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Existence of many positive nonradial solutions for
a superlinear Dirichlet problem on thin annuli *

Alfonso Castro & Marcel B. Finan

Abstract

We study the existence of many positive nonradial solutions of a su-
perlinear Dirichlet problem in an annulus in RY. Our strategy consists
of finding the minimizer of the energy functional restricted to the Nehrai
manifold of a subspace of functions with symmetries. The minimizer is
a global critical point and therefore is a desired solution. Then we show
that the minimal energy solutions in different symmetric classes have mu-
tually different energies. The same approach has been used to prove the
existence of many sign-changing nonradial solutions (see [5]).

1 Introduction

In this article we study the existence of many positive nonradial solutions of the
equation
Au+ f(u)=0 in Q.
u>0 1in £ (1)
u=0 on 09,

where
Qo={reR:1-e<|z| <1}

The non-linearity f is of class C*(R) and satisfies the following conditions:

(C1) f(0) =0 and f'(0) < A1, where A; is the smallest eigenvalue of —A with
zero Dirichlet boundary condition in €2..

(C2) f'(u) > %") for all w # 0.

(C3) (Superlinearity) limy|— oo T _

u
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22 Existence of many positive nonradial solutions

(C4) (Subcritical growth) There exist constants C' > 0 and p € (1,5) such
that
If'(w)] < C(ulP~ +1), YuecR.

(C5) There exist constants m € (0,1) and p such that for |u| > p,

uf(u) 2 —F(u) >0,

where F(u) = [ f(s)ds.

This paper is motivated by the work of Coffman [6], Li [7] and Lin [8]. In 1984,
Coffman showed that for f(t) = —t + tP, where p = 2N + 1, N = 2, the above
problem has many positive nonradial solutions. His result was extended by Li
[7] to the N-dimensional case with N >4 or N = 2 and for p € (1, ££2), when
the nonlinear term is At 4+ ¢t for A < 0. Our main result (see Theorem 1.1
below) concerns the case N = 3. We will show that for N = 3 our problem
has many distinct nonradial solutions. We follow the strategy used in [6, 7] and
[8]. That is, we look for the minimizer of the energy functional restricted to the
Nehari manifold of a subspace of functions with symmetries. The minimizer is
a global critical point and therefore is a solution to (1). Then we show that the
minimal energy solutions in different symmetric classes has mutually different
energies.

We would like to point out here that during the preparation of this article
we were unaware of the papers by Byeon [1] and Catrina and Wang [2], where
the above problem has been solved. However, our approach is different from
theirs.

Our main result is the following

Theorem 1.1 Let conditions (C1) - (C5) be satisfied. Then, for each positive
integer k there exists €1 (k) > 0 such that if 0 < € < €1(k) then (1) has k distinct
positive nonradial solutions.

We note that our argument works for N > 2 and not only for the three
dimensional case.

The approach used in proving Theorem 1.1 is similar to the one used in [7],
i.e., we consider the functionals

J(u):/Q {%|Vu|2—F(u)}da:

and

1w = [ (VuP - uf(w) ds

€

on H}(Qe), and for k > 1, we consider the space of invariant functions

H(e, k) = FiX(Gk X {id]R, —idR})
= {ve Hj(Q) v(g(z1,22), Txs) = v(z1, 22, T3),
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V¥ (9,T) € Gy x {idg, —idr}}
= {ve Hj(Q): v(z1,22,73) = u(z1, 22, |23]) for some u

satisfying u(g(z1,22), |w3]) = u(w1, x2, |z3]) Vg € Gi }

where G, = {¢g* : 0 < i < k —1} and gz = e2mi/ky 2 € C ~ R2. Also, we
consider the Nehari manifold

S(e, k) ={v e H(e, k)\{0} : v(v) = 0}.
Similarly, we define the space of functions

H(e, OO) = 0(2) X {idR, —idR}
= {ve Hy(Qo) : v(g(ar,x2), Ta3) = v(z1, 22, 23),
V(g,T) € O(2) x {idr, —idr}}

= {ve Hy(Q) :v(z1, 22, 23) = u(y/2? + 23, |z3]), for some u},
and the manifold
S(€,00) = {v € H(e,00)\{0} : 7(v) = 0},

where O(2) denotes the space of 2 x 2 orthogonal matrices. Note that if u €
H (e, 00) then u is #—independent.
Associated with the above sets, we consider the numbers

jp = inf J d jio= inf J(v).
= R ) and = BT )

We prove Theorem 1.1 by establishing the following lemmas:

Lemma 1.2 For k=1,2,...,00, ji is achieved by some uc € S(e, k) and uc
is a critical point of J on H (e, k).

Lemma 1.3 Let u. be as in Lemma 1.2. Then ucy is a critical point of J on
H ().

Lemma 1.4 Given a positive integer k, there exists €1(k) such that for 0 < e <
€1(k) we have

Jk < U
Lemma 1.5 Forn =2,3,4,..., k =1,2,3,..., j;,, < J5 tmplies j; < ji,..

This article is organized as follows: In Section 2, we prove Lemmas 1.2-1.5.
In Section 3, we prove Theorem 1.1.
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2 Proof of Lemmas 1.2-1.5

Proof of Lemma 1.2: The proof follows from [3] combined with the facts that
the embeddings H(e, k) C LP(Q.) and H (e, 00) C L>(£),) are compact (See [9])
¢

Lemma 1.3 is a result of the symmetric criticality principle: if u. j, is a critical
point of J on H (e, k), then uc . is a critical point of J on Hj(Qe) (See [9]).
To prove Lemma 1.4 we need the following results.

Lemma 2.1 (Poincaré’s inequality) Let Q C RY be a smooth bounded do-
main with diameter d. Then for u € Hg(Q) we have

d2
/u2dm§ —/ |Vu|?dz .
Q N Jao

Lemma 2.2 ([3]) 0 is a local minimum of J. If u € H(e, k) — {0}, then there
exists a unique o = a(u) € (0,00) such that au € S(e, k). Moreover, J(au) =
maxysg J(Au) > 0.

Lemma 2.3 ([4]) For |v| > p and s > 2 we have
suf(sv) > Cs*™vf(v)
for some constant C > 0.

Proof of Lemma 1.4: Let k > 1 be an integer and € > 0 to be chosen below.
According to Lemma 1.2, there exist u , € S(€, k) and ue oo € S(€, 00) such that
Jr. = J(uer) and j§, = J(Ue,00). By Lemma 1.3, uc 1, and ue o are solutions to
Problem 1. Let QF be the set of points z = (%1, 22,73) = (r,0,73) € Q such
that 6 € [0, 27 /k].

Let j be a positive integer to be chosen independent of k£ and e. Define

| Ueoo(r,|z3]) sin (jkO) for 6 € [0, 7/ (jk)]
w(r,0,23) = { 0 for 0 € [r/(jk), 2 /K],

where 7 = (22 4 23)'/2. Extend w periodically to all of €, in the @ direction.

Let z € H(e, k) be the resulting extension. Since ¢ oo > 0 then z > 0. By the
chain rule we have

1
|Vw(r,0,x3)]> = (uem)% sin? (7k0) + r—2(u€,oo)2(jk)2 cos? (jk0)
—|—|Vmsu€,m|2 sin? (jk0)

if € [0,7/(jk)], otherwise Vw = 0. Thus,

1.
|Vw(r, 0, $3)|2 < (ue,w)i + r_g(]k)2(ue,cx>)2 + [ Vag e 00 ?
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By Lemma 2.1 we have

di Qij 2
/w u2 o, diy o de < w / |Vt oo day 3 dy.

Thus,

/ |Vz|2 dxy 2o dxs
QE

= k/ |Vw|2da:1 To dxs
o2k

16(jk)?
< kYR oy 1Vl den 2 das

20k 27

< ok / - ((Uer)? + [ Vit ?) dary 2 divy @)
Q7

= 2k |Vu€,oo|2 dx1 o dxs
Q2ik

provided that ¢ < 3+/3/(4jk). By Lemma 2.2 we can find a > 0 such that
Y(az) = 0. Let D = {(r,0,23) : te,00(, |z3]) > p,0 € [T7, 751} Suppose that
a > /2. Then for (r,0,23) € D we have asin (jk) > 2. This, the fact that
tf(t) is bounded from below, say by F, and Lemma 2.3 imply

/ azf(az)dry o dxs

€

= k asin (§kO)ue oo f (e sin (§EO)ue o0 ) dzq T2 das
Q2

k <E|ijk| + Ca?/™ / Ue, 00 f (Ue,00) dT1 T2 dm3> (3)
D

k <E|ijk| +C’a2/m(/

Y

7 /(27k)
Ue, 00 f (Ue,00 )7 dT d.113)(/ d@))

€,00>p m/(45k)

= kE|Q¥F| + k%a2/m(/

Ue, 00 > P

w/(jk)
Ue,c0f (Ue, 00 )7 dr d:cg)(/ de),
0

where || denotes the volume of €.

Now, let € < 1/4. Then K = inf,cg(1/a,k) J(u) < infuegier) J(u). Let ue oo
also denote the zero extension of uc o to all of /4. Then uc o € S(1/4,k).
Thus, J(te,00) > K and consequently

/|vue,oo|2dx1x2da;3 > 2K +2M|Q| (4)
Qe

where M = inf {F(t) : t € R}.
If we choose € so that |Q.| < K/(—2M) then (4) implies

/Q |Vue7oo|2dac1 dzodzs > K (5)
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and this leads to

/ Ue, 00 f (Ue, 00 )7 dr dz3
Ue 00 >p

= / Ue, 00 f (Ue,00)7 dr dxg — / Ue, 00 f (Ue,00 )7 dr dx3
u >0

Ue,00 <P

€,00

fu <p ue,oof(ue7oo)r d7‘ de;3

€,00 >

f’ue 00 >0 ue,oof(ue,oo)’r dr d:II3

= [1— }/ Ue 00 f (Ue,00 )7 dr dxs
u >0

€,00 Z

21 fu <p Ue 00 f (Ue,00 )7 dr dz3
fﬂe |Ve oo|? dz1 T2 das

= [1— }/ Ue 00 f (Ue,00 )7 dr dxs
u >0

€,00 Z

> (1- Ce)/ Ue 00 f (Ue,00)7 dr dxs
u >0

€,00 Z

where the constant C' is independent of (e, j, k). By choosing € in such a way
that 1 — Ce > 1/2 we conclude

1
/ Ue,c0 f (Ue,00)T dr dzg > —/ Ue, 00 f (Ue,00)T dr dz3.
Ue,00 > P 2 Qe
This reduces (3) to
/ azf(az)dry dzy dzy > kE|QPF| + kCa?/™ / . |Vte 00| d21 dzo d3. (6)
Qe Qe

On the other hand, using (2) we have

/ azf(az)dry xodrs = a? / |Vz|2 dxy 2o dxs
Qe Qe
< 2ka? / |Vu€,oo|2 dxy 2o dxs. (7
Q2i*
Combining (6) and (7) to obtain
C
(C’aQ/m — 2a2) |Vu, oo|2 dxy 1o dxs < —6
Q2ik ’ jk
Hence,
Ce/(jk)
C 2/m 2 2
@ @ - fQ2jk |Vue7oo|2 dxr1 2o dxs
Ce <M,

<
- fQ |Ve ool? dzy zo dzs —

where we have used (5). But the function g(a) = Ca?/™ —2a? satisfies g(0) = 0
and limy_00 g(@) = 4+00. Thus, if g(a) < M; then there is a constant K’ such
that a < K'. By letting

a <max{v2,K'} = K" (8)
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we conclude that « is bounded. Let w = az € S(e, k). Since F'(t) is bounded
from below, say by M, then (8) and (2) imply

2
/ <M - F(w)> dxq zo dzs
Q. 2

2 2
— / o’|Vz| dzi o dxs — / F(w) dxy x2 dzs
Q 2 Q.

J(w)

< 2(K")2k/ﬂzjk Ve ) g diey — kar02%

< 2([(;’)2/0 |ue’2°°|2 dmlacgdmg—l-%

R ey

< %/Q Mdm To dr3 9)

where we have used (4) with e chosen in such a way that Ce < K and |Q] <
K/(—2M). We claim that there exists a constant C' such that

2
/ w dzq zo dzg < CJ(Ue,oo)'
Qe

Indeed, since Y(ue,00) = 0 and by (C5) we have

/ Ue 00 f (Ue,00) AT T2 d3
QE

= / |Vu€,oo|2 dxy 2o dxs

€

= / (Ve 0o |* — 2F (te 00)) dx1 T2 ds + 2/ F(ue 00) dy 3 das
Qe Qe

< 2(J(ueo0) + %/

Ue,c0f (Ue,00) dT1 T2 dxg + C|Q]).
Qe

It follows that
(1—m) / Ue,c0f (Ue,00) dT1 T2 dxg < 2(J (Ue,00) + C|Qe|). (10)
Qe
On the other hand, using (4) and (C5) we have

1
I (Ue,00) = /Q(§|Vue7oo|2—F(uem))daclmgdacg

1—-m

(T)/Q ue,oof(ue,oo) dml T2 d113 — CI|QG|

(5K -l

v
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By choosing € in such a way that C'|Q| < 2(1 — m)K, we see that J(ue,o0) >
(15™)K. Now, we choose € such that C|Q| < (15™)K. Using this in (10) we
obtain

/ Ue 00 f (Ue,00) dT1 T2 dxg < CJ (Ue 00)-

€

Also, using this in (9) we obtain
C
J(w) < 7J(ue7oo).

Choosing j such that j > 2C we obtain J(w) < J(u,,c) and this concludes the
present proof. &

To prove Lemma 1.5 we need

Lemma 2.4 Let v € H}(Q). Then the function

Py = 2L i)

is increasing on (0,00).

Proof. Differentiating P — v with respect to A we find
v? A
R0 =5 (£o0 - ) >0,

AV

where we have used (C2). This completes the proof O

Proof of Lemma 1.5: Fix k and n. Let 0 < € < €1(kn). Lemma 1.2 guarantees
the existence of a minimizer ., of J on S(¢, kn). From Lemma 1.3 we see
that we g, is a solution to (1). Furthermore, from Lemma 1.4 we know that
Ue,kn is nonradial. Now, by the regularity theory of elliptic equations we know
that ue gy, is a C? function. Let z = (r,0) be the polar coordinates of z € R?
and write u = ¢ kn (1, 0, |z3]). Then

2
1
/|Vu|2dm1ac2dm3=/ / (uf + —ug + |Vayul*)r dr df dzs
Q. (r,|za]) Jo "

and

2m
/ F(u)dzy zo dxs = / / F(u)rdrdfdzs .
Q. (r|zs]) Jo

Define the function
0
v(r,&, |.’173|) :u(r7_7|x3|)7 0<6<2m.
n
Then

2
’11(7‘,9 + ?7 |1‘3|) = u(r, -+ _nv |l‘3|)

I
£
3

3|
El
R

Il
<
—_

3
<>
B
w
N
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It follows that v € H(e, k). On the other hand, it is easy to check that the
following equalities hold

0
’UT(T,Q, |11I3|) = ’LLT(T, ﬁ? |11I3|) 3
1 0
0 =— —
UG(T7 ,|IE3|) nue(r7n7|x3|)a

0
vl’3v(r7 97 |$3|) szu( ’I”L’ |.’133|)

Therefore,
9 27r/k 1 , 0
o, Vol dzr zodxs = k o) |$3|) 2n2u9(7‘,ﬁ,|m3|)
+H Vs u(r, a|$3|)| )rdr df dzs
“ .
= kn [ (up(r,0,|z3]) + 5 up(r, 0, |2s])
0 r?n
+|Vagu(r, 0, |zs)))? )Tdrd@dxg,
27
— / / (r,0,|zs|) + oy 4 (r 0,23
T7|$3‘
+|V13U(T797 |J}3|)| )T d"'d@dl‘g
Also

2n/k
/ F(v)dxy zodrs = k/ / F(u(r, Q, |z3|))r dr df dzs
Q (r,)zal) Jo n

2m
/ / F(u(r, 6, |xs|))r drdf dzs .
(T,‘iﬂg‘) 0

Since u does not belong to S(e, 00) we have

2
/ / UZ(Tag, |z3|)r dr d0dxs > 0.
(r|z3]) JO

It follows that

+(v) /Q (IVol? — v (v)) dir 2 dacs

27
1
/(I )/ (uZ(r,0, |x3|)+ﬂu2(r,9, |z3])
T, T3

+Vasu(r, 0, |z3|) > — uf(u ))rdrdedmg

27
< /I / 2(r, 0, |zs]) + —ug(r, 0, |zs))

+|V$3u(r,9, |lz3)|? — uf(u ))rdrd@d:c3
/ (|Vul|* = uf(u)) dzy x2 dzs = 0.

€
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This yields
/ |Vo|? dzy 2 drs < / vf(v)dzy za des . (11)
Qe Qe
Now, by Lemma 2.2 we can find 0 < a < 1 such that av € S(e, k). Let
w = ow € S(¢,k). Using Lemma 2.4 and the definition of j§ we have
i < J(w) = J(aw) = Py(a)
< P,(1)

= / (%vf(v) — F(v))dz xo dxs
Qe

= / (%uf(u) — F(u))dzy o dzs
Qe

= J(u) = jin-

Putting together all the arguments above we conclude a proof of the lemma <

3 Proof of Main Theorem

For any integer k > 1, according to Lemma 1.4 there exists €;(2) such that if
0 < € < €1(2%) then
Jar < Joo-
It follows from Lemma 1.5 that
Js < Jgo < .o < Jor < Joo- (12)
According to Lemma 1.2, there exists u.; € S(€,4),7 =1, ..., k, such that

]51 = J(Ue,i).

Moreover, by Lemma 1.3 u.; is a solution of Problem 1, ¢ = 1,...,k. By
(12), {uc;}*_,, are nonrotationally equivalent and nonradial. This completes
the proof of the theorem. O
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