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Abstract
We show that, for each A > 0, the problem

—Apu=Af(u) in Q,

u=0 on o
has a sequence of positive solutions (un)» with maxg u, decreasing to
F F
zero. We assume that lirninfﬁ =0 and that limsup ﬁ = +o0,
s—0t 8P s—ot+  SP

where [/ = f. We stress that no condition on the sign of f is imposed.

1 Introduction
Let us consider the quasilinear elliptic problem

—Apu=Af(u) inQ,
u=0 on 0N,

where 0 C RY) is a bounded domain, with a smooth boundary 09, A,u =
div(|Vu[P~2Vu) is the p-Laplacian, with p > 1, f : [0, +0o[ — R is a continuous

function and A > 0 is a real parameter.

Here, we are concerned with the existence and multiplicity of positive solu-
tions of (1.1), where by a positive solution we mean a function u € W,"*(€2) N

L>(Q), with v > 0 and u # 0 in , such that

/Q|Vu|p72Vqu:)\/Qf(u)w,
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302 An elliptic problem with arbitrarily small positive solutions

for every w € WyP(Q). Standard regularity results imply that u € C*7 (),
for some o > 0.

This problem has been investigated in a quite large number of papers, both
in the case where p = 2 and in the case where p # 2, often placing conditions
on the behaviour of f(s)/s?~! near 0 and near +oco of the following types:

f(s)

s—o+ sp—1 = F00, (1'2)
o fs)

SEIJ’I:IOO e 0, (1.3)
f(s)

5 =0 (.4

lim & = +o00. (1.5)

s—+oo gP—1

When p = 2, assumptions (1.2) and (1.3) are usually referred to as sublinearity
conditions, whereas (1.4) and (1.5) as superlinearity conditions at 0 and at 400,
respectively. Just as a convention, we keep this terminology even when p # 2.
Note also that conditions (1.2) and (1.4) both imply, in particular,

£(0) > 0. (1.6)

The existence of (sometimes multiple) positive solutions was proved in the fol-
lowing cases:

e f is sublinear at 0 and at +o0;
e f is superlinear at 0 and at 400 and has subcritical growth at +oc;

e f is sublinear at 0, superlinear at +o00, has subcritical growth at +o0o and
there exists a positive strict upper solution;

e f is superlinear at 0, sublinear at 400 and there exists a positive strict
lower solution.

Classical references in this context are, for example, [1, 2, 3, 4, 7, 8, 9, 10, 11, 16,
17]. More recently, in [15] it was discussed the situation where f is eventually
neither sublinear nor superlinear at +oo, in the sense that

f(s) f(s)

1 p—1

lim inf

0 and limsup
s—+oo §P—

s—+oo S

= +o00. (1.7)

Yet, a counterexample given in [13] shows that, generally speaking, assumptions
(1.6) and (1.7) are not sufficient to guarantee the existence of positive solutions
of (1.1). Accordingly, in [15] condition (1.7) was strenghthened to

F F
lim inf () =0 and limsup Fls) = +o0, (1.8)
s—+oo gP s—too SP
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where F : [0, +o0o[— R is such that F’ = f. Then, it was proved that, under
(1.6) and (1.8), problem (1.1) has, for each A > 0, a sequence of (uy, ), of positive
solutions, with maxg u,, — +00.

The aim of this paper is to show that the above considered conditions at
400 can be replaced by similar ones at 0, in order to produce arbitrarily small
positive solutions of (1.1). Namely, the following holds.

Theorem Assume

lim inf F(s) =0 and limsup F(s)

s—0+ sP s—0t+ S

= +o00. (1.9)

Then, problem (1.1) has, for each A > 0, a sequence (uy)n of positive solutions,
satisfying maxg un, N\ 0 and % Jo IVun|P = X [, F(un) /0.

Remark 1 The assumptions

F F
lim sup (5) =400 and liminf (5) =0
s—oot  SP s—rtoo P
and, respectively,
F F
lim inf (5) =0 and limsup (5) = +00,
s—0+ sP s—+4oo0 S

together with some other technical conditions, have been also considered in [14],
[12], [6] and [5], for proving the existence of at least one positive radial solution
of (1.1), in the case where 2 is an annular domain.

Remark 2 No condition on the sign of f is required in our result; yet, if
f(s) > 0 in a neighbourhood of 0, the strong maximum principle implies that
every (small) positive solution u of (1.1) is actually strictly positive, i.e. u(x) > 0
in Q and %(x) < 0 on 09Q. The same conclusion still holds in the case where

f changes sign near 0, provided that the nondecreasing regularization F of
f~, defined by f~(s) = max;c[o,5 f~(t), satisfies fol (sf=(s))"Y/Pds = +o0. To
verify this, it is sufficient to observe that —A,u > —Af~(u) in Q and to apply
Theorem 5 in [18].

Remark 3 It is quite easy to find continuous functions f : [0, +oco[— R which
change sign in any neighbourhood of 0 and for which condition (1.9) is fulfilled.
For instance, one can take f = F’, with

F(s) =s%sin(s™) +s"cos(s™?) fors >0 and F(0)=0,

where ¢, r, 7y satisfy ¢ > p > r > 1+ and v > 0. On the contrary, it seems less
immediate to exhibit positive functions f, for which (1.9) holds. We produce
here the example of a continuous (even nondecreasing) function f : [0, +oo[— R,
with f(s) > 0 in |0, +oo], such that F satisfies (1.9). Let (sp)n, (tn)n and (dp)n
be sequences defined by

Sp = 2_%"!, tn =272 and 6, = 9—(nh)?
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Observe that, for all large n,
Sl < tp < Sp — On.

Fix p > 1. Let f : [0,+00[— R be a continuous nondecreasing function such
that f(0) =0, f(s) > 0 for s > 0 and, for all large n,

f(s)=2"P7Dm for s € [sp41, 50 — On).
Let us set F(s) = [; f(t)dt for s > 0. Then, it is not difficult to verify that

F(Sn)/snp < (f(anrl)sn + f(sn)én) /snp —0

and
F(tn)/ta” = (f(Sn41)(tn = Sn+41)) [ta” = +o00,

as n — +oo. Since F(s) > 0 for s > 0, we can conclude that condition (1.9)
holds.

Remark 4 It will be clear from the proof that condition (1.9) can be replaced
F(s)

by
F
—00 < Aliminf — < poe < pt < Alimwpﬂv
s—0+ sP s—0t sP

where p., u* are suitable positive constants, depending only on  and p.

Remark 5 Our result extends to equations involving a more general class
of quasilinear operators of the type div A(x, Vu), where A satisfies suitable
ellipticity and growth conditions of Leray-Lions type, and nonlinearities f also
depending on the x-variable. The existence of positive periodic solutions for
some classes of quasilinear parabolic equations can be proved along the same
lines too.

2 Proof

We will exploit some arguments similar to those introduced in [15], therefore
only the main steps of the proof will be produced.

At first, we notice that condition (1.9) implies that F'(0) = 0 and f(0) = 0.
Hence, we have, in particular, that the function 0 is a (lower) solution of problem
(1.1). It is also convenient for the sequel to extend f and F' to the whole of
R, as an odd and as an even function, respectively. Throughout this proof, we
further suppose that the coefficient A > 0 is fixed.

Then, using the former condition in (1.9), we prove the existence of a se-
quence (3,), C C*(Q) of upper solutions of (1.1), satisfying

ming3, >0 and maxg, — 0. (2.1)
Q Q
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It is obvious that, if inf{s > 0] f(s) < 0} = 0, then there exists a sequence
(Bn)n of constant upper solutions satisfying (2.1). Therefore, let us suppose
that there is a number sy > 0 such that

f(s) >0 for s €]0, s0] (2.2)
and therefore
F(s) >0 for s €]0, so]. (2.3)

By the former condition in (1.9), we can find a sequence (c,), C]0, so[ such

that ¢, N\, 0 and
F(cn)

cpP

— 0. (2.4)

Let ]a, b[ be the projection of © onto, say, the x1-axis and consider, for each n,
the initial-value problem

—(W'[P~20") = Af(v) in [a,b], (2.5)
v(a) = cp,
v'(a) =0.

By a local solution of (2.5) we mean a function v defined on some interval
I C [a,b], with a € I, which is of class C* in I, together with |v/[P=2¢’, and
satisfies the equation in I and the initial conditions. It is known that (2.5)
admits local solutions, which can be extended to a right maximal interval of
existence [a,w|[C [a,b[. Let v be a noncontinuable solution of (2.5) and define

1
o = sup{t €la,w[ | 56n < v(s) < s¢ in [a, t]}.

We want to prove that ¢ = b. By (2.2), we immediately realize that |v'|P~2v’
and, hence, v" are decreasing in [a, o[. Hence, we have v/(t) < 0 in ]a, o[. Multi-
plying the equation in (2.5) by v' and integrating between a and ¢, with ¢ € |a, o],
we obtain

1%1|v/(t)|p = M(F(cy) — F(u(t)))

and then, by (2.3),

p—

1/p
—/(t) < (LJ (AF(cn))V/7. (2.6)

Now, assume, by contradiction, that o < b and set v(o) = lim;_,,- v(t) = %cn.
Integrating (2.6) between a and o, we get

1o, = / o) < <L>1/p (AF(cn))? diam(9).

2 p—1

Dividing by ¢,, and passing to the limit, condition (2.4) yields a contradiction.
Hence, we can conclude that there is a sequence (v ), of solutions of (2.5),
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defined on [a, b] and satisfying %cn < wvp(t) < ¢y in [a,b]. Therefore, setting, for
each n,
6,1(1'1,...,33”):1)”(1'1) for (:1717"',:1771):}(6(27

we define a sequence (8,), C C*(Q) of upper solutions of problem (1.1), such
that, for every n,

%cn < Bn(x) <c, in (2.7)

NOW, let us introduce the functional ¢ : WaP(Q) N L°(Q) — R, defined by
p(u) = 1f9|vu|p_)‘fﬂ

Let ¢eCHQ) bea functlon such that {(x) = 1 in some closed ball B C 2,
¢(x) > 0in Q and ¢{(x) = 0 on 0. By the former condition in (1.9), we can
find a number sy > 0 such that F(s) > = in [0, s]. On the other hand, the

p)
latter condition in (1.9) yields the existence of a sequence (dy), C]|0, sz[, such

that d, \, 0 and Fd(f;‘) — 4o00. Hence, we get

odnt) = < [ [9eP - / )= [ Fla,
< (/de /41’ A\ meas(3) 5% ><o,

for all n large enough.

Now, we are in position of constructing a sequence (uy, ), of positive solutions
of problem (1.1), with maxg u, — 0. Since 0 is a lower solution and 3; is an
upper solution of (1.1), with ming 1 > 0, there exists a solution u; of (1.1),
satisfying 0 < u; < 81 in Q and ¢(u1) = min{¢(u) |u € Wy *(2),0 < u < B}
Since we can find a positive number, say d,,, such that d,,{ < ming 8; in Q
and ¢(dn,¢) < 0, it follows that ¢(u1) < 0 and therefore u; # 0. Hence, uy is
a positive solution of (1.1), which, by (2.7), satisfies maxg u1 < ¢1. Next, we
pick an upper solution, say (32, such that maxg f2 < maxgui. Proceeding as
above, we find a solution ug of (1.1) such that 0 < uz < B3 in Q and ¢(uz) < 0.
Hence, us is a positive solution of (1.1), which satisfies maxg us < maxg u; and,
by (2.7), maxg us < cg. Iterating this argument, we build a sequence (uy,), of
distinct positive solutions of (1.1) satisfying maxg u, < ¢, — 0. Thus, the
proof is concluded.
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