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Abstract

The paper is concerned with existence results about subharmonic so-
lutions of some Hamiltonian systems. The existence of such solutions
is established using a variational approach and results about minima of
noncoercive functionals.

1 Introduction

In this paper we use some critical point theorems for noncoercive functionals
(see [4], [5], [6]) (and also [2]) to deduce the existence of periodic solutions of
some second order Hamiltonian systems and similar problems for semilinear el-
liptic partial differential equations. Extensions of these results to quasilinear
differential equations are also indicated. The results will be used to obtain exis-
tence results for subharmonic solutions of such problems. The nonlinear terms
involved have superquadratic growth. Thus we obtain existence results for sub-
harmonic solutions complementing those in [1] and [3], though the perturbation
terms considered here are different. For results concerning subharmonic solu-
tions of equations with subquadratic perturbation terms, we refer to [8].

The setting
Let E be a reflexive Banach space with norm norm || - ||, and pairing (-, -). Let
A:E— FE*
be a mapping such that the functional ¢ : E — R given by
u— (Au,u)
is weakly lower semicontinuous. Let us denote by
Yv:E—R
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238 On critical points for noncoercive functionals

a weakly continuous mapping whose level surfaces will be denoted by
S={ueE:¢Yu)=vecR}L

Suppose that ¢ is nonnegative and positive homogeneous of degree p > 1.
Further assume that

ker o = {u: p(u) = 0}

is a finite dimensional subspace of E such that
o(u+v) =), Yv € E, Vu € ker¢.

We also assume that F = kerp & X, where X is a closed subspace of E and
©|x is coercive in the sense that there exists ¢ > 0 such that

() = cllv]]”, Vv € X.

Concerning the functional 1) we also require that it be positive homogeneous of
degree a > 1.

We then have the following theorem. The theorem is established in [4],
[6]. The first part follows from properties of noncoercive functionals which
are coercive on some subsets, satisfying suitable properties, and the second
part from Liusternik’s theorem on Lagrange multipliers coupled with scaling
arguments.

Theorem 1 (a) Assume the above and also that

< ()
Yw—u) = P), Yv € E, Yu € ker p Nker.

(v —u)

Then the minimization problem

wW)=g§w@)

has a solution u € S.
(b) If o, 9 belong to class C, a # p, and if

(i) Y(u) <0, for someu € E
(i1) Y(u) >0, Yu € kergp
(i) if u € ker @ is such that ¥(u) = 0, then

plv—u) < @)

Yv—u) = P), VWeE.

Then the functional f = ¢ + ¥ has a nontrivial critical point.
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2 Periodic solutions of Hamiltonian systems

Let us consider the following system of second order ordinary differential equa-
tions defined by a function

G:(0,T) xRN = RV
—u"(t) + VuG(t,u) =0, 0 <t < T, (1)
subject to the periodic boundary conditions
u(0) = u(T), v'(0) = u/(T). (2)

With appropriate conditions imposed on G solutions of (1), (2) are critical points
of the functional

T T
Flu) = %/O |u’|2dt+/0 G(t, u)dt 3)

on the space

E = Wp*(0,7),R") (4)
= {ulor i ue W2 (RRY), u(t+T) =u(t), t € R},

and conversely. (See e.g. [7].)
In order to apply the above critical point theorem, we let the functionals ¢
and ¥ be defined by

and
T
W(u) = / G(t, u)dt.
0
We also impose the following requirement upon G :

G(t, \u) = X*G(t,u), A >0, a>2, uecRY
G(t,y) >0, vy eRY, v #0
Ju € E such that t(u) < 0.

These requirements allow us to apply the critical point theorem of the previous
section and we conclude the existence of a nontrivial solution u of (1), (2). In
particular one minimizes the functional ¢ on sets S given by

S:{uGE:/TG(t,u)dt—c,}
0

where c is a negative constant.
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Subharmonic solutions

We note that whenever the function G : R x RY — R is such that
G(t+T,u) = G(t,u), t € R, u € RN

then along with the problem (1), (2) we may also consider, for any natural
number k£ > 1, the equations

—u"(t) + V,G(t,u) =0, (5)
subject to the periodic boundary conditions
u(0) = u(kT), v'(0) = u'(kT) (6)

whose solutions will be critical points of the functional

1 kT 9 kT
folw) = / WiPdt+ [ Gt w)dt M)
2 0 0
on the space
By, = W22 ((0,kT),RY). (8)

We recall how the existence of a critical point for the functional f; was
obtained. We write

fr = ¢k + Y,
where the functionals ) and v are defined by

1 kT 9
o) =5 [l
0

and

0
and have that the set

Sk ={u:p(u)=-1} #£0

with the Fréchet derivative ) # 0 on Sj. (Note that the manifold S could
equally well have been chosen as

Sk =A{u: ¢i(u) = —c} #0,

where c is any positive number. Since this manifold is weakly closed and the
functionals ¢ and vy satisfy the conditions of Theorem 1 we have that the
minimization problem

min @ (v) = @ (ur) = mx 9)
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has a solution uy, and hence there exists a Lagrange multiplier uj such that

@ (ur) + et (uk) =0, (10)

which by the homogeneity of the functionals implies that
25 (uk) — apr =0,

i.e.
2
U = —Mg = N,
a

which implies that g is positive and hence we may let
Vg = nllc/(a—2)uk’

and obtain that vy is a nontrivial critical point of f.

The question now arises whether, for £ > 1, it is possible that vy is a critical
point of fp,, p < k, or phrased differently: whether vy, which is a kT periodic
solution of (5), can already be a pT periodic solution of the same system. Note
that, of course, the periods of v and wu; are the same.

We shall give an answer to this question in a more specific case; namely we
shall assume that

G(tu) = —g(O)lul”,

where g : R — R is a T periodic function which is essentially bounded and has
the property that
meas{t : g(t) < 0} #0,

T
/ g>0,
0

where meas{ A} denotes the Lebesgue measure of a set A.
We hence have the problems

and

—u"(t) + g(t)|u|*"*u =0, (11)

subject to the same periodic boundary conditions.

Let us choose a nonzero function € C([0, T], RY) such that n(0) = 0 = n(T)
whose support suppn C A with A = {t: g(¢t) < 0}. It then follows that n € Ey,
for any k > 1 and 9(n) < 0. Hence

n
(=2 3" o))

1T,
my < 5/ 7% = c.
0

We therefore have the lemma.

= € Sk

Q=

and therefore
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Lemma 1 There exists a constant ¢ > 0, independent of k, such that
mg S c,
where my, is defined by (9).

We recall that

kT
1 / o(t)|ux]* = 1. (12)

(07

Hence, since ug is not constant, if the minimal period of uy is not k7" it must

equal pT', where 0 = % is a positive integer. It therefore follows that

pT
20 [ a0l =1 (13)

and
1 PT 1
1 / g% ] = —1, (14)
0

[0

ie wp:= 0oy € Sp. We therefore obtain the following:
1 o /12
my < pp(wp) = 3 |wp|
0
1 T
S Ll AT (15)
2 0

1 2 1 T 2
= 5o [
0

— 9(2—a)/amk ,

or
g\ &/ (@=2)
<—> my <my < c.
p
The above formula lets us deduce the following theorem. The proof is a simple
indirect argument using this formula.

Theorem 2 Let {k;} be an unbounded increasing sequence of positive integers.
Then the minimal periods of {ug,} tend to infinity. In particular for all primes
k, sufficiently large, up has minimal period kT .

3 Periodic solutions of elliptic problems

In this section we briefly point out how the results on Hamiltonian systems may
be extended to elliptic problems. We shall discuss this in the case of dimension
2, it will be clear that similar results may be obtained (with suitable restrictions
on the power «) for systems in more independent variables.
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Periodic and subharmonic solutions

Let g : R? — R be such that there exists X = (X1, X3), X; >0, i = 1,2 such
that
g(z + X) = g(z), = € R (16)

(We say g is periodic with period X.) Further assume that g is essentially
bounded and X;, Xo are the least positive numbers such that (16) holds. We
let

P= {.’13: (1131,:22) :0 < T §X1,0§{172 < XQ}

and assume ¢ has the property that
meas{z € P: g(z) <0} #0,

and [, g > 0.
We now consider the problem (again o > 2)

—Au+ g(z)|u|*?u =0, z € R? (17)
subject to the periodic boundary condition
u(z + X) = u(x), v € R (18)

We set
Xi1=X, Xy = (kX1,1X5),

where k,[ are positive integers. We, of course, then have
g(z + Xpy) = g(z), € R?

and hence, in analogy with the previous section, we also consider equation (17)
subject to the (subharmonic) constraints

u(z + Xp1) = u(z), © € R2 (19)
The appropriate Sobolev spaces and functionals will be
By ={ue W5 (RLRY) s u(z + Xiy) = u(z), = € R?}, (20)

loc

g = ok + Vi,

where the functionals ¢y,; and ¥ ; are defined by

1
i1 (u) = 5/ |Vu|2dm
Pr,:

and

%,z(u):/ﬁl> g(x)|u|* dx
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and have that the set

Sk = {u: () = -1} #0,

with
Pri={z:0<z < Xy,},

employing the usual partial ordering of R?2. We proceed as in the previous section
and find that the functional ¢ ; will assume its minimum on the manifold Sy ;
and then one finds a Lagrange multiplier and after rescaling a critical point for
the functional f; ;. Such critical points, on the other hand will be solutions uy
of (17) subject to the constraint (19). Following the calculations of the previous
section one may now prove the following theorem.

Theorem 3 Let {(k,1)} be an unbounded increasing sequence of tuples of posi-
tive integers. Then the minimal periods of {uy;} tend to infinity. In particular
for all tuples of primes k,l with k+1, sufficiently large, ui,; has minimal period
(kX1,1X5).

4 Quasilinear problems

Results similar to the above may be obtained for the quasilinear problem (now
a>p>1)

—div (|[VuP*Vu) + g(z)|u|* *u=0, z € R", n > 1, (21)
subject to the periodic boundary condition
u(lz+ X)=u(z), z€R", X e R™.
The appropriate Sobolev spaces and functionals will be

E={ueW.? (R™,RY) tu(z + X) = u(z), z € R"},
f=e+y,

where the functionals ¢ are defined by

p

1
o) = / Vul? de,
P

and 1 as above.
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