n|a|− |a|−1+[(n−1−|a|)/2]+e(1̄−a, a) mod 2 and 1̄ = (1, · · · , 1) ∈
{0, 1}n.
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