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Existence and number of solutions to semilinear

equations with applications to boundary-value

problems ∗

P. S. Milojević

Abstract

We present recent and some new existence results on the number of
solutions to nonlinear equations and to (non)resonant semilinear equations
involving nonlinear perturbations of Fredholm maps of index zero. We
apply our results to semilinear elliptic, and to semilinear parabolic and
hyperbolic periodic boundary-value problems.

1 Introduction

Let X and Y be Banach spaces and T : X → Y be a nonlinear map of A-proper
type. Under various conditions on T , we study in Section 2 the surjectivity
and the finitness of the solution set of the equation Tx = f . In particular,
we look at nonresonant semilinear equations of the form Ax + Nx = f where
A is a Fredholm map of index zero and the nonlinear map N is such that
A + N is (pseudo) A-proper. We say that this equation is not at resonance if
A and N are are such that it is solvable for each f ∈ Y . Applications to semi-
abstract nonresonant semilinear equations are given in Section 3. Section 4 is
devoted to applications of the results of Section 3 to boundary-value problems
(BVP) for semilinear elliptic equations. In Section 5, some comments on periodic
BVP’s for semilinear parabolic and hyperbolic equations assuming nonuniform
nonresonance conditions are made. The existence of solutions for such problems
has been studied earlier in [12, 13, 14, 22, 6, 7, 9].

2 Number of solutions to operator equations

In this section, we shall study the number of solutions to the equation Tx = f .
The unique (approximate) solvability of this equation has been studied in detail
in [20], using the A-proper mapping approach.
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202 Existence and number of solutions to semilinear equations

Definition A map T : D ⊂ X → Y is (pseudo) A-proper with respect to
a scheme Γ = {Xn, Yn, Qn} with dimXn = dimYn on D if whenever {xnk ∈
D∩Xnk} is bounded and such that QnkTxnk −Qnkf → 0 for some f ∈ Y , then
{xn} has a subsequence converging to x ∈ D (there is x ∈ D) with Tx = f .
Next, we shall define A-proper homotopies.

Definition A homotopy H : [0, 1]×D → Y is A-proper with respect to Γ on
D if QnHt : D∩Xn → Yn is continuous for each t and n, and if {xnk ∈ D∩Xnk}
is bounded and tk ∈ [0, 1] with tk → t are such that QnkH(tk, xnk)−Qnkf → 0
as k →∞ for some f ∈ Y , then a subsequence of {xnk} converges to x ∈ D and
H(t, x) = f .

The classes of A-proper and pseudo A-proper maps are very general. For
many examples of such maps, we refer the reader to [15]-[19].

Nonlinear equations

We say that a map T : X → Y satisfies condition (+) if {xn} is bounded
whenever Txn → f in Y . Let Σ be the set of all points x ∈ X where T is not
locally invertible and cardT−1({f}) be the cardinal number of the set T−1({f}).

Theorem 2.1 ([21]) Let T : X → Y be continuous, A-proper and satisfy con-
dition (+). Then

(a) The set T−1({f}) is compact (possibly empty ) for each f ∈ Y .

(b) The range R(T ) of T is closed and connected.

(c) Σ and T (Σ) are closed subsets of X and Y , respectively, and T (X \ Σ) is
open in Y .

(d) cardT−1({f}) is constant and finite (it may be 0) on each connected com-
ponent of the open set Y \ T (Σ).

(e) if Σ = ∅, then T is a homeomorphism from X to Y .

(f) if Σ 6= ∅, then the boundary ∂T (X \Σ) of T (X \Σ) satisfies ∂T (X \Σ) ⊂
T (Σ).

Proof. Since T is proper by Proposition 2.1 in [21], it is a closed map. Since
X \ Σ is an open set, Σ is a closed set. Hence (a)-(c) hold, where T (X \ Σ)
is open since T is locally invertible on X \ Σ. (d) follows from the Ambrosetti
theorem [A] and (e) follows from the global inversion theorem. Next, (b) and
(c) imply that

T (X) = T (Σ) ∪ T (X \Σ) = T (Σ) ∪ F (X \ Σ) = T (X). (2.1)

Moreover, ∂T (X \ Σ) = T (X \ Σ) \ T (X \ Σ), which together with (2.1) imply
(f). ♦
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Next, we shall look at another surjectivity result. Let J : X → 2X
∗
be the

normalized duality map and G : X → Y be a bounded map such that Gx 6= 0
for all x with ‖x‖ ≥ r0 for some r0 > 0 and

For each large r > 0, deg(QnG,B(0, r) ∩Xn, 0) 6= 0 for all large n. (2.2)

Theorem 2.2 Let T : X → Y satisfy conditions (+) and (2.2), and let

(i) For each f ∈ Y there is an rf > 0 such that

Tx 6= λGx for x ∈ ∂B(0, rf ), λ < 0. (2.3)

(ii) H(t, x) = tTx+ (1 − t)Gx is an A-proper with respect to Γ homotopy on
[0, 1]×X.

Then T is surjective. Moreover, if T is continuous, then T−1({f}) is compact
for each f ∈ Y and the cardinal number cardT−1({f}) is constant, finite and
positive on each connected component of the set Y \ T (Σ).

Proof. The surjectivity of T has been established earlier by the author (see,
eg [17, 19]). Moreover, T is continuous and proper by Proposition 2.1 in [21].
Hence, the other assertions of the theorem follow from Theorem 2.1.

Corollary 2.1 Let F,K : X → X be continuous ball-condensing maps and
T = I −F and G = I−K satisfy (2.2)-(2.3). Then the conclusions of Theorem
2.2 hold for T .

This corollary is also valid for general condensing maps (see [23]). For a map
M , define its quasinorm by |M | = lim sup‖x‖→∞ ‖Mx‖/‖x‖.

Theorem 2.3 (cf. [19]) Let A : D(A) ⊂ X → Y be a linear densely defined
map and N : X → Y be bounded and of the form Nx = B(x)x +Mx for some
linear maps B(x) : X → X. Assume that there is a c > |M | and a positively
homogeneous map C : X → Y such that

‖Ax− (1− t)Cx− tB(x)x‖ ≥ c‖x‖, x ∈ D(A) \B(0, R). (2.4)

(i) Ht = A − (1 − t)C − tN is A-proper with respect to Γ = {Xn, Yn, Qn} for
t ∈ [0, 1) and A−N is pseudo A-proper

(ii) For all r > R, deg(Qn(A− C), B(0, r) ∩Xn, 0) 6= 0 for each large n.

Then the equation Ax − Nx = f is solvable for each f ∈ Y . If, in addition,
A − N is continuous and A-proper, then (A − N)−1({f}) is compact for each
f ∈ Y and card(A−N)−1({f}) is constant, finite and positive on each connected
component of the set Y \ (A−N)(Σ).
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Proof. Regarding the surjectivity of A−N , it suffices to solve Ax−Nx = 0.
Define H(t, x) = Ax− (1− t)Cx− tNx on [0, 1]×D(A). Then there is an r > 0
such that

H(t, x) 6= 0 for x ∈ ∂B(0, r) ∩D(A), t ∈ [0, 1]. (2.5)

If not, then there are xn ∈ H and tn ∈ [0, 1] such that ‖xn‖ → ∞ and
H(tn, xn) = 0. Let ε > 0 be small such that |M | ≤ (|M |+ ε)‖x‖ for ‖x‖ ≥ R1
and |M |+ ε < c. For each xn with ‖xn‖ ≥ R1 we have that

c‖xn‖ ≤ ‖Axn − (1− t)Cxn − tB(xn)xn‖ ≤ (|M |+ ε)‖xn‖.

Dividing by ‖xn‖, this leads to a contradiction and (2.5) holds. Hence, A −N
is surjective by the homotopy result in [16, 17]. Next, it is easy to see that
‖(A−N)x‖ → ∞ as ‖x‖ → ∞ by (2.4). Hence, the other assertions follow from
Theorem 2.1.

3 Semi-abstract nonresonance problems

Let Q ⊂ Rn be a bounded domain, V be a closed subspace of W 2m2 (Q) con-
taining the test functions and L : V → L2 be a linear map with closed range in
H = L2(Q). Let V1 be a closed subspace of V and L1 be the restriction of L to
V1. Assume

(L1) Each eigenvalue λj of L1 has a finite multiplicity and the corresponding
eigenfunctions {. . . , w−1, w0, w1, . . .} form a complete set in V1.

Let A = A1 + L for some linear map A1 : V → H . For a fixed integer j, define
B : V → H by Bu = −Au+ λju.

(B1) There is λ 6= λj , j = 1, 2, . . ., such that the map B − λI = −A1 − L −
(λ − λj)I : V → L2 is bijective.

Let λ 6= λj for each j = 1, 2, . . . be fixed, Γ = {Yn, Qn} be a projectionally
complete scheme for L2 and Xn = (B − λI)−1(Yn) ⊂ V for each n. Then
ΓB = {Xn, Yn, Qn} is an admissible or a projectionally complete scheme for
(V, L2). Since B − λI : V → L2 is linear, one-to-one and A-proper with respect
to ΓB, there is a constant c > 0 (depending)only on λ) such that

‖(B − λI)u‖ ≥ c‖u‖V , u ∈ V. (3.1)

Consider the following semilinear equation in V

Au+ g(x, u,Du, . . . , D2m−1u)u+ f(x, u,Du, . . . , D2mu) = h(x) (3.2)

For u ∈ H , set u± = max(±u, 0). Let r = λj+1 −λj . We require that B has
the following properties:

Property I B is a closed densely defined map in H with closed range R(B),
(Bu, u) ≥ −r−1‖Bu‖2 and R(B) = N(B)⊥ in H , N(−L1 + λjI) ⊂ N(B) and
(Bu, u) = (−Lu+ λju, u) on V .
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Property II If (Bu, u) = −r−1‖Bu‖2 for some u ∈ V , then u ∈ N(−L1 +
λjI)⊕N(−L1 + λj+1I).

Let us note that if B−1 is a partial inverse of B and B−1 + r−1I is strongly
monotone on R(B), i.e. it is a bounded linear map on R(B) and ((B−1 +
r−1I)u, u) = c0‖(B−1+r−1I)u‖2 on R(B) for some c0 > 0, then ([BF]) Property
II holds in the sense that if (Bu, u) = −r−1‖Bu‖2 for some u ∈ V , then u ∈
N(B) ⊕ N(B + rI). If B is selfadjoint or angle bounded in the sense of H.
Amann, it is known that B−1 + r−1I is strongly monotone. If B 6= B∗ and B
is a normal map, the strong monotonicity of B−1 + r−1I has been discussed in
Hetzer [8].
Some properties of B are given next.

Lemma 3.1 Let B have Properties I and II. Suppose that p± ∈ L∞(Q) are
such that 0 ≤ p±(x) ≤ r for a.e. x ∈ Q and

∫
Q

[p+(v
+)2 + p−(v

−)2] > 0 for all v ∈ N(−L1 + λjI) \ {0}

and∫
Q

[(r − p+)(w
+)2 + (r − p−)(w

−)2] > 0 for all w ∈ N(−L1 + λj+1I) \ {0}.

Then the equation
Bu+ p+u

+ − p−u
− = 0 (3.3)

has only the trivial solution.

Proof. Define p : Q×R→ R by

p(x, u) = p+(x) if u ≥ 0,

p(x, u) = p−(x) if u ≤ 0.

Then
0 ≤ p(x, u) ≤ r for (x, u) ∈ Q×R (3.4)

and, for u ∈ H and a.e. x ∈ Q,

p(x, u(x))u(x) = p(x, u(x))u+(x)− p(x, u(x))u−(x)

= p+(x)u
+(x) − p−(x)u

−(x).

Define P : V ⊂ H → H by (Pu)(x) = p(x, u(x))u(x) for a.e. x ∈ Q. Then (3.3)
is equivalent to

Bu+ Pu = 0, u ∈ V. (3.5)

By (3.4), we have that ‖Pu‖2 ≤ r(Pu, u) on V . Moreover, for each solution
u ∈ V of (3.5), we get by Property I that

−r−1‖Pu‖2 = −r−1‖Bu‖2 ≤ (Bu, u) = (−Pu, u)
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and so ‖Pu‖2 ≥ r(Pu, u). Hence, ‖Pu‖2 = r(Pu, u) and (Bu, u) = −r−1‖Bu‖2.
By Property II, we get that u ∈ N(−L1 + λjI) ⊕ N(−L1 + λj+1I). Hence,
u = v + w with v ∈ N(−L1 + λjI) and w ∈ N(−L1 + λj+1I). Since u is a
solution of (3.3), we get that

(Bu, u) = (−Lu+ λju, u)

= (−Lv + λjv, v) + (−Lv + λjv, w) + (−Lw + λjw, v + w)

= (−Lw + λj+1w − rw, v + w)

= (−rw,w)

and so (−rw,w) + (p(., u(.))(v + w), v + w) = 0. Then

(v − w,−rw + p(., u(.))(v + w))

= (v + w,−rw + p(., u(.))(v + w)) − 2(w,−rw + p(., u(.))(v + w))

= −2(w,−rw + p(., u(.))(v + w))

= −2(v + w,−rw −B(v + w)) + 2(v,−rw −B(v + w))

= −2(v, rw +B(v + w)) = −2(v,B(v + w)) = 0

since v ∈ N(−L1 + λjI) ⊂ N(B) and R(B) = N(B)⊥. Since

(p(., u(.))(v + w), v − w) = (p(., u(.))v, v) + ([r − p(., u(.))]w,w)

+([r − p(., u(.))]w,−v) + (p(., u(.))v,−w)

= (p(., u(.))v, v) + ([r − p(., u(.))]w,w)

we get that

(p(., u(.))v, v)+([r−p(., u(.))]w,w) = (p(., u(.))(v+w), v−w)+(rw,−v+w) = 0.
(3.6)

Since each term in (3.6) is nonnegative by (3.4), we get that each term is zero,
i.e., ∫

Q

p(x, v(x) + w(x))v2(x)dx = 0 (3.7)

∫
Q

[(r − p(x, v(x) + w(x))]w2(x)dx = 0. (3.8)

Set Qv = {x ∈ Q |v(x) 6= 0} and Qw = {x ∈ Q |w(x) 6= 0}.
By (3.7)-(3.8), we get p(x, v(x) + w(x)) = 0 for a.e. x ∈ Qv and p(x, v(x) +

w(x)) = r for a.e. x ∈ Qw and so Qv ∩Qw = ∅. If Qv = ∅, then u = w and the
equation (3.8) becomes

0 =

∫
Q

[(r − p(x,w(x))]w2(x)dx =

∫
Q

(r − p+)(w
+)2 + (r − p−)(w

−)2

so that by our hypothesis, w = 0 and therefore u = 0.
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Next, suppose that Qv 6= ∅. Then we have that p(x, v(x) +w(x)) = 0 on Qv
and, by (3.8),

∫
Qv
rw2(x) = 0, i.e., w(x) = 0 for a.e. x ∈ Qv. Then by (3.7)

0 =

∫
Qv

p(x, v(x))v2(x) =

∫
Qv

(p+(v
+)2 + p−(v

−)2) =

∫
Q

(p+(v
+)2 + p−(v

−)2).

By our assumption, this implies that v = 0, in contradiction to Qv 6= ∅. Hence,
Qv = ∅ and u = 0.

Lemma 3.2 Let (L1) and (B1) hold and B have Properties I and II. Suppose
that a±, b± ∈ L∞(Q) are such that 0 ≤ a±(x) ≤ b± ≤ r for a.e. x ∈ Q and∫

Q

[a+(v
+)2 + a−(v

−)2] > 0 for all v ∈ N(−L1 + λjI) \ {0} (3.9)

and∫
Q

[(r−b+)(w
+)2+(r−b−)(w

−)2] > 0 for all w ∈ N(−L1+λj+1I)\{0}. (3.10)

Then there exists ε = ε(a±, b±) > 0 and δ = δ(a±, b±) > 0 such that for all
p± ∈ L∞(Q) with

a+(x) − ε ≤ p+(x) ≤ b+(x) + ε (3.11)

a−(x) − ε ≤ p−(x) ≤ b−(x) + ε (3.12)

for a.e. x ∈ Q and for all u ∈ V , one has

‖Bu+ p+u
+ − p−u

−‖ ≥ δ‖u‖V . (3.13)

Proof. If this is not the case, then we can find the sequences {uk} ⊂ V , with
‖uk‖V = 1 for each k and {pk±} ⊂ L∞(Q) such that

a±(x) − k
−1 ≤ p±(x) ≤ b±(x) + k

−1 a.e. on Q (3.14)

and
Buk + p

k
+u
−
k − p

k
−u
−
k = vk → 0 as k →∞. (3.15)

Then pk± → p± weakly in H with a±(x) ≤ p±(x) ≤ b±(x) a.e. on Q. Let µ 6= λj
and consider the identity

uk + (B − µI)
−1[(pk+ − p+)u

+
k − (p

k
− − p−)u

−
k ] (3.16)

= (B − µI)−1(−p+u
+
k + p−u

−
k − µuk + vk).

By the compactness of the embedding of V into L2, we have that uk → u in L2
as well as u±k → u

± in L2. Since (B − µI)−1 is continuous both as a map from
L2 to V and from L2 to L2, we get that

(B − µI)−1(−p+u
+
k + p−u

−
k − µuk + vk)→ (B − µI)

−1(−p+u
+ + p−u

− − µu)
(3.17)
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in L2 and V . Next, we shall show that p
k
± → p±u

± weakly in H . For φ ∈
C∞0 (Q), we have that

(pk+u
+
k − p+u

+, φ) = (pk+(u
+
k − u

+), φ) + ((pk+ − p+)u
+, φ)

≤ c‖u+k − u
+‖+ ((pk+ − p+)u

+, φ)

which approaches zero as k approaches ∞. Hence, pk+u
+
k → p+u

+ weakly in
L2 by the density of C

∞
0 (Q) in L2, and similarly, p

k
−u
−
k → p−u

− weakly in L2.
Hence, (3.16)-(3.17) imply that u = (B − µI)−1(−p+u+ + p−u− − µu), i.e.,
Bu + p+u

+ − p−u− = 0. Moreover, for each v ∈ N(−L1 + λjI) \ {0}, we have
that ∫

Q

p+(v
+)2 + p−(v

−)2 ≥

∫
Q

a+(v
+)2 + a−(v

−)2 > 0

and, for each w ∈ N(−L1 + λj+1I) \ {0}, we have that

∫
Q

[(r − p+)(w
+)2 + (r − p−)(w

−)2] ≥

∫
Q

[(r − b+)(w
+)2 + (r − b−)(w

−)2] > 0.

Hence, by Lemma 3.1, u = 0 a.e.on Q. Thus, uk → 0 in L2, ‖uk‖V = 1 and
‖pk+u

+
k − p

k
−u
−
k − µuk‖ → 0. By (3.1), we get that

‖Buk + p
k
+ − p

k
−u
−
k ‖ ≥ ‖Buk − µuk‖ − ‖µuk − p

k
+u
+
k + p

k
−u
−
k ‖

≥ c− ‖pk+u
+
k − p

k
−u
−
k − µuk‖.

By (3.15), passing to the limit as k →∞, we get that 0 ≥ c > 0, a contradiction.
Hence, the lemma is valid.

Remark 3.1 Modifying suitably the proof of Lemma 3.2, condition (B1) can
be replaced by

(B2) dimN(B) <∞ and the partial inverse of B is compact.

Let Rsk be the vector space whose elements are ξ = {ξα : |α = (α1, . . . , αn)| ≤
k}. Each ξ ∈ Rk may be written as a pair ξ = (η, ζ) with η ∈ Rsk−1 , ζ =
{ξα | |α| = k} ∈ Rsk−sk−1 = Rs

′
k and |ξ| = (

∑
|α|≤k |ξα|

2)1/2. Set η(u) =

(Du, . . . , D2m−1u) and ξ(u) = (u,Du, . . . , D2mu). Define Nu = g(x, u, η(u))u+
Fu, where Fu = f(x, ξ(u)). Set k = s2m−1 − 1.
For our next result, suppose that dimN(−L1 + λjI) = 1 and is spanned by

a positive function wj .

Lemma 3.3 Let B have properties I and II. Suppose that p± ∈ L∞(Q) are such
that 0 ≤ p±(x) ≤ r a.e. x ∈ Q and for r = λj+1 − λj
∫
[(r − p+)(w

+)2 + (r − p−)(w
−)2] > 0 for all w ∈ N(−L1 + λj+1) \ {0}.

Then, if u is a solution of Bu + p+u
+ − p−u− = 0, then u ∈ N(−L1 + λjI).
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Proof. If not, then arguing as in Lemma 3.1 we get that u = 0 ifQv = ∅. Next,
suppose that Qv 6= ∅. Then it follows from the properties of the eigenfunction
wj and the fact that v = awj(x) for some a ∈ R and therefore Qv = Q. Hence,
we must have that p(x, u(x) = 0 for a.e. x ∈ Q. By (3.8), we get that w = 0
and hence u = v. Thus, in both cases, u = v ∈ N(−L1 + λjI).

Theorem 3.1 Let (L1) and (B1) hold, B have properties I and II and there
are functions γ±,Γ± ∈ L∞(Q) such that for some j ∈ J ⊂ Z, one has

λj ≤ γ±(x) ≤ Γ±(x) ≤ λj+1 for a.e. x ∈ Q ,∫
Q

[(γ+ − λj)(v
+)2 + (γ− − λj)(v

−)2] > 0 (3.18)

for all v ∈ N(L1 − λjI) \ {0}, and∫
Q

[(λj+1 − Γ+)(w
+)2 + (λj+1 − Γ−)(w

−)2] > 0 (3.19)

for all w ∈ N(L1 − λj+1I) \ {0}. Also suppose that for ε > 0 and δ > 0 given
in Lemma 3.2,

(G1) there is ρ > 0 such that for a.e. x ∈ Q

γ+(x) − ε ≤ g(x, u, η(u)) ≤ Γ+(x) + ε if u > ρ, η(u) ∈ R
k

γ−(x)− ε ≤ g(x, u, η(u)) ≤ Γ−(x) + ε if u < −ρ, η(u) ∈ R
k

(G2) There are functions b(x) ∈ L∞(Q) and ks(x) ∈ L2(Q) for each s > 0
such that

|g(x, u, η(u))| ≤ sb(x)(
∑

|α|≤2m−1

|Dαu|2)1/2 + ks(x), u ∈ V.

(F) ‖Fu‖ = ‖f(x, u,Du, . . . , D2mu)‖ ≤ β‖u‖V + γ for β ∈ (0, δ), γ > 0.

(H) Ht = A− λjI − tF : V → H is A-proper with respect to ΓB for t ∈ [0, 1)
and H1 = B − F is pseudo A-proper.

Then (3.2) has at least one solution in V for each h ∈ H. If H1 is A-proper,
the set of solutions S(h) of (3.2) is compact for each h ∈ L2 and card S(h) is
constant, finite and positive on each connected component of the set L2 \ (A −
N)(Σ).

Proof. Let g1 : Q×R×Rk → R be given by g1(x, u, η(u)) = g(x, u, η(u))−λj .
Then define functions

g+(x, u, η(u)) = g1(x, u, η(u)) for all (x, η(u)) ∈ Q× R
k, u ≥ ρ

g+(x, u, η(u)) = g1(x, ρ, η(u)) for all (x, η(u)) ∈ Q×R
s2m−1 , 0 ≤ u ≤ ρ ,

g−(x, u, η(u)) = g1(x, u, η(u)) for all (x, η(u)) ∈ Q× R
k, u ≤ −ρ ,

g−(x, u, η(u)) = −g1(x,−ρ, η(u)) for all (x, η(u)) ∈ Q×R
s2m−1 ,−ρ ≤ u ≤ 0 ,

q(x, 0, η(u)) = g1(x, 0, η(u)) for all (x, η(u)) ∈ Q× R
k ,

q(x, u, η(u)) = g1(x, u, η(u))u − g+(x, u, η(u))u for all (x, η(u)) ∈ Q× R
k
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and u > 0. Also define

q(x, u, η(u)) = g1(x, u, η(u))u − g−(x, u, η(u))u for all (x, η(u)) ∈ Q× R
k

and u < 0. Then q satisfies Caratheodory conditions. Set a±(x) = γ±(x) − λj
and b±(x) = Γ±(x)− λj . Then

a+(x) − ε ≤ g+(x, u, η(u)) ≤ b+(x) + ε on Q×R+ × R
k

a−(x)− ε ≤ g−(x, u, η(u)) ≤ b−(x) + ε on Q×R− × R
k.

Then in V , problem (3.2) is equivalent to

Bu+ g+(x, u
+, η(u))u+− g−(x,−u

−, η(u))u−+ f(x, ξ(u)) + q(x, u, η(u)) = −h.

Then for u ∈ H , set Q+(u) = {x ∈ Q | u(x) > 0}, Q−(u) = {x ∈ Q | u(x) < 0}
and let χQ± be the corresponding characteristic functions. Define the maps
E : H → L∞(Q), F,G,H : V → H , respectively, by

E(u)(x) = g+(x, u
+(x), η(u))χQ+(u) + g−(x,−u

−(x), η(u))χQ−(u)

G(u)(x) = [E(u)(x)]u(x) = (E(u)u)(x) so that

G(u)(x) = g+(x, u
+(x), η(u))u+(x) − g−(x,−u

−(x), η(u))u−(x),

F (u)(x) = f(x, ξ(u)) and H(u)(x) = q(x, u(x), η(u)). Hence (3.2) can be writ-
ten in the operator form

Bu+Gu+ Fu+Hu = −h, u ∈ V. (3.20)

We know that G,F and H are well defined, continuous and bounded in H .
Let C : H → H be defined by C(u)(x) = b+(x)u+(x)−b−(x)u−(x). Clearly,

C is a positively homogeneous map and C,G,H : V → H are completely con-
tinuous maps, i.e. they map weakly convergent sequences in V into strongly
convergent sequences in H . Indeed, let us show this, for example, for G. Since
V is compactly embedded in H , it follows from the construction of G and (G2)
that if {uk} ⊂ V converges weakly to u0 in V , then ([K])

‖g+(x, u
+
k , η(uk))− g−(x,−u

−
k , η(uk))− g+(x, u

+
0 , η(u0)) + g−(x,−u

−
0 , η(u0))‖

approaches 0. Hence, the map G : V → Lp is completely continuous since

‖Guk −Gu0‖ = ‖E(uk)uk − E(u0)u0‖

≤ ‖E(uk)(uk − u0)‖+ ‖E(uk)− E(u0)‖‖u0‖

≤ max{‖a+‖∞ + ‖a−‖∞ + 2ε, ‖b+‖∞ + ‖b−‖∞

+2ε}‖uk − u0‖+ ‖E(uk)− E(u0)‖ ‖u0‖ → 0 .

Thus, we have that Ht = B + (1 − t)C + t(F + G + H) is A-proper for each
t ∈ [0, 1) from V → H and H1 : V → H is pseudo A-proper.
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Next, by construction

(1− t)Cu+ tGu = [(1− t)b+(x) + tg+(x, u
+, η(u))]u+(x)

−[(1− t)b−(x) + tg−(x,−u
−, η(u))]u−(x)

and, for a.e. x ∈ Q, η(u) ∈ Rk

a+(x) − ε ≤ (1− t)b+(x) + tg+(x, u
+(x), η(u)) ≤ b+(x) + ε

a−(x)− ε ≤ (1− t)b−(x) + tg−(x,−u
−(x), η(u)) ≤ b(x) + ε

and |q(x, u, η(u))| ≤ dρ(x) for a.e. x ∈ Q and all (u, η(u)) ∈ R × Rk, where
dρ ∈ L2(Q) is independent of u since g (and hence g1) grows at most linearly.
Hence, by Lemma 3.2 with p+(x) = (1 − t)b+(x) + tg+(x, u+(x), η(u)) and
p−(x) = (1− t)b−(x) + tg−(x,−u−(x), η(u)), we get for some c > 0

‖Bu+ (1− t)Cu+ tGu‖ ≥ δ‖u‖2 for all u ∈ V.

It is left to show that deg(Qn(B+C), BR∩Vn, 0) 6= 0 for all n. Let η ∈ (0, r) be
fixed. Then, for each t ∈ [0, 1], and a.e. x ∈ Q, we have that 0 ≤ (1−t)η+tb± ≤
r. It is easy to show that p+ = (1 − t)η + tb+ and p− = (1 − t)η + tb− satisfy
0 ≤ p± ≤ r for a.e. x ∈ Q, and∫

Q

[p+(v
+)2 + p−(v

−)2] > 0 for all v ∈ N(−L1 + λjI) \ {0}

and∫
Q

[r − p+)(w
+)2 + (r − p−)(w

−)2] > 0 for all w ∈ N(−L1 + λj+1I) \ {0}.

Hence, one gets that the equation

Bu+ [(1 − t)η + tb+]u
+ + [(1 − t)η + tb−]u

− = 0 (3.21)

has only the trivial solution for each t ∈ [0, 1]. Since the homotopy given by
(3.21) is A-proper, there is an n ≥ n0 such that for each R > 0 and all n ≥ n0,

deg(Pn(B + b+(.)
+ − b−(.)

−, B(0, R) ∩Hn, 0)

= deg(Pn(B + ηI), B(0, R) ∩Hn, 0) = ±1 .

Hence, (3.2) is solvable in V by Theorem 2.3. The other assertions also follow
from this theorem.

Remark 3.2 Conditions (3.18)-(3.19) hold for a wide class of nonlinearities g.
For example, they are implied by λj < λj+ε ≤ γ+(x) ≤ Γ+(x) ≤ λj+1 and λj ≤
γ−(x) ≤ Γ−(x) ≤ λj+1 − ε < λj+1, or λj ≤ γ+(x) ≤ Γ+(x) ≤ λj+1 − ε < λj+1
and λj < λj + ε ≤ γ−(x) ≤ Γ−(x) ≤ λj+1, in the case when the eigenfunctions
associated to λj and λj+1 change sign in Q.

Next, we shall give some concrete assumptions on f and g that imply (F)-(H)
in Theorem 3.1.
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Theorem 3.2 Assume that (L1) and (B1) hold, B have properties I and II and
there be functions γ±,Γ± ∈ L∞(Q) such that for some j ∈ J ⊂ Z, one has

λj ≤ γ±(x) ≤ Γ±(x) ≤ λj+1 for a.e. x ∈ Q∫
Q

[(γ+ − λj)(v
+)2 + (γ− − λj)(v

−)2] > 0 for all v ∈ N(L1 − λjI) \ {0} ,

∫
Q

[(λj+1−Γ+)(w
+)2+(λj+1−Γ−)(w

−)2] > 0 for all w ∈ N(L1−λj+1I)\{0} .

Suppose that for the ε > 0 and δ > 0 given in Lemma 2.2,

(G1) there is ρ > 0 such that for a.e. x ∈ Q, η(u) ∈ Rk

γ+(x) − ε ≤ g(x, u, η(u)) ≤ Γ+(x) + ε if u > ρ

γ−(x)− ε ≤ g(x, u, η(u)) ≤ Γ−(x) + ε if u < −ρ

(G2) There are functions b(x) ∈ L∞(Q) and ks(x) ∈ L2(Q) for each s > 0
such that

|g(x, u, η(u))| ≤ sb(x)(
∑

|α|≤2m−1

|Dαu|2)1/2 + ks(x), u ∈ V.

(F1) There are functions a(x) ∈ L∞(Q) and dr(x) ∈ L2(Q) for each r > 0
such that

|f(x, ξ(u))| ≤ ra(x)(
∑
|α|≤2m

|Dαu|2)1/2 + dr(x), for all u ∈ V.

(F2) There is a constant k > 0 such that k ≤ c and

|f(x, η, ζ) − f(x, η, ζ′)| ≤ k
∑
|α|=2m

|ζα − ζ
′
α|

for a.e. x ∈ Q, all η ∈ Rk and ζ, ζ′ ∈ Rs
′
2m = Rs2m − Rs2m−1 , where c is

a constant in (3.1).

Then there is a u ∈ V that satisfies (3.2) for a.e. x ∈ Q. If k < c, then all
other assertions of Theorem 3.1 also hold.

Proof. It is easy to see that (F) of Theorem 3.1 holds. Hence, it remains to
verify (H) of that theorem, i.e. that Ht = B−tF is A-proper with respect to ΓB
for each t ∈ [0, 1) and H1 is pseudo A-proper. Since the embedding of V into
H is compact, it suffices to show these facts for Ft = L− tF . Set Bµ = B − µI
for some µ 6= λj for each j. Then, for each t ∈ [0, 1], it follows from (F2), the
Holder inequality, and an easy calculation that

(Ftu− Ftv,Bµ(u− v)) ≥ (1− k/c)‖Bµ(u− v)‖
2 + φ(u− v) (3.22)
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where the functional φ : V → R is given by

φ(u− v) = t(M(u, v)−M(v, v), Bµ(u− v)) + µ(u− v,Bµ(u− v)),

with M : V × V → H being the continuous form M(u, v) = f(x, η(u), ζ(v)).
The functional φ is weakly continuous. Indeed, let uk → u weakly in V . Then
uk → u in the W

2m−1
2 -norm by the Sobolev imbedding theorem and by the

results from [10], it is not hard to show that φ(uk − u)→ 0 as k →∞. If k < c,
then (F2) implies that Ft is A-proper with respect to ΓB (see, e.g., in [16]-[18]).
If k = c, then Ft is again A-proper for each t ∈ [0, 1) and it is easy to see that
F1 is pseudo Lµ-monotone. Hence, F1 is pseudo A-proper with respect to ΓB
([18]) and (H) of Theorem 3.1 holds.

Corollary 3.1 Let the conditions of Theorem 3.2 hold with (G1) replaced by

(G1’) γ±(x) ≤ lim inf
u→±∞

g(x, u, η(u)) ≤ lim sup
u→±∞

g(x, u, η(u))

≤ Γ±(t, x)

uniformly for a.e. (x, η(u)) ∈ Q×Rk. Then there is a u ∈ V that satisfies (3.2)
for a.e. x ∈ Q.

Proof. It is easy to see that (G1’) implies (G1).

4 Strong solvability of elliptic BVP’s

A.We shall apply the results of Section 3 to strong solvability of elliptic boundary-
value problems in V of the form

∑
|α|≤2m

Aα(x)D
αu(x) + g(x, u,Du, . . . , D2m−1u)u+ f(x, u,Du, . . . , D2m) = h,

(4.1)
under non-uniform non-resonance conditions. Here Q ⊂ Rn is a bounded
smooth domain, V is a closed subspace ofW 2m2 (Q) containing the test functions,
the linear part is elliptic and h ∈ L2(Q). Assume the linear map L : V → L2(Q),
induced by the linear elliptic operator in (4.1), has closed range in H = L2(Q)
and satisfies conditions (L1), (B1) in Section 3 with B = −L + λjI. Here,
L1 = L and A1 = 0.

Let λ 6= λj for each j = 1, 2, . . . be fixed, Γ = {Yn, Qn} be a projectionally
complete scheme for L2 and Xn = (B − λI)−1(Yn) ⊂ V for each n. Then
ΓL = {Xn, Yn, Qn} is an admissible or a projectionally complete scheme for
(V, L2). Since B − λI : V → L2 is linear, one-to-one and A-proper with respect
to ΓL, there is a constant c > 0 (depending) only on λ) such that

‖(B − λI)u‖ ≥ c‖u‖V , u ∈ V. (4.2)
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Theorem 4.1 Let B = −L + λjI be a closed densely defined map in H such
that R(B) = N(B)⊥, (Bu, u) ≥ −r−1‖Bu‖2 on V and if (Bu, u) = −r−1‖Bu‖2

for some u ∈ V , then u ∈ N(−L+ λjI) ⊕N(−L+ λj+1I). Suppose that there
are functions γ±,Γ± ∈ L∞(Q) such that for some j ∈ J ⊂ Z, one has

λj ≤ γ±(x) ≤ Γ±(x) ≤ λj+1 for a.e. x ∈ Q

and ∫
Q

[(γ+ − λj)(v
+)2 + (γ− − λj)(v

−)2] > 0 for all v ∈ N(L− λjI) \ {0}

and∫
Q

[(λj+1 − Γ+)(w
+)2 + (λj+1 − Γ−)(w

−)2] > 0 for all w ∈ N(L− λj+1I) \ {0}.

Suppose that for ε > 0 and δ > 0 given in Lemma 3.2,

(G1) there is ρ > 0 such that for a.e. x ∈ Q

γ+(x) − ε ≤ g(x, u, η(u)) ≤ Γ+(x) + ε if u > ρ, η(u) ∈ R
k

γ−(x) − ε ≤ g(x, u, η(u)) ≤ Γ−(x) + ε if u < −ρ, η(u) ∈ R
k

(G2) There are functions b(x) ∈ L∞(Q) and ks(x) ∈ L2(Q) for each s > 0
such that

|g(x, u, η(u))| ≤ sb(x)(
∑

|α|≤2m−1

|Dαu|2)1/2 + ks(x), u ∈ V.

(F) ‖Fu‖ = ‖f(x, u, . . . , D2mu)‖ ≤ β‖u‖V + γ for some β ∈ (0, δ), γ > 0.

(H) Ht = L − tF : V → H is A-proper with respect to ΓL for t ∈ [0, 1) and
L− F is pseudo A-proper.

Then (4.1) has a solution u ∈ V for each h ∈ L2. If L − F is A-proper,
S(h) = (L − F )−1({h}) is compact for each h ∈ L2 and card S(h) is constant,
finite and positive on each connected component of the set L2 \ (L − F )(Σ).

Proof. It follows from Theorem 3.1 with L1 = L and A1 = 0. ♦

As before, we give now some concrete conditions on f, g so that (H) holds.

Theorem 4.2 Let B = −L + λjI be a closed densely defined map in H such
that R(B) = N(B)⊥, (Bu, u) ≥ −r−1‖Bu‖2 on V and if (Bu, u) = −r−1‖Bu‖2

for some u ∈ V , then u ∈ N(−L+ λjI) ⊕N(−L+ λj+1I). Suppose that there
are functions γ±,Γ± ∈ L∞(Q) such that for some j ∈ J ⊂ Z, one has

λj ≤ γ±(x) ≤ Γ±(x) ≤ λj+1 for a.e. x ∈ Q ,∫
Q

[(γ+ − λj)(v
+)2 + (γ− − λj)(v

−)2] > 0 for all v ∈ N(L− λjI) \ {0} ,

∫
Q

[(λj+1 − Γ+)(w
+)2 + (λj+1 − Γ−)(w

−)2] > 0 for all w ∈ N(L− λj+1I) \ {0}.

Furthermore, suppose that for the ε > 0 and δ > 0 given in Lemma 3.2,
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(G1) there is ρ > 0 such that for a.e. x ∈ Q

γ+(x) − ε ≤ g(x, u, η(u)) ≤ Γ+(x) + ε if u > ρ, η(u) ∈ R
k

γ−(x)− ε ≤ g(x, u, η(u)) ≤ Γ−(x) + ε if u < −ρ, η(u) ∈ R
k

(G2) There are functions b(x) ∈ L∞(Q) and ks(x) ∈ L2(Q) for each s > 0
such that

|g(x, u, η(u))| ≤ sb(x)(
∑

|α|≤2m−1

|Dαu|2)1/2 + ks(x), u ∈ V.

(F1) There are functions a(x) ∈ L∞(Q) and dr(x) ∈ L2(Q) for each r > 0
such that

|f(x, ξ(u))| ≤ ra(x)(
∑
|α|≤2m

|Dαu|2)1/2 + dr(x), for all u ∈ V.

(F2) There is a constant k > 0 such that k ≤ c and

|f(x, η, ζ)− f(x, η, ζ′)| ≤ k
∑
|α|=2m

|ζα − ζ
′
α|

for a.e. x ∈ Q, all η ∈ Rk and ζ, ζ′ ∈ Rs
′
2m = Rs2m − Rs2m−1 , where c is

a constant in (4.2).

Then there is a u ∈ V that satisfies (4.1) for a.e. x ∈ Q and all other assertions
of Theorem 4.1 are valid if k < c.

Proof. It follows from Theorem 4.1 with L1 = L and A1 = 0. ♦

For our next result, we assume also

(L2) There is an integer j ≥ 1 such that λj < λj+1 and Lw = λkw for k = j
and k = j + 1, has the continuation property, that is if w(x) = 0 on a set
of positive measure, then w(x) = 0 a.e. on Q.

Theorem 4.3 Let L satisfy (L1)-(L2) and (B1) with B = −L + λjI and let
γ(x),Γ(x) ∈ L∞(Q) be such that

(H1) λj ≤ γ(x) ≤ Γ(x) ≤ λj+1 with meas{x ∈ Q|λj 6= γ(x)} > 0 and meas{x ∈
Q|λj+1 6= Γ(x)} > 0.

Suppose that (G1) of Theorem 3.4 holds and for ε > 0 and δ > 0 given by
Lemma 3.2

(H2) γ(x)− ε ≤ g(x, ξ) ≤ Γ(x) + ε for all (x, ξ) ∈ Q×Rs2m−1

(H3) ‖Fu‖ = ‖f(x, u, . . . , D2mu)‖ ≤ β‖u‖V + γ for some β ∈ (0, δ), γ > 0.

(H4) Ht = L − tF is A-proper with respect to ΓL for t ∈ [0, 1) and L − F is
pseudo A-proper.

Then (4.1) has a solution u ∈ V and all other assertions of Theorem 4.1 are
valid.
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Proof. Clearly, (L2) and (H1) imply the integral inequalities in Theorem 4.2.
Hence, the conclusion follows from this theorem.

Theorem 4.4 Let L and γ(x), Γ(x) be as in Theorem 4.3. Let f : Q×Rs2m →
R and g : Q×Rs2m−1 → R be Caratheodory functions such that

(F1) There are functions a(x) ∈ L∞(Q) and dr(x) ∈ Lp(Q) for each r > 0
such that

|f(x, ξ(u))| ≤ ra(x)(
∑
|α|≤2m

|Dαu|2)1/2 + dr(x), for all u ∈ V.

(F2) There is a constant k > 0 such that k ≤ c and

|f(x, η, ζ) − f(x, η, ζ′)| ≤ k
∑
|α|=2m

|ζα − ζ
′
α|

for a.e. x ∈ Q, all η ∈ Rk and ζ, ζ′ ∈ Rs
′
2m = Rs2m −Rs2m−1 .

(G1) λj ≤ γ(x) ≤ liminf|u|→∞g(x, u, η(u)) ≤ limsup|u|→∞g(x, u, η(u)) ≤
Γ(x) ≤ λj+1 uniformly for x ∈ Q and the non-u components η(u).

(G2) There are functions b(x) ∈ L∞(Q) and ks(x) ∈ Lp(Q) for each s > 0
such that

|g(x, u, η(u))| ≤ sb(x)(
∑

|α|≤2m−1

|Dαu|2)1/2 + ks(x), u ∈ V.

Then there is a u ∈ V that satisfies Eq. (4.1) for a.e. x ∈ Q and all other
assertions of Theorem 4.1 are valid if k < c.

Proof. It follows from Theorem 4.2, as in the case of Corollary 3.1. ♦

Theorem 4.2 extends the existence result of Beresticki-de Figueiredo [3] who
assumed f = 0 and g to depend only on u. A simplified proof of their results
has been given by Mawhin [13]. If f does not depend on derivatives of order
2m, the existence part of Theorem 4.4 reduces to a result of Mawhin-Ward
[14]. Their proofs are based on the Leray-Schauder and the coincidence degree
theories respectively.
B. In this subsection we shall look at boundary value problems

Lu = λ1u+ g(x, u) = h, in Q, u|∂Q = 0 (4.3)

where L is either selfadjoint or non-selfadjoint second order elliptic partial differ-
ential operator, and λ1 is the first (resp. principal) eigenvalue of the selfadjoint
(resp. nonselfadjoint) operator −L, h ∈ Lp(Q) with p > n and g : Q×R→ R is
a Caratheodory function which grows at most linearly, i.e. there are a constant
c1 > 0 and a function c2 ∈ Lp(Q), p > n, such that

|g(x, u)| ≤ c1|u|+ c2(x)
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for a.e. x ∈ Q and all u ∈ R. We assume that L is such that the Bony’s
maximum principal (see eg. [4, 2]) and the abstract Krein-Rutman theorem
[11] imply the existence of a real simple eigenvalue λ1 > 0 of

−Lu = λ1u, u|∂Q = 0

of minimal modulus such that there is a corresponding smooth eigenfunction
w1 > 0 in Q and ∂w1/∂η < 0 on ∂Q, where ∂/∂η stands for the outward
normal derivative. Moreover, if L is nonseladjoint then λ1 is also an eigenvalue
for the adjoint problem

−L∗u = λ1u, u|∂Q = 0,

such that there is a corresponding smooth eigenfunction w∗1 > 0 in Q and
∂w∗1/∂η < 0 on ∂Q.

Now, using Lemma 3.3, we shall prove the following existence result for
(4.3) when the nonlinearity f(x, u) = λ1u+ g(x, u) ”lies” between the first two
eigenvalues λ1 and λ2. We assume, without loss of generality, that the following
upper bounds are nonnegative

g+(x) = lim sup
u→∞

g(x, u)/u ≤ Γ+(x), a.e. on Q (4.4)

g−(x) = lim sup
u→−∞

g(x, u)/u ≤ Γ−(x), a.e. on Q. (4.5)

Since g grows linearly, we can suppose, without loss of generality, that Γ± ∈
Lp(Q), p > n.

Theorem 4.5 Let g : Q × R → R be a Caratheodory function that grows lin-
early, g+(x) and g−(x) are different from zero on a set of nonzero measure,
and

g(x, u)u ≥ 0 (4.6)

for a.e. x ∈ Q and all u ∈ R. Suppose that (4.4)-(4.5) hold and

0 ≤ Γ±(x) ≤ r(= λ2 − λ1), for a.e.x ∈ Q, (4.7)

∫
w>0

[r − Γ+]w
2dx+

∫
w<0

[r − Γ−]w
2dx > 0, for all, w ∈ N(L+ λ2I) \ {0}.

(4.8)
Then Eq. (4.3) has at least one solution u ∈ W 2p (Q) ∩H

1
0 (Q), p > n, for each

h ∈ Lp(Q). Moreover, u ∈ C1,µ(Q̄).

Proof. Let γ be a fixed constant with 0 < γ < r and define the operator
E :W 2p (Q) ∩H

1
0 (Q) ⊂ C

1(Q̄)→ Lp(Q) by

Eu = Lu+ λ1u+ ru .
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We shall show that there exists a constant C > 0 independent of t such that
‖u‖C1 ≤ C for all possible solutions u ∈ W

2
p (Q) ∩H

1
0 (Q) of the homotopy

H(t, u) = Lu+ λ1u+ (1− t)γu+ tg(x, u) = th, t ∈ [0, 1). (4.9)

Clearly, (4.9) has only the trivial solution for t = 0. If such a C does not exist,
then there exist tk ∈ (0, 1) and uk ∈ W 2p (Q) such ‖uk‖ → ∞ and

Euk = tk[γuk − g(tk, uk) + h(x)], u|∂Q = 0. (4.10)

Set vk = uk/‖uk‖C1 . Then, (4.10) becomes

Evk = tk[γvk − g(x, uk)/‖uk‖C1 + h/‖uk‖C1 ], vk|∂Q = 0. (4.11)

We may assume that tk → t and g(x, uk)/‖uk‖C1 ⇀ K(x) in Lp(Q) since g
has a linear growth. Since g(x, uk)/‖uk‖C1 = g(x, uk)/uk(x).vk(x)⇀ G(x)v(x)
with G(x) 6= 0 on a set of positive measure, we get that K(x) = G(x)v(x) 6= 0
on a set of positive measure. Using Lp-estimate and the compact embedding of
W 2p (Q) into C

1(Q̄), we can deduce from (4.11) that vk → v in C1(Q̄), ‖v‖C1 = 1
and v|∂Q = 0. Moreover, {Lvk} is also bounded in Lp(Q) by (4.11). Hence,
by the reflexivity of Lp and the weak closedness of L, we may assume that
Lvk ⇀ Lv in Lp with v ∈W 2p (Q) ∩H

1
0 (Q) and v solves the equation

Ev = t[γv −K(x)], v|∂Q = 0. (4.12)

As in [9], Eq. (4.12) is equivalent to

Lv + λ1v + p+(x)v
+ − p−(x)v

− = 0, v|∂Q = 0 (4.13)

where p+(x) = (1 − t)γ + tk+v (x) and p−(x) = (1 − t)γ + tk
−
v (x) and kv(x) =

K(x)/v(x) if v(x) 6= 0 and kv = 0 if v(x) = 0 since 0 ≤ kv(x) ≤ Γ+(x) if
v(x) > 0 and 0 ≤ kv(x) ≤ Γ−(x) if v(x) < 0. Hence, by Lemma 3.3 (or Lemma
1 in [9]), we get that v ∈ N(L+ λ1I) \ {0}.
Next, passing to the limit in

(Lvk + λ1vk + (1 − t)γvk + tkg(x, uk)/‖uk‖C1 , vk) = (tkh/‖uk‖C1 , vk)

we get
((1 − t)γv + tK, v) = 0.

Note that t 6= 1, for otherwise (4.12)-(4.13) imply that p+(x)v+ − p−(x)v− = 0
which leads to K(x) = 0 a.e. on Q, a contradiction. Hence, (K, v) < 0 since (1−
t)γ‖v‖2 = −t(K, v). This contradicts the fact that 0 ≤ tk(g(x, uk)/‖uk‖C1 , vk)→
t(K, v). Hence, we have shown that all solutions of (4.9) are bounded and, by the
Leray-Schauder homotopy theorem, Eq (4.3) has a solution in W 2p (Q) ∩H

1
0 (Q)

for each p ∈ Lp(Q). ♦

Theorem 4.5 extends Theorem 1 in Iannacci-Nkashama-Ward [9] who showed
the solvability of Eq (4.3) only for h ∈ Lp(Q) that are orthogonal to w1 but
without assuming that g+(x) and g−(x) are not zero on a set of positive measure.
On the other hand, their result extends some earlier ones of de Figueiredo and
Ni [6], Gupta [7] and others. As in Theorems 4.4, it will be shown elsewhere that
Theorem 4.5 can be extended to include nonlinearities depending on derivatives
up to the second order.
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5 Time periodic solutions of BVP’s for nonlin-
ear parabolic and hyperbolic equations

The semi-abstract results in Section 3 have been used in [21] to prove the exis-
tence and the number of solutions of generalized periodic solutions (GPS), under
nonuniform nonresonance conditions, for the nonlinear parabolic equation

ut +A0u+ g(t, x, u, ut, Dxu, . . . , D
2m−1
x u)u+ f(t, x, u, ut, Dxu, . . . , D

2m
x u) = h

in H = L2(Ω), where Ω = [0, 2π]×Q with Q ⊂ Rn, A0 is a uniformly strongly
elliptic operator of order 2m in x ∈ Q for each t ∈ [0, 2π], and the nonlinear
hyperbolic equations with damping

σut + utt +A0u = g(t, x, u, ut, utt, Dxu, . . . , D
2m−1
x u)u

+f(t, x, u, ut, utt, Dxu, . . . , D
2m
x u) + h

with h in H , σ 6= 0, boundary conditions

u(t, .) ∈ Hm0 (Q) for all t ∈ (0, 2π) ,

and periodicity conditions

u(0, x) = u(2π, x) for all x ∈ Q .

These results extend the corresponding existence results in Nkashama-Willem
[22], who assumed only the u dependence in g and f = 0 and used the coinci-
dence degree theory.
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