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Abstract

We show that, for each λ > 0, the problem

−∆pu = λf(u) in Ω,

u = 0 on ∂Ω

has a sequence of positive solutions (un)n with maxΩ̄ un decreasing to

zero. We assume that lim inf
s→0+

F (s)

sp
= 0 and that lim sup

s→0+

F (s)

sp
= +∞,

where F ′ = f . We stress that no condition on the sign of f is imposed.

1 Introduction

Let us consider the quasilinear elliptic problem

−∆pu = λ f(u) in Ω , (1.1)

u = 0 on ∂Ω ,

where Ω ⊂ RN ) is a bounded domain, with a smooth boundary ∂Ω, ∆pu =
div(|∇u|p−2∇u) is the p-Laplacian, with p > 1, f : [0,+∞[→ R is a continuous
function and λ > 0 is a real parameter.
Here, we are concerned with the existence and multiplicity of positive solu-

tions of (1.1), where by a positive solution we mean a function u ∈ W 1,p0 (Ω) ∩
L∞(Ω), with u ≥ 0 and u 6≡ 0 in Ω, such that∫

Ω

|∇u|p−2∇u∇w = λ

∫
Ω

f(u)w ,
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302 An elliptic problem with arbitrarily small positive solutions

for every w ∈ W 1,p0 (Ω). Standard regularity results imply that u ∈ C
1+σ(Ω̄),

for some σ > 0.
This problem has been investigated in a quite large number of papers, both

in the case where p = 2 and in the case where p 6= 2, often placing conditions
on the behaviour of f(s)/sp−1 near 0 and near +∞ of the following types:

lim
s→0+

f(s)

sp−1
= +∞, (1.2)

lim
s→+∞

f(s)

sp−1
= 0, (1.3)

lim
s→0+

f(s)

sp−1
= 0, (1.4)

lim
s→+∞

f(s)

sp−1
= +∞. (1.5)

When p = 2, assumptions (1.2) and (1.3) are usually referred to as sublinearity
conditions, whereas (1.4) and (1.5) as superlinearity conditions at 0 and at +∞,
respectively. Just as a convention, we keep this terminology even when p 6= 2.
Note also that conditions (1.2) and (1.4) both imply, in particular,

f(0) ≥ 0. (1.6)

The existence of (sometimes multiple) positive solutions was proved in the fol-
lowing cases:

• f is sublinear at 0 and at +∞;

• f is superlinear at 0 and at +∞ and has subcritical growth at +∞;

• f is sublinear at 0, superlinear at +∞, has subcritical growth at +∞ and
there exists a positive strict upper solution;

• f is superlinear at 0, sublinear at +∞ and there exists a positive strict
lower solution.

Classical references in this context are, for example, [1, 2, 3, 4, 7, 8, 9, 10, 11, 16,
17]. More recently, in [15] it was discussed the situation where f is eventually
neither sublinear nor superlinear at +∞, in the sense that

lim inf
s→+∞

f(s)

sp−1
= 0 and lim sup

s→+∞

f(s)

sp−1
= +∞. (1.7)

Yet, a counterexample given in [13] shows that, generally speaking, assumptions
(1.6) and (1.7) are not sufficient to guarantee the existence of positive solutions
of (1.1). Accordingly, in [15] condition (1.7) was strenghthened to

lim inf
s→+∞

F (s)

sp
= 0 and lim sup

s→+∞

F (s)

sp
= +∞, (1.8)
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where F : [0,+∞[→ R is such that F ′ = f . Then, it was proved that, under
(1.6) and (1.8), problem (1.1) has, for each λ > 0, a sequence of (un)n of positive
solutions, with maxΩ̄ un → +∞.

The aim of this paper is to show that the above considered conditions at
+∞ can be replaced by similar ones at 0, in order to produce arbitrarily small
positive solutions of (1.1). Namely, the following holds.

Theorem Assume

lim inf
s→0+

F (s)

sp
= 0 and lim sup

s→0+

F (s)

sp
= +∞. (1.9)

Then, problem (1.1) has, for each λ > 0, a sequence (un)n of positive solutions,
satisfying maxΩ̄ un ↘ 0 and

1
p

∫
Ω
|∇un|p − λ

∫
Ω
F (un)↗ 0.

Remark 1 The assumptions

lim sup
s→0+

F (s)

sp
= +∞ and lim inf

s→+∞

F (s)

sp
= 0

and, respectively,

lim inf
s→0+

F (s)

sp
= 0 and lim sup

s→+∞

F (s)

sp
= +∞,

together with some other technical conditions, have been also considered in [14],
[12], [6] and [5], for proving the existence of at least one positive radial solution
of (1.1), in the case where Ω is an annular domain.

Remark 2 No condition on the sign of f is required in our result; yet, if
f(s) ≥ 0 in a neighbourhood of 0, the strong maximum principle implies that
every (small) positive solution u of (1.1) is actually strictly positive, i.e. u(x) > 0
in Ω and ∂u

∂ν
(x) < 0 on ∂Ω. The same conclusion still holds in the case where

f changes sign near 0, provided that the nondecreasing regularization f̂− of

f−, defined by f̂−(s) = maxt∈[0,s] f
−(t), satisfies

∫ 1
0 (sf̂

−(s))−1/pds = +∞. To

verify this, it is sufficient to observe that −∆pu ≥ −λf̂−(u) in Ω and to apply
Theorem 5 in [18].

Remark 3 It is quite easy to find continuous functions f : [0,+∞[→ R which
change sign in any neighbourhood of 0 and for which condition (1.9) is fulfilled.
For instance, one can take f = F ′, with

F (s) = sq sin(s−γ) + sr cos(s−γ) for s > 0 and F (0) = 0,

where q, r, γ satisfy q > p > r > 1+ γ and γ > 0. On the contrary, it seems less
immediate to exhibit positive functions f , for which (1.9) holds. We produce
here the example of a continuous (even nondecreasing) function f : [0,+∞[→ R,
with f(s) > 0 in ]0,+∞[, such that F satisfies (1.9). Let (sn)n, (tn)n and (δn)n
be sequences defined by

sn = 2
− 12n!, tn = 2

−2n! and δn = 2
−(n!)2 .
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Observe that, for all large n,

sn+1 < tn < sn − δn.

Fix p > 1. Let f : [0,+∞[→ R be a continuous nondecreasing function such
that f(0) = 0, f(s) > 0 for s > 0 and, for all large n,

f(s) = 2−(p−1)n! for s ∈ [sn+1, sn − δn].

Let us set F (s) =
∫ s
0
f(t)dt for s ≥ 0. Then, it is not difficult to verify that

F (sn)/sn
p ≤ (f(sn+1)sn + f(sn)δn) /sn

p → 0

and

F (tn)/tn
p ≥ (f(sn+1)(tn − sn+1)) /tn

p → +∞,

as n → +∞. Since F (s) > 0 for s > 0, we can conclude that condition (1.9)
holds.

Remark 4 It will be clear from the proof that condition (1.9) can be replaced
by

−∞ < λ lim inf
s→0+

F (s)

sp
< µ∗ ≤ µ

∗ < λ lim sup
s→0+

F (s)

sp
,

where µ∗, µ
∗ are suitable positive constants, depending only on Ω and p.

Remark 5 Our result extends to equations involving a more general class
of quasilinear operators of the type divA(x,∇u), where A satisfies suitable
ellipticity and growth conditions of Leray-Lions type, and nonlinearities f also
depending on the x-variable. The existence of positive periodic solutions for
some classes of quasilinear parabolic equations can be proved along the same
lines too.

2 Proof

We will exploit some arguments similar to those introduced in [15], therefore
only the main steps of the proof will be produced.

At first, we notice that condition (1.9) implies that F (0) = 0 and f(0) = 0.
Hence, we have, in particular, that the function 0 is a (lower) solution of problem
(1.1). It is also convenient for the sequel to extend f and F to the whole of
R, as an odd and as an even function, respectively. Throughout this proof, we
further suppose that the coefficient λ > 0 is fixed.

Then, using the former condition in (1.9), we prove the existence of a se-
quence (βn)n ⊂ C1(Ω̄) of upper solutions of (1.1), satisfying

min
Ω̄
βn > 0 and max

Ω̄
βn → 0. (2.1)
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It is obvious that, if inf{s > 0 | f(s) ≤ 0} = 0, then there exists a sequence
(βn)n of constant upper solutions satisfying (2.1). Therefore, let us suppose
that there is a number s0 > 0 such that

f(s) > 0 for s ∈ ]0, s0] (2.2)

and therefore
F (s) > 0 for s ∈ ]0, s0]. (2.3)

By the former condition in (1.9), we can find a sequence (cn)n ⊂ ]0, s0[ such
that cn ↘ 0 and

F (cn)

cnp
→ 0. (2.4)

Let ]a, b[ be the projection of Ω onto, say, the x1-axis and consider, for each n,
the initial-value problem

−(|v′|p−2v′)
′
= λf(v) in [a, b[, (2.5)

v(a) = cn,

v′(a) = 0 .

By a local solution of (2.5) we mean a function v defined on some interval
I ⊂ [a, b[, with a ∈ I, which is of class C1 in I, together with |v′|p−2v′, and
satisfies the equation in I and the initial conditions. It is known that (2.5)
admits local solutions, which can be extended to a right maximal interval of
existence [a, ω[⊂ [a, b[. Let v be a noncontinuable solution of (2.5) and define

σ = sup{t ∈]a, ω[ |
1

2
cn < v(s) < s0 in [a, t]}.

We want to prove that σ = b. By (2.2), we immediately realize that |v′|p−2v′

and, hence, v′ are decreasing in [a, σ[. Hence, we have v′(t) < 0 in ]a, σ[. Multi-
plying the equation in (2.5) by v′ and integrating between a and t, with t ∈ ]a, σ[,
we obtain

p− 1

p
|v′(t)|p = λ(F (cn)− F (v(t)))

and then, by (2.3),

−v′(t) ≤

(
p

p− 1

)1/p
(λF (cn))

1/p. (2.6)

Now, assume, by contradiction, that σ < b and set v(σ) = limt→σ− v(t) =
1
2cn.

Integrating (2.6) between a and σ, we get

1

2
cn =

∫ σ
a

−v′(t) ≤

(
p

p− 1

)1/p
(λF (cn))

1/p diam(Ω).

Dividing by cn and passing to the limit, condition (2.4) yields a contradiction.
Hence, we can conclude that there is a sequence (vn)n of solutions of (2.5),



306 An elliptic problem with arbitrarily small positive solutions

defined on [a, b] and satisfying 12cn ≤ vn(t) ≤ cn in [a, b]. Therefore, setting, for
each n,

βn(x1, . . . , xn) = vn(x1) for (x1, . . . , xn) = x ∈ Ω̄,

we define a sequence (βn)n ⊂ C1(Ω̄) of upper solutions of problem (1.1), such
that, for every n,

1

2
cn ≤ βn(x) ≤ cn in Ω̄. (2.7)

Now, let us introduce the functional φ : W 1,p0 (Ω) ∩ L
∞(Ω) → R, defined by

φ(u) = 1
p

∫
Ω |∇u|

p − λ
∫
Ω F (u).

Let ζ ∈ C1(Ω̄) be a function such that ζ(x) = 1 in some closed ball B ⊂ Ω,
ζ(x) > 0 in Ω and ζ(x) = 0 on ∂Ω. By the former condition in (1.9), we can
find a number sλ > 0 such that F (s) ≥

−sp

λ
in [0, sλ]. On the other hand, the

latter condition in (1.9) yields the existence of a sequence (dn)n ⊂ ]0, sλ[, such

that dn ↘ 0 and
F (dn)
dnp

→ +∞. Hence, we get

φ(dnζ) =
1

p
dn
p

∫
Ω

|∇ζ|p − λ

∫
Ω\B
F (dnζ) − λ

∫
B

F (dn)

≤ dn
p

(
1

p

∫
Ω

|∇ζ|p +

∫
Ω

ζp − λ meas(B)
F (dn)

dn
p

)
< 0,

for all n large enough.

Now, we are in position of constructing a sequence (un)n of positive solutions
of problem (1.1), with maxΩ̄ un → 0. Since 0 is a lower solution and β1 is an
upper solution of (1.1), with minΩ̄ β1 > 0, there exists a solution u1 of (1.1),
satisfying 0 ≤ u1 ≤ β1 in Ω and φ(u1) = min{φ(u) |u ∈ W

1,p
0 (Ω), 0 ≤ u ≤ β1}.

Since we can find a positive number, say dn1 , such that dn1ζ ≤ minΩ̄ β1 in Ω
and φ(dn1ζ) < 0, it follows that φ(u1) < 0 and therefore u1 6≡ 0. Hence, u1 is
a positive solution of (1.1), which, by (2.7), satisfies maxΩ̄ u1 ≤ c1. Next, we
pick an upper solution, say β2, such that maxΩ̄ β2 < maxΩ̄ u1. Proceeding as
above, we find a solution u2 of (1.1) such that 0 ≤ u2 ≤ β2 in Ω and φ(u2) < 0.
Hence, u2 is a positive solution of (1.1), which satisfies maxΩ̄ u2 < maxΩ̄ u1 and,
by (2.7), maxΩ̄ u2 ≤ c2. Iterating this argument, we build a sequence (un)n of
distinct positive solutions of (1.1) satisfying maxΩ̄ un ≤ cn → 0. Thus, the
proof is concluded.
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[17] F. de Thélin, Résultats d’existence et de non-existence pour la solution pos-
itive et bornée d’une e.d.p. elliptique non linéaire, Ann. Fac. Sci. Toulouse,
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