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Abstract

The contruction of a Lyapunov function characterizing the pullback
attractor of a cocycle dynamical system is presented. This system is
the state space component of a skew-product flow generated by a nonau-
tonomous differential equation that is driven by an autonomous dynamical
system on a metric space.

1 Introduction

Lyapunov functions are an effective practical as well as theoretical tool for the in-
vestigation of stability properties of dynamical systems, see e.g. [5, 7, 8, 10, 11].
Converse results ensuring the existence of a Lyapunov function that charac-
terizes a particular type of stability property, such as the uniform asymptotic
stability of a global attractor of an autonomous dynamical system, have been
particularly useful in numerical dynamics [7, 8]. Such a result is presented here
for the pullback attractor of a cocycle dynamical system generated by a nonau-
tonomous differential equation. The idea of pullback attraction, which has been
used for a long time in other contexts (see e.g. [9]) provides a means of con-
structing limiting objects in nonautonomous systems that exist in actual time
rather than asymptotically in the future [1, 2, 3, 4, 8].
The cocycle formalism and pullback attractors are briefly recalled in the next

two sections, the reader being referred to the literature (e.g. [1, 2, 3, 4, 8]) for
more details, examples and motivation. The main result is then formulated in
Section 4 and the proof is presented in Section 6 following the proof of a lemma
on the existence of a pullback absorbing neighbourhood system in Section 5. In
order to focus on the idea behind the construction of the Lyapunov function
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92 A Lyapunov function for pullback attractors

rather than on technical details, the differential equations considered here are
assumed to be globally defined and to satisfy a global Lipschitz condition. The
paper is concluded with a comment on the properties of the Lyapunov function
and an example in Section 7.
The following notation and definitions will be used. H∗(A,B) denotes the

Hausdorff separation or semi–metric between nonempty compact subsets A and
B of Rd, and is defined by

H∗(A,B) := max
a∈A
dist(a,B)

where dist(a,B) := minb∈B ‖a−b‖. For a nonempty compact subset A of Rd and
r > 0, the open and closed balls about A of radius r are defined, respectively,
by

B(A; r) := {x ∈ Rd : dist(x,A) < r}, B[A; r] := {x ∈ Rd : dist(x,A) ≤ r}.

2 The cocycle formalism

Consider a parametrized differential equation

ẋ = f(p, x)

on Rd, where p is a parameter that is allowed to vary with time in a certain way.
In particular, let P be a topological space and consider a group Θ = {θt}t∈R
of mappings θt : P → P for each t ∈ R such that (t, p) 7→ θtp is continuous.
The autonomous dynamical system Θ on P acts as a driving mechanism that
generates the time variation in the parameter p in the parametrized differential
equation above to form a nonautonomous differential equation

ẋ = f(θtp, x) (1)

on Rd for each p ∈ P .
It will be assumed amongst other things (see later) that f : P × Rd → Rd

is continuous, that f(p, ·) is globally Lipschitz continuous on Rd for each p ∈ P
and that the global forwards existence and uniqueness of solutions of (1) holds
(e.g., due to an additional dissipativity structural assumption). The solution
mapping Φ : R+ × P × Rd → Rd of (1), for which

d

dt
Φ(t, p, x0) = f (θtp,Φ(t, p, x0)) , x0 ∈ R

d, p ∈ P, t ∈ R+, (2)

with the initial condition property

Φ(0, p, x0) = x0, x0 ∈ R
d, p ∈ P, (3)

then satisfies the cocycle property

Φ(s+ t, p, x0) = Φ(s, θtp,Φ(t, p, x0)), x0 ∈ R
d, p ∈ P, s, t ∈ R+. (4)
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That is, Φ is a cocycle mapping on Rd with respect to the autonomous dynamical
system Θ on P . In fact, the product mapping (Φ,Θ) then forms an autonomous
semi–dynamical system, or skew–product flow, on the product space Rd × P .
Note that the t variable in Φ is now the time that has elapsed since starting

rather than absolute time. Although solutions of initial value problems may also
be (at least partially) extendable backwards in time, interest in this paper is on
what happens forwards in time since starting, as is typical in investigations of
systems with some kind of dissipative behaviour.
A simple example is a conventionally written nonautonomous differential

equation
ẋ = g(t, x), t ∈ R, x ∈ Rd, (5)

with p = t0, the initial time instant, and shift mappings θtt0 := t0+ t on P = R.
Thus, f(θtp, x) := g(t0+t, x) here and the solution mapping Φ(t, t0, x0) := x(t+
t0; t0, x0) in terms of the solution of the corresponding initial value problem as it
is usually written. A less trivial example of the above skew–product formalism
is given by Sell’s investigations of almost periodic differential equations [10],
in which P is a compact metric space of admissible vector field functions and
θt is a temporal shift operator acting on these vector field functions. Random
dynamical systems [1, 3, 4] also provide examples with a measure space rather
than a topological space as the parameter space.

3 Pullback attractors

The most obvious way to formulate asymptotic behaviour for a nonautonomous
dynamical system is consider the limit set of the forwards trajectory {Φ(t, p, x0}t≥0
as t → ∞ for each fixed initial value (p, x0). The resulting (omega) limit set
ω+(p, x0) now depends on both the starting parameter p and the starting state
x0. In general, the limit sets ω

+(p, x0) are not invariant under Φ in the sense
that Φ(t, p, ω+(p, x0)) = ω

+(p, x0) for all t ∈ R+. In fact, it is too restrictive to
define invariance like this in terms of just a single set. Instead, it is more useful
to say that a family Â = {Ap; p ∈ P} of nonempty compact subsets of Rd is
invariant under Φ, or Φ-invariant, if

Φ(t, p, Ap) = Aθtp, p ∈ P, t ∈ R
+.

For example, with P = R, the family of singleton sets defined by At0 = {φ̄(t0)},
where φ̄ is a solution of the nonautonomous differential equations (5) that exists
for all t ∈ R, is Φ-invariant.
The natural generalization of convergence seems to be the forwards running

convergence defined by

H∗(Φ(t, p, x0), Aθtp)→ 0 as t→∞.

However, this does not ensure convergence to a specific component set Ap for a
fixed p. For that one needs to start “progressively earlier” at θ−tp in order to
“finish” at p. (Think of P = R with p being the final time t0 and θ−tt0 = t0− t
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the new starting time). This leads to the concept of pullback convergence defined
by

H∗(Φ(t, θ−tp, x0), Ap)→ 0 as t→∞.

The invariant family Â is then called a pullback attractor.
The concepts of forwards and pullback attraction are independent of each

other. For example, consider the scalar differential equations ẋ = g(t, x) = ±2tx
with the parameter set P = R and the shift mappings as above. In both cases
the invariant families have components sets At0 = {0} for all t0 ∈ R. The zero
solution is forwards attracting only for the “−” system and pullback attracting
only for the “+” system. (See the example at the end of the paper for some
additional details).
The purpose of this paper is to construct a Lyapunov function that charac-

terizes such pullback attraction and pullback attractors. This will be done in
terms of a more general definition of a pullback attractor that encompasses local
attraction as well as parametrically dependent regions of pullback attraction.
A Φ-invariant family of compact subsets Â = {Ap; p ∈ P} will be called a

pullback attractor with respect to a basin of attraction system Datt if it satisfies
the pullback attraction property

lim
t→∞

H∗
(
Φ(t, θ−tp,Dθ−tp), Ap

)
= 0 (6)

for all p ∈ P and all D̂ = {Dp; p ∈ P} belonging to a basin of attraction

system Datt, that is, a collection of families of nonempty sets D̂ = {Dp; p ∈ P}

where Dp is bounded in R
d for each p ∈ P with the property that D̂(1) ={

D
(1)
p ; p ∈ P

}
∈ Datt if D̂(2) =

{
D
(2)
p ; p ∈ P

}
∈ Datt and D

(1)
p ⊆ D

(2)
p for all

p ∈ P .
Note that the mapping t 7→ Aθtp is continuous for each fixed p ∈ Φ due

to the continuity of Φ in t and the Φ-invarianceof Â. (However, the mapping

p 7→ Ap is usually only upper semi continuous, see [2]). Obviously Â ∈ Datt. In
fact, Ap ⊂ intDatt(p), where Datt(p) :=

⋃
D̂={Dp; p∈P}∈Datt

Dp, for each p ∈ P .

4 Lyapunov Functions for Pullback Attractors

The main result is to establish the existence of a Lyapunov function that char-
acterizes pullback attraction and pullback attractors.

Theorem 1 Let Â be a pullback attractor with a basin of attraction system Datt
for the cocycle dynamical system (Φ,Θ) generated by the differential equation
(1), where

• (p, x) 7→ f(p, x) is continuous in (p, x) ∈ P × Rd;

• x 7→ f(p, x) is globally Lipschitz continuous on Rd with Lipschitz constant
L(p) for each p ∈ P ;
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• p 7→ L(p) is continuous;

• (t, p) 7→ θtp is continuous.

Then there exists a function V :
⋃
p∈P ({p} × Datt(p))→ R

+ such that

Property 1 (upper bound): For all p ∈ P and x0 ∈ Datt(p)

V (p, x0) ≤ dist(x0, Ap); (7)

Property 2 (lower bound): For each p ∈ P there exists a function a(p, ·) :
R
+ → R+ with a(p, 0) = 0 and a(p, r) > 0 for r > 0 which is increasing in r
such that

a(p, dist(x0, Ap)) ≤ V (p, x0) (8)

for all x0 ∈ Datt(p);

Property 3 (Lipschitz condition): For all p ∈ P and x0, y0 ∈ Datt(p)

|V (p, x0)− V (p, y0)| ≤ ‖x0 − y0‖; (9)

Property 4 (pullback convergence): For all p ∈ P and any D̂ ∈ Datt

lim sup
t→∞

sup
z∈Dθ−tp

V (p,Φ(t, θ−tp, z)) = 0. (10)

In addition,
Property 5 (forwards convergence): There exists N̂ ∈ Datt consisting of
nonempty compact sets Np which are Φ-positively invariant in the sense that
Φ(t, p,Np) ⊆ Nθtp for all t ≥ 0, p ∈ P , and satisfy Ap ⊂ intNp for each p ∈ P
such that

V (θtp,Φ(t, p, x0)) ≤ e
−tV (p, x0) (11)

for all x0 ∈ Np and t ≥ 0.

The proof will be given in Section 6, but first it will be shown in the next
section that the assumed pullback attractor has a pullback absorbing neigh-
bourhood system.

5 Pullback Absorbing Neighbourhood Systems

A family B̂ = {Bp ; p ∈ P} ∈ Datt of nonempty compact subsets Bp of Rd

with nonempty interior is called a pullback absorbing neighbourhood system for
a Φ-pullback attractor Â if it is Φ-positively invariant and if it pullback absorbs
all D̂ ∈ Datt, that is for each D̂ ∈ Datt and p ∈ P there exists a T (D̂, p) ∈ R+

such that
Φ(t, θ−tp,Dθ−tp) ⊂ intBp for all t ≥ T (D̂, p).
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Obviously, Â ⊂ B̂ ∈ Datt. Moreover, by positive invariance and the cocycle
property

Φ(s+ t, θ−s−tp,Bθ−s−tp) ⊂ Φ(t, θ−tp,Bθ−tp)

for all s, t ≥ 0 and p ∈ P , from which it follows that

Ap =
⋂
t≥0

Φ(t, θ−tp,Bθ−tp) for all p ∈ P. (12)

The following lemma shows that there always exists such a pullback absorb-
ing neighbourhood system for any given cocycle attractor. This will be required
for the construction of the Lyapunov function for the proof of Theorem 1.

Lemma 2 If Â is a cocycle attractor with a basin of attraction system Datt for a
cocycle dynamical system (Φ,Θ) for which (t, p, x) 7→ Φ(t, θ−tp, x) is continuous,

then there exists a pullback absorbing neighbourhood system B̂ ⊂ Datt of Â with
respect to Φ.

Proof: Since Ap ⊂ intDatt(p), there is a δp ∈ (0, 1] such that B[Ap; 2δp] ⊂
intDatt(p) for each p ∈ P . Define

Bp :=
⋃
t≥0

Φ(t, θ−tp,B[Aθ−tp; δθ−tp]).

Obviously, Ap ⊂ B[Ap; δp] ⊂ Bp ⊂ Datt(p) for each p ∈ P .
By the cocycle property

Φ(t, p, Bp) ⊆
⋃
s≥0

Φ(t, p,Φ(s, θ−sp,B[Aθ−sp; δθ−sp]))

=
⋃
s≥0

Φ(s+ t, θ−sp,B[Aθ−sp; δθ−sp])

=
⋃
r≥t

Φ(r, θ−r+tp,B[Aθ−r+tp; δθ−r+tp])

⊆
⋃
r≥0

Φ(r, θ−rθtp,B[Aθ−sθtp; δθ−rθtp]) = Bθtp

for all t ≥ 0, so Φ(t, p, Bp) ⊆ Bθtp, that is, B̂ = {Bp ; p ∈ P} is Φ-positively
invariant.
Now by pullback convergence, there exists a T = T (p, δp) ∈ R+ such that

Φ(t, θ−tp,B[Aθ−tp; δθ−tp]) ⊆ B[Ap; δp] ⊂ Bp

for all t ≥ T . Hence

Bp =
⋃
t≥0

Φ(t, θ−tp,B[Aθ−tp; δθ−tp])
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⊆ B[Ap; δp] ∪
⋃

t∈[0,T ]

Φ(t, θ−tp,B[Aθ−tp; δθ−tp])

=
⋃
t∈[0,T ]

Φ(t, θ−tp,B[Aθ−tp; δθ−tp]),

⊆
⋃
t∈[0,T ]

Φ(t, θ−tp,B[Aθ−tp; 1])

⊆
⋃
t∈[0,T ]

Φ(t, θ−tp,B∗) =: Up,T .

Here B∗ :=
⋃
t∈[0,T ]B[Aθ−tp; 1] is compact by the continuity of the mapping t 7→

Aθ−tp and the compactness of the sets B[Aθ−tp; 1]. The compactness of the set
Up,T then follows by the continuity of the setvalued mapping t 7→ Φ(t, θ−tp,B∗).
Hence Bp is compact for each p ∈ P .

To see that B̂ so constructed is pullback absorbing from Datt, let D̂ ∈ Datt
and fix p ∈ P . Since Â is pullback attracting, there exists a T (D̂, δp, p) ∈ R+

such that
H∗
(
Φ(t, θ−tp,Dθ−tp), Ap

)
< δp,

that is, Φ(t, θ−tp,Dθ−tp) ⊂ B(Ap; δp), for all t ≥ T (D̂, δp, p). But B(Ap; δp) ⊂

intBp, so Φ(t, θ−tp,Dθ−tp) ⊂ intBp for all t ≥ T (D̂, δp, p). Hence B̂ is pullback
absorbing as required. �

6 Proof of Theorem 1

A Lyapunov function V that characterizes a pullback attractor Â and satisfies
properties 1–5 of Theorem 1 will be constructed by modifying to the ordinary
differential equation setting under consideration the construction used in [6] for
nonautonomous difference equations.
Define V (p, x0) for all p ∈ P and x0 ∈ Datt(p) by

V (p, x0) := sup
t≥0
e−Tp,t dist

(
x0,Φ(t, θ−tp,Bθ−tp)

)
,

where

Tp,t = t+

∫ t
0

L(θ−sp) ds with Tp,0 = 0.

The integral here exists due to the continuity assumptions. Note that Tp,t ≥ t
and that

Tθtp,s+t = Tp,s + t+

∫ t
0

L(θrp) dr

for all s, t ≥ 0 and p ∈ P , the latter holding because

Tθtp,s+t = s+ t+

∫ s+t
0

L(θ−rθtp) dr
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= s+

∫ s+t
t

L(θ−r+tp) dr + t+

∫ t
0

L(θ−r+tp) dr

= s+

∫ s
0

L(θ−up) du︸ ︷︷ ︸
u=r−t

+t−

∫ 0
t

L(θvp) dv︸ ︷︷ ︸
v=t−r

= Tp,s + t+

∫ t
0

L(θvp) dv.

6.1 Proof of property 1

Since e−Tp,t ≤ 1 for all t ≥ 0 and since dist
(
x0,Φ(t, θ−tp,Bθ−tp)

)
is mono-

tonically increasing from 0 ≤ dist (x0,Φ(0, p, Bp)) = dist (x0, Bp) at t = 0 to
dist (x0, Ap) as t→∞, it follows that

V (p, x0) = sup
t≥0
e−Tp,t dist

(
x0,Φ(t, θ−tp,Bθ−tp)

)
≤ 1 · dist (x0, Ap) .

6.2 Proof of property 2

By Property 1, V (p, x0) = 0 for x0 ∈ Ap. Assume instead that x0 ∈ Datt(p)\Ap.
Now the supremum in

V (p, x0) = sup
t≥0
e−Tp,t dist

(
x0,Φ(t, θ−tp,Bθ−tp)

)
involves the product of an exponentially decreasing quantity bounded below by
zero and a bounded increasing function, since the Φ(t, θ−tp,Bθ−tp) are a nested
family of compact sets decreasing to Apwith increasing t. Hence there exists a
T ∗ = T ∗(p, x0) ∈ R+ such that

1

2
dist(x0, Ap) ≤ dist

(
x0,Φ(t, θ−tp,Bθ−tp)

)
for all t ≥ T ∗, but not for t < T ∗. Thus, from above,

V (p, x0) ≥ e−Tp,T∗ dist
(
x0,Φ(T

∗, θ−T∗p,Bθ−T∗p)
)

≥
1

2
e−Tp,T∗ dist (x0, Ap) .

Define

T̂ (p, r) := sup{T ∗(p, x0) : x0 ∈ Datt(p), dist (x0, Ap) = r}.

Then T̂ (p, r) <∞. To see this note that by the triangle rule

dist(x0, Ap) ≤ dist(x0,Φ(t, θ−tp,Bθ−tp)) +H
∗(Φ(t, θ−tp,Bθ−tp), Ap).

Also, by pullback convergence, there exists a finite T (p, r/2) such that

H∗(Φ(t, θ−tp,Bθ−tp), Ap) <
1

2
r



Peter E. Kloeden 99

for all t ≥ T (p, r/2). Hence

r ≤ dist(x0,Φ(t, θ−tp,Bθ−tp)) +
1

2
r

for dist(x0, Ap) = r and t ≥ T (p, r/2), that is

1

2
r ≤ dist(x0,Φ(t, θ−tp,Bθ−tp)).

Thus , T̂ (p, r) ≤ T (p, r/2) <∞. In addition, T̂ (p, r) is obviously nondecreasing
in r as r → 0.
Finally, define

a(p, r) :=
1

2
r e−Tp,T̂(p,r) , (13)

which satisfies the stated properties.

6.3 Proof of property 3

From the definition

|V (p, x0)− V (p, y0)|

=
∣∣ sup
t≥0
e−Tp,t dist

(
x0,Φ(t, θ−tp,Bθ−tp)

)
− sup
t≥0
e−Tp,t dist

(
y0,Φ(t, θ−tp,Bθ−tp)

) ∣∣
≤ sup

t≥0
e−Tp,t

∣∣dist (x0,Φ(t, θ−tp,Bθ−tp))− dist (y0,Φ(t, θ−tp,Bθ−tp))∣∣
≤ sup

t≥0
e−Tp,t‖x0 − y0‖ ≤ ‖x0 − y0‖.

6.4 Proof of property 4

Assume the opposite. Then there exists an ε0 > 0, a sequence tj → ∞ in R+

and points xj ∈ Φ(tj , θ−tjp,Dθ−tj p) such that V (p, xj) ≥ ε0 for all j ∈ N. Since

D̂ ∈ Datt and B̂ is pullback absorbing, there exists a T = T (D̂, p) ∈ R+ such
that

Φ(tj , θ−tjp,Dθ−tjp) ⊂ Bp, for all tj ≥ T.

Hence xj ∈ Bp for all j such that tj ≥ T . Then, since Bp is a compact set, there
exists a convergent subsequence xj′ → x∗ ∈ Bp. But

xj′ ∈
⋃
t≥tj′

Φ(t, θ−tp,Dθ−tp)

and ⋂
tj′

⋃
t≥tj′

Φ(t, θ−tp,Dθ−tp) ⊆ Ap
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by (12) and the definition (and existence) of a pullback absorbing system. Hence
x∗ ∈ Ap and V (p, x∗) = 0 must hold. But V is Lipschitz continuous in its second
variable by property 3, so

ε0 ≤ V (p, xj′ ) = ‖V (p, xj′)− V (p, x
∗)‖ ≤ ‖xj′ − x

∗‖,

which contradicts the convergence xj′ → x∗. Hence property 4 must hold.

6.5 Proof of property 5

Take Np ≡ Bp for each p ∈ P . Thus N̂ = {Np ; p ∈ P} is positively invariant.

It remains to establish the exponential decay inequality (11). Note that the
cocycle mapping Φ, considered as the solution mapping of the nonautonomous
differential equation (1), satisfies the Lipschitz condition

‖Φ(t, p, x0)− Φ(t, p, y0)‖ ≤ e
∫
t
0
L(θsp) ds‖x0 − y0‖

for all x0, y0 ∈ Rd, from which it follows that

dist(Φ(t, p, x0),Φ(t, p, Cp)) ≤ e
∫
t
0
L(θsp) ds dist(x0, Cp)

for any nonempty compact subset Cp of R
d.

Now Φ(t, p, x0) ∈ Nθtp when x0 ∈ Np. Re-indexing and then using the
cocycle property and the above Lipschitz condition thus gives

V (θtp,Φ(t, p, x0)) = sup
s≥0
e−Tθtp,s+t dist(Φ(t, p, x0),Φ(s+ t, θ−sp,Bθ−sp))

= sup
s≥0
e−Tθtp,s+t dist(Φ(t, p, x0),Φ(t, p,Φ(s, θ−sp,Bθ−sp)))

≤ sup
s≥0
e−Tθtp,s+te

∫ t
0
L(θrp) dr dist(x0,Φ(s, θ−sp,Bθ−sp))

However, Tθtp,s+t = Tp,s + t+
∫ t
0 L(θrp) dr, so

V (θtp,Φ(t, p, x0))

≤ sup
s≥0
e−Tp,s−t−

∫
t
0
L(θrp) dr+

∫
t
0
L(θrp) dr dist(x0,Φ(s, θ−sp,Bθ−sp))

= sup
s≥0
e−Tp,s−t dist(x0,Φ(s, θ−sp,Bθ−sp))

= e−t sup
s≥0
e−Tp,s dist(x0,Φ(s, θ−sp,Bθ−sp)) = e

−tV (p, x0),

which is the desired inequality.

This completes the proof of Theorem 1. �
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7 Example

The forwards convergence inequality (11) of the pullback Lyapunov function
does not imply the usual forwards Lyapunov stability or asymptotic stability.
Athough the inequality

a(θtp, dist(Φ(t, p, x0), Aθtp)) ≤ e
−tV (p, x0)

then holds, dist(Φ(t, p, x0), Aθtp) need not become small as t→∞. The reason
for this is that, without additional assumptions on the dynamical bahaviour, it
is possible that

inf
t≥0
a(θtp, r) = 0

for some r > 0 and p ∈ P .
In fact, this is what happens with the differential equation

ẋ = 2tx

with the solution x(t; t0, x0) = x0e
t2−t20 , where t ≥ t0, and the cocycle mapping

Φ(t; t0, x0) = x0e
(t+t0)

2−t20 , t ≥ 0.

Here the parameter p = t0 ∈ P = R and θtt0 = t + t0. The pullback attractor
here has components At0 = {0} for each t0 ∈ R and the pullback attraction is
global, i.e. there is no restriction on the bounded subsets that are considered in
the basin of attraction system. A Lyapunov function satisfying the properties
of Theorem 1 is given by

V (t0, x0) = |x0|e
−t0−t

2
0−

1
4 .

Property 1 with a(t0, r) = re
−|t0|−t

2
0−

1
4 and property 2 are immediate, while

property 3 follows from

V (t0,Φ(t; t0 − t, x0)) =
∣∣∣x0e(t+t0−t)2−(t0−t)2∣∣∣ e−t0−t20− 14

= e−(t0−t)
2−t0− 14 |x0| → 0 as t→∞.

In addition, V satisfies inequality (11), since

V (t0 + t,Φ(t; t0, x0)) =
∣∣∣x0e(t+t0)2−t20∣∣∣ e−(t0+t)−(t0+t)2− 14

= e−tV (t0, x0)→ 0 as t→∞.

However, the zero solution is obviously not forwards Lyapunov stable.
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