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Existence of many positive nonradial solutions for

a superlinear Dirichlet problem on thin annuli ∗

Alfonso Castro & Marcel B. Finan

Abstract

We study the existence of many positive nonradial solutions of a su-
perlinear Dirichlet problem in an annulus in RN . Our strategy consists
of finding the minimizer of the energy functional restricted to the Nehrai
manifold of a subspace of functions with symmetries. The minimizer is
a global critical point and therefore is a desired solution. Then we show
that the minimal energy solutions in different symmetric classes have mu-
tually different energies. The same approach has been used to prove the
existence of many sign-changing nonradial solutions (see [5]).

1 Introduction

In this article we study the existence of many positive nonradial solutions of the
equation

∆u+ f(u) = 0 in Ωε

u > 0 in Ωε (1)

u = 0 on ∂Ωε ,

where

Ωε = {x ∈ R
3 : 1− ε < |x| < 1}.

The non-linearity f is of class C1(R) and satisfies the following conditions:

(C1) f(0) = 0 and f ′(0) < λ1, where λ1 is the smallest eigenvalue of −∆ with
zero Dirichlet boundary condition in Ωε.

(C2) f ′(u) > f(u)
u for all u 6= 0.

(C3) (Superlinearity) lim|u|→∞
f(u)
u =∞.
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22 Existence of many positive nonradial solutions

(C4) (Subcritical growth) There exist constants C > 0 and p ∈ (1, 5) such
that

|f ′(u)| ≤ C(|u|p−1 + 1), ∀u ∈ R.

(C5) There exist constants m ∈ (0, 1) and ρ such that for |u| > ρ,

uf(u) ≥
2

m
F (u) > 0,

where F (u) =
∫ u
0 f(s) ds.

This paper is motivated by the work of Coffman [6], Li [7] and Lin [8]. In 1984,
Coffman showed that for f(t) = −t+ tp, where p = 2N + 1, N = 2, the above
problem has many positive nonradial solutions. His result was extended by Li
[7] to the N-dimensional case with N ≥ 4 or N = 2 and for p ∈ (1, N+2N−2 ), when
the nonlinear term is λt + tp for λ ≤ 0. Our main result (see Theorem 1.1
below) concerns the case N = 3. We will show that for N = 3 our problem
has many distinct nonradial solutions. We follow the strategy used in [6, 7] and
[8]. That is, we look for the minimizer of the energy functional restricted to the
Nehari manifold of a subspace of functions with symmetries. The minimizer is
a global critical point and therefore is a solution to (1). Then we show that the
minimal energy solutions in different symmetric classes has mutually different
energies.
We would like to point out here that during the preparation of this article

we were unaware of the papers by Byeon [1] and Catrina and Wang [2], where
the above problem has been solved. However, our approach is different from
theirs.
Our main result is the following

Theorem 1.1 Let conditions (C1) - (C5) be satisfied. Then, for each positive
integer k there exists ε1(k) > 0 such that if 0 < ε < ε1(k) then (1) has k distinct
positive nonradial solutions.

We note that our argument works for N ≥ 2 and not only for the three
dimensional case.
The approach used in proving Theorem 1.1 is similar to the one used in [7],

i.e., we consider the functionals

J(u) =

∫
Ωε

{1
2
|∇u|2 − F (u)

}
dx

and

γ(u) =

∫
Ωε

(
|∇u|2 − uf(u)

)
dx

on H10 (Ωε), and for k ≥ 1, we consider the space of invariant functions

H(ε, k) := Fix(Gk × {idR,−idR})

=
{
v ∈ H10 (Ωε) : v(g(x1, x2), Tx3) = v(x1, x2, x3),
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∀ (g, T ) ∈ Gk × {idR,−idR}
}

=
{
v ∈ H10 (Ωε) : v(x1, x2, x3) = u(x1, x2, |x3|) for some u

satisfying u(g(x1, x2), |x3|) = u(x1, x2, |x3|) ∀g ∈ Gk
}

where Gk = {gi : 0 ≤ i ≤ k − 1} and gz = e2πi/kz, z ∈ C ' R2. Also, we
consider the Nehari manifold

S(ε, k) = {v ∈ H(ε, k)\{0} : γ(v) = 0}.

Similarly, we define the space of functions

H(ε,∞) := O(2)× {idR,−idR}

=
{
v ∈ H10 (Ωε) : v(g(x1, x2), Tx3) = v(x1, x2, x3),

∀(g, T ) ∈ O(2)× {idR,−idR}
}

=
{
v ∈ H10 (Ωε) : v(x1, x2, x3) = u(

√
x21 + x

2
2, |x3|), for some u

}
,

and the manifold

S(ε,∞) = {v ∈ H(ε,∞)\{0} : γ(v) = 0},

where O(2) denotes the space of 2 × 2 orthogonal matrices. Note that if u ∈
H(ε,∞) then u is θ−independent.
Associated with the above sets, we consider the numbers

jεk = inf
v∈S(ε,k)

J(v) and jε∞ = inf
v∈S(ε,∞)

J(v).

We prove Theorem 1.1 by establishing the following lemmas:

Lemma 1.2 For k = 1, 2, ...,∞, jεk is achieved by some uε,k ∈ S(ε, k) and uε,k
is a critical point of J on H(ε, k).

Lemma 1.3 Let uε,k be as in Lemma 1.2. Then uε,k is a critical point of J on
H10 (Ωε).

Lemma 1.4 Given a positive integer k, there exists ε1(k) such that for 0 < ε <
ε1(k) we have

jεk < j
ε
∞.

Lemma 1.5 For n = 2, 3, 4, ..., k = 1, 2, 3, ..., jεkn < j
ε
∞ implies j

ε
k < j

ε
kn.

This article is organized as follows: In Section 2, we prove Lemmas 1.2–1.5.
In Section 3, we prove Theorem 1.1.
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2 Proof of Lemmas 1.2–1.5

Proof of Lemma 1.2: The proof follows from [3] combined with the facts that
the embeddings H(ε, k) ⊂ Lp(Ωε) and H(ε,∞) ⊂ L∞(Ωε) are compact (See [9])
♦

Lemma 1.3 is a result of the symmetric criticality principle: if uε,k is a critical
point of J on H(ε, k), then uε,k is a critical point of J on H

1
0 (Ωε) (See [9]).

To prove Lemma 1.4 we need the following results.

Lemma 2.1 (Poincaré’s inequality) Let Ω ⊂ RN be a smooth bounded do-
main with diameter d. Then for u ∈ H10 (Ω) we have∫

Ω

u2dx ≤
d2

N

∫
Ω

|∇u|2dx .

Lemma 2.2 ([3]) 0 is a local minimum of J . If u ∈ H(ε, k)− {0}, then there
exists a unique α = α(u) ∈ (0,∞) such that αu ∈ S(ε, k). Moreover, J(αu) =
maxλ>0 J(λu) > 0.

Lemma 2.3 ([4]) For |v| > ρ and s > 2 we have

svf(sv) ≥ Cs2/mvf(v)

for some constant C > 0.

Proof of Lemma 1.4: Let k ≥ 1 be an integer and ε > 0 to be chosen below.
According to Lemma 1.2, there exist uε,k ∈ S(ε, k) and uε,∞ ∈ S(ε,∞) such that
jεk = J(uε,k) and j

ε
∞ = J(uε,∞). By Lemma 1.3, uε,k and uε,∞ are solutions to

Problem 1. Let Ωkε be the set of points x = (x1, x2, x3) ≡ (r, θ, x3) ∈ Ωε such
that θ ∈ [0, 2π/k].
Let j be a positive integer to be chosen independent of k and ε. Define

ω(r, θ, x3) =

{
uε,∞(r, |x3|) sin (jkθ) for θ ∈ [0, π/(jk)]

0 for θ ∈ [π/(jk), 2π/k] ,

where r = (x21 + x
2
2)
1/2. Extend ω periodically to all of Ωε in the θ direction.

Let z ∈ H(ε, k) be the resulting extension. Since uε,∞ > 0 then z > 0. By the
chain rule we have

|∇ω(r, θ, x3)|
2 = (uε,∞)

2
r sin

2 (jkθ) +
1

r2
(uε,∞)

2(jk)2 cos2 (jkθ)

+|∇x3uε,∞|
2 sin2 (jkθ)

if θ ∈ [0, π/(jk)], otherwise ∇ω = 0. Thus,

|∇ω(r, θ, x3)|
2 ≤ (uε,∞)

2
r +

1

r2
(jk)2(uε,∞)

2 + |∇x3uε,∞|
2.
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By Lemma 2.1 we have∫
Ω2jkε

u2ε,∞ dx1 x2 dx3 ≤
(diam(Ω2jkε ))

2

3

∫
Ω2jkε

|∇uε,∞|
2 dx1 x2 dx3.

Thus, ∫
Ωε

|∇z|2 dx1 x2 dx3

= k

∫
Ω2jkε

|∇ω|2 dx1 x2 dx3

≤ k

∫
Ω2jkε

[(1 +
16(jk)2

27
ε2)(uε,∞)

2
r + |∇x3uε,∞|

2] dx1 x2 dx3

≤ 2k

∫
Ω2jkε

((uε,∞)
2
r + |∇x3uε,∞|

2) dx1 x2 dx3 (2)

= 2k

∫
Ω2jkε

|∇uε,∞|
2 dx1 x2 dx3

provided that ε < 3
√
3/(4jk). By Lemma 2.2 we can find α > 0 such that

γ(αz) = 0. Let D = {(r, θ, x3) : uε,∞(r, |x3|) > ρ, θ ∈ [
π
4jk ,

π
2jk ]}. Suppose that

α >
√
2. Then for (r, θ, x3) ∈ D we have α sin (jkθ) > 2. This, the fact that

tf(t) is bounded from below, say by E, and Lemma 2.3 imply∫
Ωε

αzf(αz) dx1 x2 dx3

= k

∫
Ω2jkε

α sin (jkθ)uε,∞f(α sin (jkθ)uε,∞) dx1 x2 dx3

≥ k

(
E|Ω2jkε |+ Cα

2/m

∫
D

uε,∞f(uε,∞) dx1 x2 dx3

)
(3)

= k

(
E|Ω2jkε |+ Cα

2/m(

∫
uε,∞>ρ

uε,∞f(uε,∞)r dr dx3)(

∫ π/(2jk)
π/(4jk)

dθ)

)

= kE|Ω2jkε |+ k
C

4
α2/m(

∫
uε,∞>ρ

uε,∞f(uε,∞)r dr dx3)(

∫ π/(jk)
0

dθ) ,

where |Ωε| denotes the volume of Ωε.
Now, let ε < 1/4. Then K = infu∈S(1/4,k) J(u) ≤ infu∈S(ε,k) J(u). Let uε,∞

also denote the zero extension of uε,∞ to all of Ω1/4. Then uε,∞ ∈ S(1/4, k).
Thus, J(uε,∞) ≥ K and consequently∫

Ωε

|∇uε,∞|
2 dx1 x2 dx3 ≥ 2K + 2M |Ωε| (4)

where M = inf {F (t) : t ∈ R}.
If we choose ε so that |Ωε| < K/(−2M) then (4) implies∫

Ωε

|∇uε,∞|
2dx1 dx2 dx3 ≥ K (5)
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and this leads to∫
uε,∞>ρ

uε,∞f(uε,∞)r dr dx3

=

∫
uε,∞≥0

uε,∞f(uε,∞)r dr dx3 −

∫
uε,∞≤ρ

uε,∞f(uε,∞)r dr dx3

=
[
1−

∫
uε,∞≤ρ

uε,∞f(uε,∞)r dr dx3∫
uε,∞≥0

uε,∞f(uε,∞)r dr dx3

] ∫
uε,∞≥0

uε,∞f(uε,∞)r dr dx3

=
[
1−
2π
∫
uε,∞≤ρ

uε,∞f(uε,∞)r dr dx3∫
Ωε
|∇uε,∞|2 dx1 x2 dx3

] ∫
uε,∞≥0

uε,∞f(uε,∞)r dr dx3

≥ (1− Cε)

∫
uε,∞≥0

uε,∞f(uε,∞)r dr dx3

where the constant C is independent of (ε, j, k). By choosing ε in such a way
that 1− Cε > 1/2 we conclude∫

uε,∞>ρ

uε,∞f(uε,∞)r dr dx3 >
1

2

∫
Ωε

uε,∞f(uε,∞)r dr dx3.

This reduces (3) to∫
Ωε

αzf(αz) dx1 dx2 dx3 ≥ kE|Ω
2jk
ε |+ kCα

2/m

∫
Ω2jkε

|∇uε,∞|
2 dx1 dx2 dx3. (6)

On the other hand, using (2) we have∫
Ωε

αzf(αz) dx1 x2 dx3 = α2
∫
Ωε

|∇z|2 dx1 x2 dx3

≤ 2kα2
∫
Ω2jkε

|∇uε,∞|
2 dx1 x2 dx3. (7)

Combining (6) and (7) to obtain

(Cα2/m − 2α2)

∫
Ω2jkε

|∇uε,∞|
2 dx1 x2 dx3 ≤

Cε

jk

Hence,

Cα2/m − 2α2 ≤
Cε/(jk)∫

Ω2jkε
|∇uε,∞|2 dx1 x2 dx3

≤
Cε∫

Ωε
|∇uε,∞|2 dx1 x2 dx3

≤M1 ,

where we have used (5). But the function g(α) = Cα2/m−2α2 satisfies g(0) = 0
and limα→∞ g(α) = +∞. Thus, if g(α) ≤ M1 then there is a constant K ′ such
that α ≤ K ′. By letting

α ≤ max
{√
2,K ′

}
≡ K ′′ (8)
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we conclude that α is bounded. Let w = αz ∈ S(ε, k). Since F (t) is bounded
from below, say by M , then (8) and (2) imply

J(w) =

∫
Ωε

(
|∇w|2

2
− F (w)

)
dx1 x2 dx3

=

∫
Ωε

α2|∇z|2

2
dx1 x2 dx3 −

∫
Ωε

F (w) dx1 x2 dx3

≤ 2(K ′′)2k

∫
Ω2jkε

|∇uε,∞|2

2
dx1 x2 dx3 − kM |Ω

2jk
ε |

≤ 2
(K ′′)2

j

∫
Ωε

|uε,∞|2

2
dx1 x2 dx3 +

kCε

jk

≤
(K ′′)2

j

∫
Ωε

|∇uε,∞|2

2
dx1 x2 dx3 +

1

j

∫
Ωε

|∇uε,∞|2

2
dx1 x2 dx3

≤
C

j

∫
Ωε

|∇uε,∞|2

2
dx1 x2 dx3 (9)

where we have used (4) with ε chosen in such a way that Cε < K and |Ωε| <
K/(−2M). We claim that there exists a constant C such that∫

Ωε

|∇uε,∞|2

2
dx1 x2 dx3 ≤ CJ(uε,∞).

Indeed, since γ(uε,∞) = 0 and by (C5) we have∫
Ωε

uε,∞f(uε,∞) dx1 x2 dx3

=

∫
Ωε

|∇uε,∞|
2 dx1 x2 dx3

=

∫
Ωε

(|∇uε,∞|
2 − 2F (uε,∞)) dx1 x2 dx3 + 2

∫
Ωε

F (uε,∞) dx1 x2 dx3

≤ 2(J(uε,∞) +
m

2

∫
Ωε

uε,∞f(uε,∞) dx1 x2 dx3 + C|Ωε|).

It follows that

(1 −m)

∫
Ωε

uε,∞f(uε,∞) dx1 x2 dx3 ≤ 2(J(uε,∞) + C|Ωε|). (10)

On the other hand, using (4) and (C5) we have

J(uε,∞) =

∫
Ωε

(
1

2
|∇uε,∞|

2 − F (uε,∞)) dx1 x2 dx3

≥ (
1−m

2
)

∫
Ωε

uε,∞f(uε,∞) dx1 x2 dx3 − C
′|Ωε|

≥ (
1−m

2
)K − C′|Ωε|.
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By choosing ε in such a way that C′|Ωε| <
1
4 (1 −m)K, we see that J(uε,∞) >

(1−m4 )K. Now, we choose ε such that C|Ωε| < (
1−m
4 )K. Using this in (10) we

obtain ∫
Ωε

uε,∞f(uε,∞) dx1 x2 dx3 ≤ CJ(uε,∞).

Also, using this in (9) we obtain

J(w) ≤
C

j
J(uε,∞).

Choosing j such that j > 2C we obtain J(w) < J(uε,∞) and this concludes the
present proof. ♦

To prove Lemma 1.5 we need

Lemma 2.4 Let v ∈ H10 (Ωε). Then the function

Pv(λ) =
λvf(λv)

2
− F (λv)

is increasing on (0,∞).

Proof. Differentiating P − v with respect to λ we find

P ′v(λ) =
λv2

2

(
f ′(λv)−

f(λv)

λv

)
> 0 ,

where we have used (C2). This completes the proof ♦

Proof of Lemma 1.5: Fix k and n. Let 0 < ε < ε1(kn). Lemma 1.2 guarantees
the existence of a minimizer uε,kn of J on S(ε, kn). From Lemma 1.3 we see
that uε,kn is a solution to (1). Furthermore, from Lemma 1.4 we know that
uε,kn is nonradial. Now, by the regularity theory of elliptic equations we know
that uε,kn is a C

2 function. Let x = (r, θ) be the polar coordinates of x ∈ R2

and write u = uε,kn(r, θ, |x3|). Then∫
Ωε

|∇u|2 dx1 x2 dx3 =

∫
(r,|x3|)

∫ 2π
0

(u2r +
1

r2
u2θ + |∇x3u|

2)r dr dθ dx3

and ∫
Ωε

F (u) dx1 x2 dx3 =

∫
(r,|x3|)

∫ 2π
0

F (u)r dr dθ dx3 .

Define the function

v(r, θ, |x3|) = u(r,
θ

n
, |x3|), 0 ≤ θ ≤ 2π.

Then

v(r, θ +
2π

k
, |x3|) = u(r,

θ

n
+
2π

kn
, |x3|)

= u(r,
θ

n
, |x3|)

= v(r, θ, |x3|).
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It follows that v ∈ H(ε, k). On the other hand, it is easy to check that the
following equalities hold

vr(r, θ, |x3|) = ur(r,
θ

n
, |x3|) ,

vθ(r, θ, |x3|) =
1

n
uθ(r,

θ

n
, |x3|) ,

∇x3v(r, θ, |x3|) = ∇x3u(r,
θ

n
, |x3|).

Therefore,∫
Ωε

|∇v|2 dx1 x2 dx3 = k

∫
(r,|x3|)

∫ 2π/k
0

(u2r(r,
θ

n
, |x3|) +

1

r2n2
u2θ(r,

θ

n
, |x3|)

+|∇x3u(r,
θ

n
, |x3|)|

2)r dr dθ dx3

= kn

∫ 2π
nk

0

(u2r(r, θ, |x3|) +
1

r2n4
u2θ(r, θ, |x3|)

+|∇x3u(r, θ, |x3|)|
2)r dr dθ dx3

=

∫
(r,|x3|)

∫ 2π
0

(u2r(r, θ, |x3|) +
1

r2n4
u2θ(r, θ, |x3|)

+|∇x3u(r, θ, |x3|)|
2)r dr dθ dx3.

Also ∫
Ωε

F (v) dx1 x2 dx3 = k

∫
(r,|x3|)

∫ 2π/k
0

F (u(r,
θ

n
, |x3|))r dr dθ dx3

=

∫
(r,|x3|)

∫ 2π
0

F (u(r, θ, |x3|))r dr dθ dx3 .

Since u does not belong to S(ε,∞) we have∫
(r,|x3|)

∫ 2π
0

u2θ(r, θ, |x3|)r dr dθdx3 > 0 .

It follows that

γ(v) =

∫
Ωε

(|∇v|2 − vf(v)) dx1 x2 dx3

=

∫
(r,|x3|)

∫ 2π
0

(u2r(r, θ, |x3|) +
1

r2n4
u2θ(r, θ, |x3|)

+|∇x3u(r, θ, |x3|)|
2 − uf(u))r dr dθ dx3

<

∫
(r,|x3|)

∫ 2π
0

(u2r(r, θ, |x3|) +
1

r2
u2θ(r, θ, |x3|)

+|∇x3u(r, θ, |x3|)|
2 − uf(u))r dr dθ dx3

=

∫
Ωε

(|∇u|2 − uf(u)) dx1 x2 dx3 = 0.
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This yields ∫
Ωε

|∇v|2 dx1 x2 dx3 <

∫
Ωε

vf(v) dx1 x2 dx3 . (11)

Now, by Lemma 2.2 we can find 0 < α < 1 such that αv ∈ S(ε, k). Let
w = αv ∈ S(ε, k). Using Lemma 2.4 and the definition of jεk we have

jεk ≤ J(w) = J(αv) = Pv(α)

< Pv(1)

=

∫
Ωε

(
1

2
vf(v)− F (v)) dx1 x2 dx3

=

∫
Ωε

(
1

2
uf(u)− F (u)) dx1 x2 dx3

= J(u) = jεkn.

Putting together all the arguments above we conclude a proof of the lemma ♦

3 Proof of Main Theorem

For any integer k ≥ 1, according to Lemma 1.4 there exists ε1(2k) such that if
0 < ε < ε1(2

k) then
jε2k < j

ε
∞.

It follows from Lemma 1.5 that

jε2 < j
ε
22 < ... < j

ε
2k < j

ε
∞. (12)

According to Lemma 1.2, there exists uε,i ∈ S(ε, i), i = 1, ..., k, such that

jε2i = J(uε,i).

Moreover, by Lemma 1.3 uε,i is a solution of Problem 1, i = 1, . . . , k. By
(12), {uε,i}ki=1, are nonrotationally equivalent and nonradial. This completes
the proof of the theorem. ♦
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