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Abstract

For a gas diffusing through a porous solid and reacting with it isother-
mally and irreversibly, the mathematical formulation consists of a non-
linear parabolic PDE for the gas concentration coupled with an ODE for
the solid concentration. Under the assumption of constant porosity, a
fairly complete analysis was provided by Diaz and Stakgold, [3]. Here
some of the results are extended to the case when the porosity increases
as the solid is consumed. In particular, estimates are given for the time
to full conversion of the solid when the reaction rate is proportional to
the product of the gas concentration and a fractional power of the solid
concentration.

1 Introduction and Preliminary Results

Consider a gas diffusing through a porous solid and reacting irreversibly and
isothermally with the solid matrix (or some specified component of it). The solid
is being consumed as the reaction proceeds causing an increase in the poros-
ity, that is, the fraction of the volume available to the gas. Although porosity
changes have been considered in geophysical problems (see [2], for instance),
the methods and results do not seem to apply here. In [3], we dealt with gas–
solid reactions while neglecting porosity changes; we established existence and
uniqueness as well as various estimates of physical interest. In the present arti-
cle, we do take into account the porosity changes but we also restrict ourselves
to simpler reaction rates, boundary conditions, and initial conditions than in [3].
We assume that the reaction can be regarded as distributed throughout the do-
main Ω occupied by the porous solid with a rate (per unit volume) proportional
to CSm, where C and S are the nondimensional gas and solid concentrations,
respectively. The positive exponent m can be smaller than 1 in some realistic
settings: in the Sohn–Szekely model (see [4]) for instance, the porous solid con-
sists of a matrix of very small spherical grains between which the gas diffuses; if
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the reaction is confined to the grain surface and is proportional to its area, then
the equivalent distributed reaction rate has m = 2/3. An interesting feature of
the nonlipschitz case m < 1 is that the solid is fully converted in a finite time
T . One of our principal aims is to provide an estimate for T .
Let us now turn to the formulation of the reaction–diffusion problem in an

initially homogeneous porous solid occupying the bounded domain Ω in Rn,
when the gas concentration on the boundary ∂Ω is maintained at a constant
positive value. We take the diffusivity as constant but allow the porosity to
vary with the solid concentration. After straightforward nondimensionalization
and rescaling of the time variable, the mass balances for the solid and gas
concentrations yield the system

St = −SmC x ∈ Ω, t > 0 , (1)

(εC)t −∆C = −λSmC(= λSt) x ∈ Ω, t > 0 , (2)

where the positive constant λ is Thiele’s modulus. The porosity ε is related to
S through

ε = ε0 + ε1(1− S) , (3)

with ε0 and ε1 positive constants. The non–dimensional concentration C and S
satisfy the initial and boundary conditions

S(x, 0) = 1 , C(x, 0) = C0(x) , C(∂Ω, t) = 1 , (4)

where 0 ≤ C0(x) ≤ 1. We seek solutions of (1)–(4) with S ≥ 0, C ≥ 0.
A few preliminary remarks are in order:

a) S(·, t) is decreasing so that ε increases with time.

b) If S(x0, t0) = 0, then S(x0, t) ≡ 0 for t ≥ t0. (A similar result is not
necessarily true for C as gas is being supplied through the boundary.)

c) 0 ≤ C(x, t) ≤ 1. This follows from the maximum principle: expanding (2),
we obtain the inequality

Ct −
1

ε
∆C +

εt

ε
C ≤ 0

with εt ≥ 0 and 0 < ε0 ≤ ε ≤ ε0 + ε1. Thus the coefficient of C is
nonnegative and the coefficient of ∆C is a bounded positive function.
Hence C obeys a uniform parabolic inequality (see [5]) and its maximum
occurs on the parabolic boundary so that C ≤ 1.

d) On ∂Ω, C ≡ 1 so that (1) becomes an ordinary differential equation for
S(∂Ω, t) with solution

S = Bm(t) =

{
[1− (1−m) t]1/1−m+ m 6= 1
e−t m = 1

(5)
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where z+ is defined as max (0, z). For m ≥ 1, Bm(t) is positive for all t
and tends to 0 as t→∞; for m < 1, Bm(t) decreases until t =

1
1−m where

it vanishes and remains zero thereafter (note that Bm(t) is continuously
differentiable so that it is a classical solution of the differential equation).

At interior points, (1) yields

S(x, t) = Bm

(∫ t
0

C(x, τ) dτ

)
(6)

which could be used to convert (2) into an integro–differential equation
for C alone, but we shall not avail ourselves of that formulation. Let us
note that if m ≥ 1, S(x, t) > 0 for all x and t. For m < 1, full conversion
of the solid occurs when the argument of Bm in (6) has reached the value
1
1−m for all x; thus we can characterize the time T to full conversion from

min
x∈Ω̄

∫ T
0

C(x, τ) dτ =
1

1−m
. (7)

e) The steady state for (1)–(4) is S ≡ 0, C ≡ 1.

f) We shall not deal here with existence and uniqueness, although the methods
of [3] can be adapted for that purpose. We can also show that S and C
approach their respective steady states uniformly on Ω̄ as t→∞.

2 Upper Bound for the Time T to Full

Conversion

Following [6], we introduce the time–integrated difference between the gas con-
centration and its steady–state value:

η(x, t) =

∫ t
0

[1− C(x, τ)] dτ ; ηt = 1− C ≥ 0 . (8)

In terms of η, (6) reduces to

S = Bm(t− η) . (9)

Integrating (2) with respect to time from 0 to t, we obtain

εηt −∆η = ε0(1− C0) + (ε1 + λ)(1 − S) ; η(x, 0) = η(∂Ω, t) = 0 . (10)

Since ε and S are functions of η through (9) and (3), (10) is a scalar PDE for
η. In (10), unlike (2), ε is not differentiated. From (10) it is clear that η(x, t)
increases in time to the steady state value

η∞(x) = (ε1 + λ)w(x) + (ε0) z(x) , (11)
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where w and z satisfy the Poisson equations

−∆w = 1 , x ∈ Ω ; w(∂Ω) = 0 (12)

−∆z = 1− C0(x) , x ∈ Ω ; z(∂Ω) = 0 . (13)

We observe that t − η(x, t) =
t∫
0

C(x, τ) dτ is an increasing function of time

tending to ∞ as t→∞. We can therefore rewrite (7) as

min
x∈Ω̄
[T − η(x, T )] =

1

1−m
, (14)

and, hence,

T =
1

1−m
+max
x∈Ω̄

η(x, T ) ≤
1

1−m
+ (ε0) ‖z‖+ (λ+ ε1) ‖w‖ , (15)

where ‖ ‖ stands for the sup norm.

3 The Pseudo–Steady–State Problem and a Lower

Bound for T

The rescaling which occurs in passing from the original mass balances to the
nondimensional versions (1) and (2) usually yields ε� 1. It is therefore common
practice among chemical engineers to set ε = 0 in (1)–(4). This yields the
pseudo–steady–state (or P.S.S.) problem

Ŝt = −ŜmĈ x ∈ Ω , t > 0 (16)

−∆Ĉ = −λŜmĈ(= λŜt) x ∈ Ω , t > 0 (17)

with initial and boundary conditions

Ŝ(x, 0) = 1 , Ĉ(∂Ω, t) = 1 . (18)

No initial condition can be imposed on Ĉ since Ĉ(x, 0) is determined as the
solution of the elliptic equation

−∆Ĉ(x, 0) = −λĈ(x, 0) ; Ĉ(∂Ω, 0) = 1 . (19)

The solution of (19) is unique and positive. As in (8) we introduce

η̂(x, t) =

∫ t
0

[1− Ĉ(x, τ)] dτ , η̂t = 1− Ĉ ≥ 0 (20)

so that

Ŝ = Bm(t− η̂) . (21)
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Integrating (17) from time 0 to time t, we obtain

−∆η̂ = λ(1− Ŝ) , η̂(∂Ω, t) = 0 . (22)

In view of (21), we see that (22) is a scalar elliptic equation for η̂. It is easy
to show that, as t → ∞, Ŝ(x, t) decreases monotonically to zero and Ĉ(x, t)
increases monotonically to 1. For m < 1, the time T̂ to full conversion in the
PSS model is characterized by

min
x∈Ω̄
[T̂ − η̂(x, T̂ )] =

1

1−m
.

Since Ŝ ≡ 0 for t ≥ T̂ , we see from (22) that η̂(x, T̂ ) = λw(x), where w is
defined from (12). Therefore

T̂ =
1

1−m
+ λ ‖w‖ , (23)

and we have an explicit expression for T̂ in terms of the solution of the simple
Poisson problem (12) about which much is known (see, for instance, [1]). If, for
instance, Ω is a ball of radius a in Rn, then

w =
a2 − |x|2

2n
and ‖w‖ =

a2

2n
.

Next, we show that T̂ is a lower bound to T if C0(x) in (4) is smaller than
Ĉ(x, 0) as given by (19). The result will follow easily if we can prove that η̂ ≤ η.
We shall do so by showing that η̂ is a subsolution to the parabolic problem (10)
rewritten as Aη = 0, where

Aη = ε[ηt − 1] + ε0C0 −∆η − λ[1− S] (24)

and S, ε are regarded as functions of η through (9) and (3).
Since η̂ satisfies (22) with Ŝ given by (21), the last two terms on the right

side of (24) cancel out for Aη̂. Hence Aη̂ ≤ 0 if η̂t ≤ 1 − C0 or, equivalently, if
C0(x) ≤ Ĉ(x, t). This latter condition holds if

C0(x) ≤ Ĉ(x, 0) (25)

because Ĉ(x, t) is monotonically increasing in time. With η̂ satisfying the same
initial and boundary conditions as η, it follows that η̂ is a subsolution of (24).
Appealing to uniqueness and the theory of monotone operators, we conclude
that η̂ ≤ η. Hence t − η̂(x, t) ≥ t − η(x, t) and since both t − η̂ and t − η are
increasing in t, t − η̂ will reach 1

1−m throughout Ω̄ before t − η. We therefore
conclude that, for C0(x) satisfying (25),

T̂ ≤ T . (26)

Combining (26) and (15) we obtain the bounds

T̂ ≤ T ≤ T̂ + ε0 ‖z‖+ ε1 ‖w‖ (27)

where T̂ is given explicitly by (23) and z is the solution of (13). Note that
‖z‖ ≤ ‖w‖ so that we can replace ‖z‖ by ‖w‖ in the upper bound in (27).
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