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Abstract

Complex formation is used as a unified approach to derive represen-
tations and approximations of the functional response in predator prey
relations, mating, and sexual disease transmission. Applications are given
to the impact of a generalist predator on a prey population and the spread
of a sexually transmitted disease in a multi-group heterosexual population.

1 Introduction

In mathematical models of such diverse bioscientific areas as demographics, ecol-
ogy and epidemics the following quite different looking questions have complex
(or pair) formation as a hidden common theme:
How does the number of marriages depend on the number of eligible male

and female singles?
How does the number of prey which is killed and eaten depend on the number

of prey available and on the number of predators?
How does the number of sexual contacts depend on the number of available

individuals?
The correct modeling of pair formation (often called the two-sex problem)

is an important issue in human demography, we refer to Hadeler et. al. (1988)
for a discussion and the history of various marriage functions. Predator-prey
relations are important in many ecosystems. The classical experimental and
theoretical work by Holling (1965, 1966) studies the functional response of one
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256 Complex formation approach in modeling predator prey relations

predator to the amount of available prey, but does not necessarily give the func-
tional response for several predators. The controversy concerning the paradox
of enrichment has led to various modifications (Beddington, 1975, DeAngelis et
al., 1975, e.g.), among others to so-called ratio-dependent models (see Arditi
and Ginzburg (1989), Huisman and De Boer, 1997, Kuang and Beretta, 1998,
Cosner et al., 1999, e.g., and the references mentioned there).
The question of the correct functional relationships becomes even more dif-

ficult, if several species are involved or if the population needs to be struc-
tured into various groups or according to age (see Castillo-Chavez and Velasco-
Hernandez, 1994, for a survey and many references).
Once complex formation is revealed as underlying theme of these different

phenomena, it is suggestive to apply the Michaelis-Menten (1913) quasi-steady-
state approach from enzyme kinetics to model this process from first princi-
ples. Hsu and Fredrickson (1975) seem to be first to use this approach for
marriage and mating models, Heesterbeek and Metz (1993) add mathemati-
cal rigor and include sexually transmitted diseases, and De Boer and Perelson
(1995), Borghans, De Boer and Segel (1996) and Huisman and De Boer (1997)
(and some earlier papers cited therein) apply it to T cell proliferation or/and
predator-prey models.
Unfortunately an explicit solution of the quasi-steady state equations has

been elusive in the multiple group or multiple species case. Hsu and Fredrickson
(1975) find a closed solution in the case of homogeneous mixing, and De Boer
and Perelson (1995), Borghans, De Boer and Segel (1996) and Huisman and De
Boer (1997) present approximations in the case of one prey and many predator
species or analogous situations.
The aims of this note are the following:

• present a unified modeling approach to mating functions, predator-prey
relationships and contact rates in sexually transmitted diseases (Section
2 and Appendix A)

• derive approximations and estimates for the case of many prey and many
predator species and analogous situations, including approximations of
symmetric or asymmetric Beddington type, Michaelis-Menten alias Monod
alias Holling II type, and of Ross type (Section 2 and Appendix B)

• use the explicit solution of the steady state equations in the case of pro-
portionate mixing to compare the various approximations (Section 3)

• illustrate that interesting features of qualitative behavior may be lost in
the impact of a generalist predator on a prey population, if the explicit
solution of the quasi-steady-state approximation is replaced by approxi-
mations (Section 4)

• Use the complex formation approach to model the incidence function for
sexual disease transmission in a multigroup hetero-sexual population, and
illustrate how the basic reproduction number can be determined for the
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case of separable mixing in spite of seemingly overwhelming complexity
(Section 5).

2 The formation of complexes

Assume that there are m species of prey and n species of predators and that
Xi denotes the size of the i

th prey species and Yl the size of the l
th predator

species.

Alternatively let there be m groups of females and n groups of males in the
sexually active part of a population with Xi denoting the sizes of the female
groups and Yl the sizes of the male groups. In this section these sizes are
assumed to be constant in time.

Both predation and sexual contact require the formation of a complex which,
for simplicity, consists of two individuals. We assume that the complex has two
stages, engagement (courtship) and consumption (handling, mating).

Let Cil be the number of complexes in the engagement stage with one in-
dividual from Xi and the other individual from Yl, while Dil is the number of
complexes in the consumption stage. In a predator-prey model, Dil can also
be interpreted as the number of predators of species l that are handling (eating
and digesting) prey of species i (cf. Huisman, De Boer, 1997).

Let πj be the average probability of an individual from Xj to be active, i.e.,
to be involved in a complex or to be available to form a complex, while π̃l is
the average probability of an individual from Yl to be active. These numbers
between 0 and 1 are called the activity or availability levels of the respective
group or species. Since every active (or available) individual is either an active
(or available) single or involved in a complex, we have the following laws,

πiXi = xi +

n∑
k=1

[Cik + κDik], i = 1, . . . ,m,

(2.1)

π̃lYl = yl +
m∑
j=1

[Cjl +Djl], l = 1, . . . , n,

where xi is the number of active singles from Xi and yl is the number of active
singles from Yl.

For a mating model κ = 1, while κ = 0 for a predator prey model because
the prey is already dead in the consumption stage.

The dynamics of complexes is described by the following differential equa-
tions based on mass action type kinetics,

C′il = γilxiyl − ρilCil,

(2.2)

D′il = pilρilCil − σilDil.
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Here 1/γil is the average length it takes a given pair of an available Xi single
and an available Yl single to get together, while 1/ρil is the average length of
the first stage and 1/σil the average length of the second stage of the complex.
Of course it is possible that a complex is also dissolved by natural death of
one of the two individuals, but the duration of the stages is assumed to be so
short that this can be neglected. pil is the probability with which the complex
actually progresses from the first to the second stage. In a predator prey model,
this is the probability with which a predator from species i manages to kill a
prey from species l without being killed itself in the process.
The following theorem concerning global existence and uniqueness of solu-

tions of (2.1) and (2.2) is proved in Appendix A.

Theorem 2.1 For all initial data there exists a unique local solution of (2.1),
(2.2). Solutions which are non-negative initially (meaning that also xi, yl are
non-negative initially), exist for all forward times and remain non-negative.

At this point it must be mentioned that, in the applications we have in mind,
equations (2.1) and (2.2) are only part of larger models and that Xi and Yl vary
in time, while we assume in this section that they are constant. One would like
to simplify the large models by using a quasi-steady-state approach for (2.1),
(2.2), which consists in replacing Cil and Dil by the steady states C

∗
il and D

∗
il of

(2.1), (2.2). The basic assumption, which guarantees that one obtains a useful
approximation this way, requires Xi and Yl to vary much more slowly than
the number of complexes. A rigorous mathematical justification can be based
on the theory of singular perturbations. Heesterbeek and Metz (1993) prove
for one stage complexes that one obtains useful approximations on finite time
intervals. Conditions which guarantee the preservation of asymptotic stability
can be derived from Hoppensteadt (1974).
In any case it is necessary that (2.1) and (2.2), for time-independent Xi and

Yl, have unique and globally asymptotically stable steady states. For one stage
complexes this has been shown by Heesterbeek and Metz (1993) using Lyapunov
functions. Using different methods, we at least show uniqueness (Appendix
B) for the two stage model and give sufficient conditions for local and global
asymptotic stability (Theorem 2.3, Appendices C and D). These conditions
basically say that the time it takes to find a partner for forming a complex is
long compared to the duration of the stages of the complex.
The equations for the steady state are obtained by setting the derivatives

equal to 0 in (2.2),

C∗il = δilx
∗
i y
∗
l , D∗il =

pilρil

σil
C∗il,

x∗i = πiXi −
n∑
k=1

[C∗ik + κD
∗
ik], (2.3)

y∗l = π̃lYl −
m∑
j=1

[C∗jl +D
∗
jl],
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with
δil =

γil

ρil
. (2.4)

We expedite the algebra by introducing

x∗i = uiπiXi,

y∗l = wlπ̃lYl, (2.5)

C∗il = KilδilπiXiπ̃lYl.

Then

Kil = uiwl,

ui = 1−
n∑
k=1

π̃kYkξikδikKik, (2.6)

wl = 1−
m∑
j=1

πjXj ξ̃jlδjlKjl,

with

ξjk = 1 + κ
pjkρjk

σjk
, κ ∈ {0, 1}, ξ̃jk = 1 +

pjkρjk

σjk
. (2.7)

From (2.6) we can derive separate fixed point equations for the vectors u and
w. In general it is not possible to solve these fixed point equations explicitly,
but it can be shown that a unique solution exists and can be approximated by
successive iterations (see Appendix B).

Theorem 2.2 There exists a unique equilibrium of the system (2.1), (2.2),
i.e., a unique solution of the algebraic system (2.3). It can be found as limits of
successive approximations for the vectors u and w in (2.6).

As Hsu and Fredrickson (1975) already noticed in an age-dependent mating
model, an explicit formula for the equilibrium can be found under the assump-
tion of proportionate mixing (see Section 3). In the general case, we at least
have estimates from below and from above (Appendix B). In the following we
write C and D rather than C∗ and D∗. The estimate from below is reminiscent
of Ross solutions (Castillo-Chavez, Busenberg, 1991),

Cil ≥
πiXi

1 +
∑m
j=1 ξ̃jlδjlπjXj

δil
π̃lYl

1 +
∑n
k=1 ξikδikπ̃kYk

, (2.8)

the estimate from above has the following form,

Cil ≤
πiXi

1 +

m∑
j=1

ξ̃jlδjlπjXj

1 +
∑n
k=1 ξjkδjkπ̃kYk

δil
π̃lYl

1 +

n∑
k=1

ξikδikπ̃kYk

1 +
∑m
j=1 ξ̃jkδjkπjXj

. (2.9)
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These estimates can be improved by iteration (Appendix B), but, as seen in the
last one, reach the limits of manageability very fast.
If the γil are very small compared with the ρil and σil (e.g., if the time

needed to find one prey is large compared with the time needed to eventually
hunt it down, kill it, eat and digest it), formula (2.8) provides a reasonable
approximation, which we call the Ross approximation, but we have reason to
believe in general (and have proved it for proportionate mixing in Section 3)
that extensions of the formulas derived by Beddington (1975) and DeAngelis et
al. (1975) are as good or even better (Appendix B),

Cil ≈
δilπiπ̃lXiYl

1 +
∑n
k=1 ξikδikπ̃kYk +

∑m
j=1 ξ̃jlδjlπjXj

. (2.10)

We mention that (2.10) is a lower estimate of Cil if m = 1 or n = 1 (Appendix
B).
In prey-predator models where ξik < ξ̃ik with the difference being possibly

considerable, it is suggestive to mix the estimates (2.8) and (2.9) in order to
obtain an approximation (see Appendix B, in particular (B7) for the justifica-
tion),

Cil ≈
πiXi

1 +

m∑
j=1

ξ̃jlδjlπjXj

δil
π̃lYl

1 +

n∑
k=1

ξikδikπ̃kYk

1 +
∑m
j=1 ξ̃jkδjkπjXj

.

Multiplying the factors out, we obtain

Cil ≈
πiXiδilπ̃lYl

1 +
m∑
j=1

ξ̃jlδjlπjXj +
n∑
k=1

ξikδikπ̃kYk
1 +

∑m
j=1 ξ̃jlδjlπjXj

1 +
∑m
j=1 ξ̃jkδjkπjXj

. (2.11)

Notice that this formula coincides with the symmetric formula (2.10), if there
is only one predator species. For one prey species, this formula is the same as
formula (13) which De Boer and Perelson (1995) obtain for T cell proliferation
by a Padé approximation. While the symmetric situation in T cell proliferation
may not allow a generalization of the one-antigen many-T-cell-clones scenario to
a scenario with many antigen strains and many T cell clones, the asymmetry in
the predator-prey relationship makes such a generalization possible. The same
holds for mating if one sex vastly outnumbers the other.
Under proportionate mixing (Section 3), we will find a flip-flop approxima-

tion which is an estimate from above for Cil and is sometimes closer to Cil than
the approximation (2.10) and which can formally be generalized as

Cil ≈
δilπiπ̃lXiYl

1 + max
{ ∑n

k=1 ξikδikπ̃kYk,
∑m
j=1 ξ̃jlδjlπjXj

} . (2.12)

In general, we see that the right hand side of (2.12) is larger than the right hand
side of (2.10), but we could not determine under which conditions it is a better
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approximation. The following compound parameters appear in the last three
formulas and the subsequent sections, so we recall their definition in terms of
original parameters (cf. (2.4) and (2.7)),

ξjkδjk =
γjk

ρjk
+ κ

pjkγjk

σjk
, ξ̃jkδjk =

γjk

ρjk
+
pjkγjk

σjk
. (2.13)

Again, under the condition that the γil are very small compared with the
ρil and σil (e.g., the time it takes to locate a potential mate is large compared
with the time spent on courtship and the actual mating), we also have global
asymptotic stability of the equilibrium (Appendices C and D).

Theorem 2.3 The unique equilibrium of system (2.1), (2.2) is globally asymp-
totically stable for non-negative solutions (in the sense of Theorem 2.1) if

θ

n∑
l=1

π̃lYl + θ̃

m∑
i=1

πiXi < 1,

θ = max
ik

(γik
ρik
+ κ

pikγik

σik

)
,

θ̃ = max
ik

(γik
ρik
+
pikγik

σik

)
.

For local asymptotic stability alone, the assumption in Theorem 2.3 can be
slightly relaxed.

3 Proportionate mixing

The term proportionate mixing comes from the sexually transmitted disease
literature where it means that, apart from different activity levels, the different
groups mix homogeneously. By abuse of language, we speak about proportionate
mixing in the context of complex formation if the proportions

γjl

ρjl
,

pjlγjl

σjl

are independent of j and l. In other words, if there exist constants c, c̃ > 0 such
that

γjl = cρjl = c̃
σjl

pjl
.

This means, in the context of predator prey interaction, e.g., that there is a
species independent proportion between the time it takes the predator to find
the prey and the time spent on trying to kill the prey and the time spent on
eating and digesting the prey multiplied with the probability of killing the prey
without being killed.
By (2.11), proportionate mixing implies that the compound parameters

ξjkδjk and ξ̃jkδjk do not depend on j and k. For the subsequent considera-

tions it is actually sufficient that ξjkδjk do not depend on j, while ξ̃jkδjk do
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not depend on k. It then follows from (2.6) that ui is independent of i, wl is
independent of l and Kil = K is independent of i and l. Further K satisfies

K = (1− ȳK)(1− x̄K)

with

x̄ =

m∑
j=1

πjXj ξ̃jlδjl, ȳ =

n∑
k=1

π̃kYkξikδik. (3.1)

Solving this quadratic equation we obtain

K =
1

2x̄ȳ

[
1 + x̄+ ȳ −

√
(1 + x̄+ ȳ)2 − 4x̄ȳ

]
.

The following form is more useful,

K =
2

1 + x̄+ ȳ +
√
1 + 2(x̄+ ȳ) + (x̄ − ȳ)2

. (3.2)

Among other things it reveals why we have taken this and not the other root
which would be infinity for x̄ = ȳ = 0.
Recalling (2.3) we have

D∗il =
pilρil

σil
C∗il, (3.3)

C∗il =
2δilπiXiπ̃lYl

1 + x̄+ ȳ +
√
1 + 2(x̄+ ȳ) + (x̄ − ȳ)2

,

with x̄ and ȳ from (3.1). We call this formula for Cil and Dil the complex forma-
tion functional response. Apparently it was first derived by Hsu and Fredrickson
(1975) in the context of age-dependent mating (so the heterogeneity of the prob-
lem came from age structure rather than different subgroups or species) and then
rediscovered for predator prey models by Huisman and De Boer (1997) for the
case of one prey and one predator species. Heesterbeek and Metz (1993) found
a related formula for sexual disease transmission in homosexual populations.
Ruxton, Gurney, and de Roos (1992) derived a different predator prey func-
tional relationship with a square root expression; their derivation is also based
on Michaelis-Menten type time scale arguments but does not really involve the
formation of prey predator complexes but aggressive encounters between differ-
ent predators.
While formula (3.3) may look complicated, it is still elegant because of its

symmetries and also very informative, because it will give us some indication
under which circumstances simpler functional responses are good approxima-
tions of the complex formation approach. In the next section, in a predator
prey model, we will even see that we may loose interesting qualitative behav-
ior of the model dynamics when we replace the complex formation functional
response by an approximation.
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4 Estimates and comparisons

The formulas (3.2) and (3.3) in the previous section show that the function

ζ(x̄, ȳ) = 1 + x̄+ ȳ +
√
1 + 2(x̄+ ȳ) + (x̄− ȳ)2

plays a central role in the complex formation functional response. In this section
we investigate whether it can be approximated by a simpler expression. The
following estimates hold.

Lemma 4.1 2(1 + max{x̄, ȳ}) ≤ ζ(x̄, ȳ) ≤ 2(1 + x̄+ ȳ).

Proof: The second estimate is obvious. As for the first,

ζ(x̄, ȳ) ≥ 1 + x̄+ ȳ +
√
1 + 2|x̄− ȳ|+ (x̄ − ȳ)2 = 1 + x̄+ ȳ + 1 + |x̄− ȳ|.

Both estimates are candidates for approximations. Choosing the upper es-
timate would lead to the functional response suggested by Beddington (1975)
and DeAngelis et al. (1975). In order to find out under which conditions one
estimate is better than the other, we derive the following estimates for their
distances from ζ.

Lemma 4.2

2x̄ȳ

1 + x̄+ ȳ
≤ 2(1 + x̄+ ȳ)− ζ(x̄, ȳ) ≤

2x̄ȳ

1 + max{x̄, ȳ}
, (a)

2min{x̄, ȳ}

1 + max{x̄, ȳ}
≤ ζ(x̄, ȳ)− 2(1 + max{x̄, ȳ}) ≤

2min{x̄, ȳ}

1 + |x̄− ȳ|
. (b)

Proof: Notice that

2(1 + x̄+ ȳ)− ζ(x̄, ȳ) = 1 + x̄+ ȳ −
√
1 + 2(x̄+ ȳ) + (x̄− ȳ)2

=
4x̄ȳ

1 + x̄+ ȳ +
√
1 + 2(x̄+ ȳ) + (x̄− ȳ)2

.

Replacing x̄+ ȳ by |x̄− ȳ| or vice versa yields the two estimates in (a). Further

ζ(x̄, ȳ)− 2(1 + max{x̄, ȳ}) =
√
1 + 2(x̄+ ȳ) + (x̄− ȳ)2 − (1 + |x̄− ȳ|)

=
2(x̄+ ȳ − |x̄− ȳ|)√

1 + 2(x̄+ ȳ) + (x̄− ȳ)2 + (1 + |x̄− ȳ|)

=
4min{x̄, ȳ}√

1 + 2(x̄+ ȳ) + (x̄− ȳ)2 + (1 + |x̄− ȳ|)

Replacing x̄ + ȳ by |x − y| or vice versa under the square root yields the two
estimates in (b).
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Approximations

Lemma 3.2 (a) shows that, if x̄ and ȳ are small, ζ(x̄, ȳ) ≈ 2(1 + x̄ + ȳ) and we
can approximate C by a functional response à la Beddington and DeAngelis et
al.

Cil ≈
δilπiXiπ̃lYl

1 + x̄+ ȳ
. (3.4)

The functional response (3.4) can also be derived as an approximation of the
square root formula obtained by Ruxton et al. (1992) and from effects of spatial
grouping (Cosner et al., 1999).
However, if one of x̄ and ȳ is small and the other large, the following ap-

proximation of flip-flop type is better than the approximation (3.4),

Cil ≈
δilπiXiπ̃lYl

1 + max{x̄, ȳ}
. (3.5)

As seen from Lemma 3.2, the flip-flop response is no good approximation at
all, if x̄ and ȳ are about equal, even if both are small. As we will see, the
approximation (3.4) has the advantage to extend to general mixing (see (2.8) and
Appendix B), while this is not clear for the flip-flop approximation. In predator-
prey models, if ȳ < x̄ (i.e., the number of predators is small compared to the
number of prey), the flip-flop approximation reduces to the Michaelis-Menten
(1913) alias Monod (1942, 1950) alias Holling type 2 (1965, 1966) functional
response.
Compared with the functional response (3.4) (and the complex formation

functional response) the Michaelis-Menten response neglects direct or indirect
interaction of predators with each other. In Ruxton et al. (1992) this interaction
is direct and originates from aggressive encounters between predators, while in
the complex formation approach the interaction is indirect as a prey engaged by
one predator is assumed to be not available for others. See also the comparison
in Heesterbeek and Metz (1993).
If we are dealing with one species on each side only, we have

C =
2

δξξ̃

x̄ȳ

ζ(x̄, ȳ)
.

If one of x̄ and ȳ is large and the other small, the flip-flop approximation (3.5)
can be further approximated by

C ≈
1

δξξ̃

x̄ȳ

max{x̄, ȳ}
=
1

δξξ̃
min{x̄, ȳ}

which is one of the common functional responses in marriage models. This
seems to be the only instance where the approximation of the complex for-
mation functional response leads to a ratio-dependent expression; it would be
rather artificial, though, to rewrite the minimum function in ratio-dependent
form. There does not seem to be a justification for the harmonic mean (an-
other common marriage function) in this context. In order to obtain it from the
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functional response (3.4),

C ≈
1

δξξ̃

x̄ȳ

1 + x̄+ ȳ
,

we would need to assume that x̄+ ȳ is large, while in justifying (3.4) we needed
to assume that this sum is small.

5 A prey model with a generalist predator

This section presents a case study as to what extent the complex formation
functional response may be replaced by the response à la Beddington (1975)
and DeAngelis et al. (1975) or by the flip-flop response without changing the
qualitative behavior of a model.

In a prey model with a generalist predator it is assumed that the predator
has enough alternative prey that it does not profit from eating this specific prey.
We also assume that the prey never kills the predator. If the prey species, whose
size is denoted by X , obeys a standard logistic equation in the absence of the
predator, the model reads

X ′ = r̃X − ν̃X2 − pρC

where C denotes the first stage of the prey-predator complex. Recall that ρC
is the exit rate of the first stage and pρC is the rate at which prey is killed. p
is the probability at which individual prey is killed at the end of the first stage.
By (3.3) and (3.1),

C =
2δπXπ̃Y

1 + x̄+ ȳ +
√
1 + 2(x̄+ ȳ) + (x̄− ȳ)2

.

x̄ = πXξ̃δ , ȳ = π̃Y ξδ .

One may wonder whether r̃X should be replaced by r̃(X − C) and ν̃X2 by
ν̃(X−C)2 because prey in a complex would not give birth to surviving offspring
or take part in overcrowding effects (cf. Huisman and De Boer, 1997). However,
the quasi-steady-state approach is only justified under the assumption that the
predation process is much faster than the demographic processes in the prey
population which means that the C terms arising from this modification can
also be neglected in comparison with pρC.

Introducing new parameters and a new time leads to the following equation
for x̄:

x̄′

x̄
= r − νx̄−

2

1 + x̄+ ȳ +
√
1 + 2(x̄+ ȳ) + (x̄ − ȳ)2

. (4.1)

Notice that ȳ which is proportional to the size of the predator species, Y , is
just a, though crucial, parameter.
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We want to compare the qualitative behavior of the solutions of this equation
with the one of solutions to the approximating equations

x̄′

x̄
= r − νx̄ −

1

1 + x̄+ ȳ
, (4.2)

and
x̄′

x̄
= r − νx̄−

1

1 + max{x̄, ȳ}
. (4.3)

Equilibria of equation (4.1) are intersection points of the decreasing line (1/2)(r−
νx̄) and the graph of the function

φ(x̄) =
1

1 + x̄+ ȳ +
√
1 + 2(x̄+ ȳ) + (x̄− ȳ)2

.

One easily sees that φ is strictly decreasing. As far as convexity is concerned,
there are two cases (Appendix E):

Case 1: ȳ ≤ 1. Then φ is strictly convex.

Case 2: ȳ > 1. There exists x̄] > 0 such that φ is strictly concave on [0, x̄]]
and strictly convex on [x̄],∞).

In the second case, we could not determine x̄] precisely, but at least locate it in
the interval (ȳ−1, (5/3)ȳ−1). In the first case, the functional response in (4.2)
has the same qualitative features as the complex formation response in (4.1),
while in the second case the flip-flop response in (4.3) caricatures, though in an
exaggerated way, the features of the complex formation response.
In particular, the square root response can display the following scenario

in case 2 which cannot be produced by the response in (4.2) or any of the
traditional models for generalist predators; it can be produced, though, by the
flip-flop response in (4.3):
Our scalar predator prey model can have as many as three non-trivial equi-

libria 0 < X∗1 < X∗2 < X∗3 , associated with the following large-time behavior:
Prey populations starting with sizes between 0 and X∗2 are closely controlled
by the predator and converge towards X1. Prey populations starting with sizes
larger than X∗2 escape the close control of the predator and converge towards
X∗3 . There is some impact by the predator in so far as X

∗
3 is lower than the

carrying capacity of the prey population in absence of the predator.
In all traditional prey predator models, a generalist predator that closely con-

trols the prey necessarily drives it into extinction, unless the generalist predator
lowers its search intensity at low prey densities as known from the Holling type
3 functional response.

6 Sexually transmitted diseases in heterosexual

populations

Many attempts have been made to model the mixing behavior in multi-group
populations in models for sexually transmitted diseases (e.g., Castillo-Chavez,
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Busenberg, 1991, Castillo-Chavez et al., 1994, Jacquez et al., 1995, and the liter-
ature mentioned there). The complex formation approach offers the possibility
to model the functional form of contacts between the various groups from first
principles. In this section we illustrate how complex formation can be built into
epidemic models for heterosexual multi-group populations and how the basic
reproductive number, R0, can be determined in the case of separable mixing in
spite of the seemingly overwhelming complexity of the model.
Disease transmission occurs, if at all, during the consumption (mating) stage

of the complex provided the pair consists of one susceptible and one infective
individual. If an infection occurs, the newly infected individual is effectively
released into the infective part of its group when the consumption stage ends.
So the incidence (rate at which newly infected individuals are introduced into
the infective part of their group) in female group i caused by contacts with male
group k, is

Jik =
Si

Xi
σikqikDik

Ĩk

Yk
. (5.1)

Here Si is the number of susceptibles in female group i and
Si
Xi
is the probability

that the female group i individual involved in the complex is actually susceptible.

Ĩk is the number of infectives in male group k and
Ĩk
Yk
is the probability that

the male group k individual involved in the complex is actually infective. qik is
the probability that a contact between a susceptible female from group i and
an infective male from group k results in transmission of the disease. By (2.3),

Jik =
Si

Xi
pikρikqikCik

Ĩk

Yk
,

and by (2.5),
Jik = πiSipikγikqikKikπ̃k Ĩk, (5.2)

with the matrix K being the solution of system (2.6).
Similarly, the incidence in male group k caused by contacts with female

group i, is given by

J̃ik =
Ii

Xi
σikqikDik

S̃k

Yk
= πiIipikγik q̃ikKikπ̃kS̃k.

The incidence in female group i is now given by
∑n
k=1 Jik, while the incidence

in male group l is given by
∑m
j=1 J̃jl. These incidences can now be used as

building blocks in the formulation of epidemic models. Recall that we have an
explicit expression for Kik = K in the case of proportionate mixing, (3.1) and
(3.2), and the approximate formulas corresponding to (2.8) and (2.10),

Kil ≈
1

1 +
∑n
k=1 ξikδikπ̃kYk

1

1 +
∑m
j=1 ξ̃jlδjlπjXj

,

Kil ≈
1

1 +
∑n
k=1 ξikδikπ̃kYk +

∑m
j=1 ξ̃jlδjlπjXj

,

if the sums in the denominator are small. Presumably the second approximation
is closer to Kil than the first (Appendix B).
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The basic reproduction ratio

Let τi the average length of the infective period for female group i and τ̃k the
average length of the infective period for male group k.
Let Rik be the basic reproduction number from male group k to female group

i, i.e., the average number of secondary cases one infective male individual in
group k can produce in female group i during the whole infective period if
the female group i is completely disease-free. (Cf. Jacquez, Simon, Koopman,
1995, where Rik is called the basic reproduction number for the female group i
contacts of an infected male in group k.) We have

Rik = Jik
τ̃k

Ik
,

with Xi replacing Si in (5.2), i.e.,

Rik = πiXipikγikqikKikπ̃k τ̃k.

Similarly we define the basic reproduction ratio from female group i to male
group k, R̃ki, and obtain

R̃ki = πiτipikγik q̃ikKikπ̃kYk.

Let R be the m× n matrix with entries Rik and R̃ the n×m matrix with
entries R̃ki. Counting the female groups first, the basic reproduction matrix
(or next generation matrix, Diekmann, Heesterbeek, Metz, 1990, 1995) of the
disease in the whole population is given by

R� =

(
0 R
R̃ 0

)
.

The basic reproduction ratio of the disease, R0, is mathematically defined as
the spectral radius of the basic reproduction matrix, R�. Epidemiologically, it
is the number of secondary cases an infective individual can produce during the
whole infectious period if introduced into an otherwise disease-free population
(Diekmann, Heesterbeek, Metz, 1990, 1995). R0 is associated with a threshold
phenomenon for the disease-free state of the population. If R0 < 1, the disease-
free state is locally asymptotically stable, i.e., if only a few number of infectives
are introduced, the disease dies out. Often, but not always, the disease-free state
is even globally asymptotically stable, which means that the disease finally dies
out also when many infectives are introduced. If R0 > 1, the disease-free state
is unstable and often the disease becomes endemic in the population.
We have

(R�)2 =

(
RR̃ 0
0 R̃R

)

which implies that R20 is the spectral radius of the matrix RR̃. (Cf. Diekmann,
Dietz, Heesterbeek, 1991.)
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The case of separable mixing

Here we assume that the matrices pik, γik, qik, q̃ik are separable, i.e., they are of
the form αiβk. Since the matrix Kik is separable as well by (2.6), the matrices
R and R̃ are also separable, i.e., of the form

Rjk = αjβk

R̃kj = α̃j β̃k .

The product of these two separable matrices is also separable and its spectral
radius is given by ( m∑

j=1

αjα̃j

)( n∑
k=1

βkβ̃k

)
.

Hence

R20 =
m∑
j=1

n∑
k=1

RjkR̃kj .

Substituting the expressions above,

R20 =
m∑
j=1

n∑
k=1

(πj)
2(π̃k)

2p2jkγ
2
jkqjk q̃jkK

2
jkτj τ̃kXjYk .

To evaluate Kjk we can use appropriate approximations. However, the fixed
point theory outlined in Appendix B allows to study K directly as a continuous
function of X = (X1, . . . , Xm), Y = Y1, . . . , Ym) and offers an iterative scheme
to calculate convergent numerical approximations for Kjk which, at the same
time, are estimates from below and above respectively.

7 Discussion

Over the years, the mass action type functional relationship between prey and
predators suggested by Lotka and Volterra has been modified in various direc-
tions, both by intuitive reasoning (Beddington, 1975, DeAngelis et al., 1975,
Arditi and Ginzburg, 1989, and by derivation from first principles. The original
derivation by Holling’s (1965, 1966) concentrates on the functional response of
one predator to the amount of available prey and does not consider direct or
indirect interference of predators. Direct interference of predator can be built
into the original Holling model by assuming that the time available for searching
prey is shortened by aggressive encounters with other predators ( Ruxton et al.,
1992) or that predators must divide the prey among themselves ( Cosner et al.,
1999). The complex formation approach discussed here (and by Borghans et
al., 1996, De Boer and Perelson, 1995, and Huisman and De Boer for predator-
prey models and/or T cell production) assumes an indirect interference between
predators in so far as prey that is engaged or handled by a predator is off limits
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for other predators. This does not necessarily exclude pack hunting or group de-
fense; if the pack or group sizes are rather constant, one can apply the complex
formation argument to packs or groups instead of single individuals. The com-
plex formation approach relies on a time scale argument which justifies taking
quasi-steady-states. If there is only one prey and one predator species or if the
species mix homogeneously, the quasi-steady-state equations can be solved ex-
plicitly and yield similar expressions to those obtained by Ruxton et al. (1992).
Hsu and Fredrickson (1975) seem to be the first to find this explicit solution.
They derive it from first principles in the context of pair formation and mating,
while most other pair formation functions are determined phenomenologically
to fit certain desired features (see Hadeler et al., 1988, for a discussion and the
history of various marriage functions). It has been noticed before (De Boer,
Perelson, 1995, Borghans et al., 1996, Huisman, De Boer, 1997) that the func-
tional relationship suggested by Beddington (1975) and DeAngelis et al. (1975),
c x̄ȳ
1+x̄+ȳ , with x̄, ȳ being scaled amounts of predator and prey, is often is a rea-
sonable approximation of the quasi-steady-state of complex formation. This
functional relationship can also be obtained by considering space-limited preda-
tion ( Cosner et al., 1999). However, if there are few prey and many predators
or many prey and few predators, the flip-flop response c x̄ȳ

1+max{x̄,ȳ} is a better

approximation of the quasi-steady state in complex formation (Section 3). If
max{x̄, ȳ} is large compared to one, the flip-flop relationship takes the form of a
familiar marriage function, cmin{x̄, ȳ}. The complex formation approach does
not provide ratio-dependent functional relationships, except in this special case
which can artificially be rewritten in a ratio-dependent form.

While the above-mentioned approximations are appropriate in certain do-
mains of the functional relationship, they are not so suitable in others. To
illustrate this we consider the impact of a generalist predator on a prey popula-
tion and show that with either approximation we do not obtain the full spectrum
of quantitative behavior of the complex formation model (Section 4). This is
a message to keep in mind when proceeding to multi-species or multi-group
models where an explicit formula for the quasi-steady state is not available.

The continuing spread of old and emergence of new sexually transmitted
diseases have made it necessary to model the contact structure in very hetero-
geneous populations. While it is possible to design the relationship of sexual
contacts between various groups as a function of group sizes along certain con-
sistency requirements and conservation laws (e.g., Castillo-Chavez, Busenberg,
1991, and Castillo-Chavez et al., 1994), the complex formation approach opens
a very natural and attractive modeling avenue to a derivation from first princi-
ples (Section 5). It faces the shortcoming, however, that the quasi-steady-states
cannot be determined explicitly for a multiple group situation except for ho-
mogeneous or a special form of proportionate mixing. While this difficulty was
already noticed in the pair formation and predator prey context, De Boer and
Perelson (1995) and Huisman and De Boer (1997) were able to present approxi-
mate solutions in case that there is one prey species and many predator species
or one predator and many prey species. We extend these formulas to the case
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of many prey and predator species (Section 2 and Appendix B). Due to the
inherent asymmetry in a prey-predator relationship, they are asymmetric gen-
eralizations of the functional forms found by Beddington (1975) and DeAngelis
et al. (1975).
For sexually transmitted diseases, in heterosexual populations with multiple

groups of men and women, we suggest an approximation which is symmetric in
men and women. Miraculously in view of the complexity of the model, in the
case of separable mixing one can derive a formula for the basic reproduction
number of the disease in terms of the implicit solutions of the quasi-steady-
state equations which offers a very convenient way to determine it precisely by
straightforward numerical iterations (Section 5).

Acknowledgements The first author thanks Maia Martcheva for drawing
his attention to the paper by Hsu and Fredrickson (1975) which had apparently
been overlooked in the more recent literature. For further bibliographic hints
he thanks Chris Cosner and Hans (J.A.J.) Metz.

Appendix A: Global existence and uniqueness of solutions

Substituting (2.1) into (2.2) yields a system of ordinary differential equations
in the space of real m × n matrices which can be identified with Rnm. Since
the vector field is everywhere defined and continuously differentiable, standard
ODE theory (e.g. Hale, 1980, Section I.1 to I.3) implies that, for all initial data,
there exists a local solution on an interval [0, b) which is maximal in the sense
that the norm of the solution becomes unbounded as t→ b in case that b <∞.
Define a closed convex set C as the set of those Cil ≥ 0 such that xi, yl ≥ 0

with these being given by (2.1). From (2.1) we obtain that, on [0, b),

x′i = −
n∑
k=1

C′ik − κ
n∑
k=1

D′ik

=
n∑
k=1

ρik[1− κpik]Cik + κ
n∑
k=1

σikDik −
n∑
k=1

γikxiyk,

y′l =

m∑
j=1

ρjl[1− pjl]Cjl +
m∑
j=1

σjlDjl −
m∑
j=1

γjlxjyl .

It follows from Proposition B.7 in Smith, Waltman (1995) that the convex set
C is forward invariant under the solution. By (2.1), solutions Cik ≥ 0 with
xi, yl ≥ 0 are bounded, which implies that solutions which satisfy these con-
straints initially are defined for all forward times and satisfy the constraints
forever.

Appendix B: Uniqueness of the steady state

Wewill show that the system (2.6) for givenX = (X1, . . . , Xm), Y = (Y1, . . . , Yn),
has a unique solution such that Kil and the two factors on the right hand side
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are non-negative. From (2.6),

Kil = uiwl

ui = 1−
n∑
k=1

αikKik (B1)

wl = 1−
m∑
j=1

α̃jlKjl,

where we are interested in ui and wl being non-negative. Here

αil = ξilδilπ̃lYl , α̃il = ξ̃ilδilπiXi . (B2)

In (B1) we substitute the first into the second and third equation,

ui = 1− ui
( n∑
k=1

αikwk
)
, wl = 1− wl

( m∑
j=1

α̃jluj
)
.

We solve for ui and wl,

ui =
1

1 +
∑n
k=1 αikwk

, wl =
1

1 +
∑m
j=1 α̃jluj

. (B3)

Notice that any non-negative solution u = (u1, . . . , um), w = (w1, . . . , wn) of
(B3) satisfies

ui ≤ 1, wl ≤ 1,

and that Kil = uiwl provides a solution to (2.6).
To investigate whether the system (B3) has solutions, we substitute the

second part of the system into the first:

ui =
1

1 +

n∑
k=1

αik

1 +
∑m
j=1 α̃jkuj

=: Gi(u). (B4)

Let G : [0,∞)m → [0,∞)m be the mapping formed by taking the Gi as compo-
nents. Apparently it is sufficient to find a fixed point of G.
We introduce an order on Rm by setting

x ≤ y ⇐⇒ xi ≤ yi, i = 1, . . . ,m,

for vectors x = (x1, . . . , xm), y = (y1, . . . , ym). We see that G is an increasing
map, i.e.,

G(u) ≤ G(v) whenever u ≤ v.

We also notice that G(u) ≤ 1 for all u ∈ [0,∞)m where 1 = (1, . . . , 1). Let
[0,1] denote the generalized order interval of those vectors u with 0 ≤ u ≤ 1. G
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maps the closed convex bounded set [0,1] into itself and is continuous. Hence
G has a fixed point u in [0,1] by Brouwer’s fixed point theorem.
Actually G maps [0,∞)m into the order interval [G(0),1], and G(0) ≥ δ1 for

some δ > 0. In order to show that there exists exactly one fixed point of G in
[0,∞)m, we use the concavity (or sub-homogeneity) technique of Krasnosel’skii
(1964), Section 6.1.

Let v be a positive vector and ξ ∈ (0, 1). Then

Gi(ξv) =
1

1 +
∑n
k=1 αik

(
1

1+
∑m
j=1 α̃jkξvj

) ≥ 1

1 +
∑n
k=1 αik

(
1

ξ+
∑m
j=1 α̃jkξvj

)
=

1

1 + 1
ξ

∑n
k=1 αik

(
1

1+
∑m
j=1 α̃jkvj

) = ξ

ξ +
∑n
k=1 αik

(
1

1+
∑m
j=1 α̃jkvj

)
> ξ

1

1 +
∑n
k=1 αik

(
1

1+
∑
m
j=1 α̃jkvj

) = ξGi(v).
This implies that G is 1-concave in the terminology of Krasnosel’skii and so
the uniqueness of fixed points and the convergence of successive approximations
(Krasnosel’skii, 1964, 6.1.3 and 6.1.7).
In particular the following monotone sequences converge towards the unique

fixed point,

u(0) = 0, u(j + 1) = G(u(j)),

v(0) = 1, v(j + 1) = G(v(j)) .

The first sequence is monotone increasing and the second monotone decreasing,
they provide improving upper and lower estimates for the fixed point. Estimate
(2.8) and the subsequent estimate are obtained from G(0) and G(1) and anal-
ogous considerations for w in (B3) rather than u (see also the next paragraph).

A Ross type estimate and approximation

From (B3) we obtain an estimate from below for Kil,

Kil = uiwl ≥
1

1 +
∑n
k=1 αik

1

1 +
∑m
j=1 α̃jl

(B5)

which leads to estimate (2.8) involving an expression reminiscent of Ross so-
lutions (Castillo-Chavez, Busenberg, 1991). If the α’s and α̃’s are small, (B5)
actually provides a reasonable approximation of Kil.

A Beddington type approximation

Dropping the quadratic terms in the denominator in (B5) we obtain the following
approximation which is an extension of the one suggested by Beddington (1975)
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and DeAngelis et al. (1975),

Kil ≈
1

1 +
∑n
k=1 αik +

∑m
j=1 α̃jl

. (B6)

The following consideration shows that the approximation (B6) may be even
better than the Ross type approximation. By repeated use of (B1),

1

Kil
=

1

uiwl
=
(
1 +

n∑
k=1

αikwk

) (
1 +

m∑
j=1

α̃jluj

)

= 1 +
n∑
k=1

αikwk +
m∑
j=1

α̃jluj +
n∑
k=1

m∑
j=1

αikwkα̃jluj

= 1 +
n∑
k=1

αik

(
1− wk

m∑
j=1

α̃jkuj

)
+
m∑
j=1

α̃jl

(
1− uj

n∑
k=1

αjkwk

)

+

n∑
k=1

m∑
j=1

αikwkα̃jluj .

Hence

Kil =
1

1 +
∑n
k=1 αik +

∑m
j=1 α̃jl +

∑n
k=1

∑m
j=1 [αikα̃jl − αikα̃jk − αjkα̃jl]ujwk

.

If there is only one prey or one predator species, the double sum in the de-
nominator is negative, so the approximation (B6) is also a lower estimate of the
complex formation expression, but a better one than the Ross approximation.
In the case of proportionate mixing we clearly see that, under all circumstances,
the approximation (B6) is better than the Ross type approximation because, by
Lemma 3.1,

K ≥
1

1 + x̄+ ȳ
≥

1

1 + x̄

1

1 + ȳ
.

We conclude by mentioning that, if the γil are very small compared with the
ρil and σil (i.e., the time needed to find one prey is large compared with the
time needed to eventually hunt it down, kill it, eat and digest it), then the αil
and α̃il are small and the products αikα̃jl are very small.

A specific predator-prey approximation

The asymmetry in a predator-prey relationship (κ = 0 in (2.7), only the predator
takes active part in the second stage of the complex) has the consequence that
ξik may be considerably smaller than ξ̃ik. Further the readiness of the predator
to hunt should on the average be lower than the availability of the prey to be
hunted so that it is reasonable to assume that αil is considerably smaller than
α̃il in (B2). So in (B3) we guess that ui is rather close to 1, while this may not
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be the case for wl. So, by (B3) and (B4), we choose the approximations

ui ≈
1

1 +
∑n
k=1 αik

(
1

1+
∑m
j=1 α̃jk

)
wl ≈

1

1 +
∑m
j=1 α̃jl

.

From (B1), multiplying the factors out,

Kil ≈
1

1 +

m∑
j=1

α̃jl +

n∑
k=1

αik
1 +

∑m
j=1 α̃jl

1 +
∑m
j=1 α̃jk

. (B7)

Notice that this yields the approximation (B6) if there is only one predator
species. Going back to the original variables yields (2.11).

Appendix C: Local stability of the steady state

Replacing xi, yi, Cil, Dil by xi+x
∗
i , yi+y

∗
i , Cil+C

∗
il, Dil+D

∗
il and dropping the

higher order terms we obtain the linearization of the system (2.1), (2.2) at the
steady state,

0 = xi +

n∑
k=1

[Cik + κDik]

0 = yl +
m∑
j=1

[Cjl +Djl]

C′il = γilx
∗
i yl + γilxiy

∗
l − ρilCil

D′il = pilρilCil − σilDil.

Substituting the first two equations into the last two, we obtain the following
linear ODE system,

C′il = −γilx
∗
i

m∑
j=1

[Cjl +Djl]− γily
∗
l

n∑
k=1

[Cik + κDik]− ρilCil

D′il = pilρilCil − σilDil.

The algebraic system for the associated eigenvalues λ and their eigenvectors has
the form

λCil = −γilx
∗
i

m∑
j=1

[Cjl +Djl]− γily
∗
l

n∑
k=1

[Cik + κDik]− ρilCil

λDil = pilρilCil − σilDil

where at least one Cil or Dil is different from 0. Usually one proceeds from this
finite linear system to the associated characteristic polynomial and studies the
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location of its zeros, often using the Routh-Hurwitz criterion. Since our system
is arbitrarily large and has an unusual form, we follow a different approach used
before in Thieme (1985) and Hethcote, Thieme (1985). Solving for Dil and
reorganizing the terms, we have

λ+ ρil
γil

Cil = −x
∗
i

m∑
j=1

Cjl

[
1 +

pjlρjl

λ+ σjl

]
− y∗l

n∑
k=1

Cik

[
1 + κ

pikρik

λ+ σik

]

where at least one Cil is different from 0. Taking absolute values,

|λ+ ρil|

γil
|Cil| ≤ x

∗
i

m∑
j=1

|Cjl|

[
1 +

pjlρjl

|λ+ σjl|

]
+ y∗l

n∑
k=1

|Cik|

[
1 + κ

pikρik

|λ+ σik|

]
.

The principle of linearized stability implies that the steady state is locally
asymptotically stable if all eigenvalues have strictly negative real part. To show
the latter we suppose that <λ ≥ 0. Then

ρil

γil
|Cil| ≤ x

∗
i

m∑
j=1

|Cjl|

[
1 +

pjlρjl

σjl

]
+ y∗l

n∑
k=1

|Cik|

[
1 + κ

pikρik

σik

]
.

Set ξ = maxil
|Cil|
C∗il
. Then ξ > 0. Choose i, l such that |Cil| = ξC∗il. For such

a pair i, l we have

1

δil
ξC∗il ≤ x

∗
i

m∑
j=1

ξC∗jl

[
1 +

pjlρjl

σjl

]
+ y∗l

n∑
k=1

ξC∗ik

[
1 + κ

pikρik

σik

]
.

Dividing by ξ and using that C∗il = δilx
∗
i y
∗
l ,

x∗i y
∗
l ≤ x

∗
i

m∑
j=1

δjlx
∗
jy
∗
l

[
1 +

pjlρjl

σjl

]
+ y∗l

n∑
k=1

δikx
∗
i y
∗
k

[
1 + κ

pikρik

σik

]
.

We divide by x∗i and y
∗
l and use (2.7),

1 ≤
m∑
j=1

δjlx
∗
j ξ̃jl +

n∑
k=1

δiky
∗
kξik.

Using transformation (2.5),

1 ≤
m∑
j=1

δjlπjXjuj ξ̃jl +

n∑
k=1

δikπ̃kYkwkξik.

Since uj, wk < 1, we obtain a contradiction by assuming

m∑
j=1

δjlπjXj ξ̃jl +

n∑
k=1

δikπ̃kYkξik ≤ 1 ∀i = 1, . . . ,m, l = 1, . . . , n. (C1)
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So this is a sufficient condition for local asymptotic stability of the steady state.
Retracing the definition of αil and α̃il we find that it is satisfied if the time
needed to form a complex is sufficiently long compared with the durations of
the two stages of the complex.
Sharper, but more complicated, conditions can be derived using

ui ≤
1

1 +
∑n
k=1 αik

(
1

1+
∑m
j=1 α̃jk

)
and a similar estimate for wl.

Appendix D: Global asymptotic stability of the steady state

If f : [0,∞)→ R is bounded, let

f∞ = lim sup
t→∞

f(t), f∞ = lim inf
t→∞

f(t).

By the Fluctuation Lemma (Hirsch et al., 1995) there exists a sequence tj →∞
(which depends on i and l) such that

Cil(tj)→ C∞il , C′il(tj)→ 0, j →∞.

The first equation in (2.2) implies the estimate

C∞il ≤ δilx
∞
i y
∞
l , (D1)

with δij in (2.4). Applying the same procedure to the second equation in (2.2),

D∞il ≤
pilρil

σil
C∞il . (D2)

Using analogous arguments for the limit inferior we have

Cil∞ ≥ δilxi∞yl∞ , Dil∞ ≥
pilρil

σil
Cil∞. (D3)

Subtracting the first inequality in (D3) from (D1),

0 ≤ C∞il − Cil∞ ≤ δilx
∞
i (y

∞
l − yl∞) + δil(x

∞
i − xi∞)yl∞.

From (2.1),

0 ≤ C∞il − Cil∞ ≤ δilπiXi(y
∞
l − yl∞) + δilπ̃lYl(x

∞
i − xi∞). (D4)

Further, from (2.1),

x∞i ≤ πiXi −
n∑
k=1

[Cik∞ + κDik∞] ≤ πiXi −
n∑
k=1

ξikCik∞,

y∞l ≤ π̃lYl−
m∑
j=1

ξ̃jlCjl∞, xi∞ ≥ πiXi−
n∑
k=1

ξikC
∞
ik , yl∞ ≥ π̃lYl−

m∑
j=1

ξ̃jlC
∞
jl .
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Substituting these inequalities into (D4),

0 ≤ C∞il − Cil∞ ≤ δilπiXi

m∑
j=1

ξ̃jl[C
∞
jl − Cjl∞] + δilπ̃lYl

n∑
k=1

ξik[C
∞
ik − Cik∞].

Set C∞il − Cil∞ = δil∆il, then

0 ≤ ∆il ≤ π̃lYl

n∑
k=1

δikξik∆ik + πiXi

m∑
j=1

δjlξ̃jl∆jl.

Set ∆̄ =
m∑
i=1

n∑
l=1

∆il, then

0 ≤ ∆̄ ≤

(
θ

n∑
l=1

π̃lYl + θ̃

m∑
i=1

πiXi

)
∆̄, (D5)

with

θ = max {δikξik; i = 1, . . . ,m, k = 1, . . . , n} ,

θ̃ = max
{
δik ξ̃ik; i = 1, . . . ,m, k = 1, . . . , n

}
.

By (D5), if

θ

n∑
l=1

π̃lYl + θ̃

m∑
i=1

πiXi < 1, (D6)

∆̄ = 0. Since all the summands in ∆̄ are non-negative, ∆ik = 0 for all i, k and
so C∞ik − Cik∞ = 0. This implies that Cik(t) converges as t → ∞, with the
limit being an equilibrium of (2.1, (2.2) which, as we know from Appendix B,
is unique. Notice that (D6) implies (C1). (2.7) and (D6) give the assumption
in Theorem 2.3.

Appendix E: Proof of cases 1 and 2 in Section 4

Recall

φ(x̄) =
1

1 + x̄+ ȳ +
√
ψ(x̄)

,

(E1)

ψ(x̄) = 1 + 2(x̄+ ȳ) + (x̄ − ȳ)2 = (1 + x̄− ȳ)2 + 4ȳ .

Taking the first and second derivative,

φ′(x̄) = −
1 + (ψ(x̄))−1/2(1 + x̄− ȳ)(
1 + x̄+ ȳ + (ψ(x̄))1/2

)2 ,
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−φ′′(x̄) '
[
−(ψ(x̄))−3/2(1 + x̄− ȳ)2 + (ψ(x̄))−1/2

] (
1 + x̄+ ȳ + (ψ(x̄))1/2

)
−2[1 + (ψ(x̄))−1/2(1 + x̄− ȳ)]2.

Here ' means that the two expressions it connects have the same sign. Multi-
plying by (ψ(x̄))3/2,

−φ′′(x̄) '
[
−(1 + x̄− ȳ)2 + ψ(x̄)

] (
1 + x̄+ ȳ + (ψ(x̄))1/2

)
−2(ψ(x̄))1/2

[
(ψ(x̄))1/2 + 1 + x̄− ȳ

]2
.

Since −(1 + x̄− ȳ)2 + ψ(x̄) = 4ȳ by (E1), we have

−φ′′(x̄) ' 2ȳ
(
1 + x̄+ ȳ + (ψ(x̄))1/2

)
−(ψ(x̄))1/2

[
(ψ(x̄))1/2 + 1 + x̄− ȳ

]2
=: χ(x̄).

It is easy to see that χ(x̄) → −∞ as x̄ → ∞, i.e., φ is convex for large x̄.
Further

χ(0) = 4ȳ(1 + ȳ)− 4(1 + ȳ) = 4(1 + ȳ)(ȳ − 1),

(E2)

χ(ȳ − 1) = 2ȳ(2ȳ +
√
4ȳ)−

√
4ȳ4ȳ = 4ȳ(ȳ −

√
ȳ),

so χ(0) and χ(ȳ − 1) have the same sign as ȳ − 1. So, if ȳ > 1, φ is concave in
neighborhoods of 0 and ȳ − 1.

Lemma. φ′′ has no zero in [2ȳ−1,∞) and φ is strictly convex on [2ȳ−1,∞).

Proof: φ′′ has a zero x̄ if and only if χ has the same zero x̄, i.e., if and only if

2ȳ
(
1 + x̄+ ȳ + (ψ(x̄))1/2

)
= (ψ(x̄))1/2

[
(ψ(x̄))1/2 + 1 + x̄− ȳ

]2
= (ψ(x̄))1/2

[
(ψ(x̄)) + 2(ψ(x̄))1/2(1 + x̄− ȳ) + (1 + x̄− ȳ)2

]
= (ψ(x̄))1/2

(
2(1 + x̄− ȳ)2 + 4ȳ

)
+ 2
(
(1 + x̄− ȳ)2 + 4ȳ

)
(1 + x̄− ȳ).

Here we have used (E1) several times. Reorganizing terms we find that φ′′(x̄) =
0 if and only if

(ψ(x̄))1/2
(
2(1+ x̄− ȳ)2+2ȳ

)
= 2ȳ(1+ x̄+ ȳ)− 2

(
(1+ x̄− ȳ)2+4ȳ

)
(1+ x̄− ȳ).
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Simplifying

(ψ(x̄))1/2
(
(1 + x̄− ȳ)2 + ȳ

)
= −(1 + x̄− ȳ)3 − ȳ

(
4(1 + x̄− ȳ)− (1 + x̄+ ȳ)

)
= −(1 + x̄− ȳ)3 − ȳ

(
3(x̄+ 1)− 5ȳ

)
.

The left hand side of this equation is positive. Since the right hand side is
negative for x̄ ≥ (5/3)ȳ − 1, there is no equality for x̄ ≥ (5/3)ȳ − 1 and hence
no zero of φ′′ with x̄ ≥ (5/3)ȳ − 1. Since φ′′ is strictly positive for large x̄, we
conclude that φ′′ is strictly positive on [(5/3)ȳ − 1,∞).

Since φ′′(ȳ− 1) < 0 by (E.2), φ′′ must change sign somewhere between ȳ− 1
and (5/3)ȳ−1. It follows from the next lemma that this is the only sign change
of φ′′. This finishes the proof of case 2 in Section 4.

Lemma. χ is strictly decreasing on [0,∞).

Proof: We first show that χ is strictly decreasing on [ȳ − 1,∞). To this end
we consider

χ′(x̄) = 2ȳ
(
1 + (ψ(x̄))−1/2(1 + x̄− ȳ)

)
−(ψ(x̄))−1/2(1 + x̄− ȳ)

[
(ψ(x̄))1/2 + 1 + x̄− ȳ

]2
−(ψ(x̄))1/22

[
(ψ(x̄))1/2 + 1 + x̄− ȳ

] (
(ψ(x̄))−1/2(1 + x̄− ȳ) + 1

)
.

Multiplying by (ψ(x̄))1/2 and reorganizing the terms,

χ′(x̄) ' 2ȳ
(
(ψ(x̄))1/2 + 1 + x̄− ȳ

)
−
[
(ψ(x̄))1/2 + 1 + x̄− ȳ

]3
−(ψ(x̄))1/2

[
(ψ(x̄))1/2 + 1 + x̄− ȳ)

]2
.

Since

(ψ(x̄))1/2 ≥ 1 + |x̄− ȳ|,

ψ(x̄))1/2 + 1 + x̄− ȳ ≥ 2 + |x̄− ȳ|+ x̄− ȳ = 2(1 + [x̄− ȳ]+),

we have

χ′(x̄) ' 2ȳ −
[
(ψ(x̄))1/2 + 1 + x̄− ȳ

]2
− (ψ(x̄))1/2

[
(ψ(x̄))1/2 + 1 + x̄− ȳ)

]
.

(E.3)
We see that χ′(x̄) < 0 if x̄ ≥ ȳ − 1. If ȳ ≤ 1, χ(0) ≤ 0 by (E2) and so that
χ(x̄) < 0 for all x̄ > 0. This is case 1 in Section 4.
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By (E3), χ′ has a zero x̄ if and only if

2ȳ =
[
(ψ(x̄))1/2 + 1 + x̄− ȳ

]2
+ (ψ(x̄))1/2

[
(ψ(x̄))1/2 + 1+ x̄− ȳ)

]
= 2ψ(x̄) + 3(ψ(x̄))1/2(1 + x̄− ȳ) + (1 + x̄− ȳ)2

= 3(ψ(x̄))1/2(1 + x̄− ȳ) + 2
(
(1 + x̄− ȳ)2 + 4ȳ

)
+ (1 + x̄− ȳ)2

= 3(ψ(x̄))1/2(1 + x̄− ȳ) + 3(1 + x̄− ȳ)2 + 8ȳ.

Reorganizing terms, we see that χ′ has a zero x̄ if and only if

(ψ(x̄))1/2(1 + x̄− ȳ) = −(1 + x̄− ȳ)2 − 2ȳ.

Squaring both sides we obtain

ψ(x̄)(1 + x̄− ȳ)2 = (1 + x̄− ȳ)4 + 4ȳ(1 + x̄− ȳ)2 + 4ȳ2. (E.4)

Remembering (E.1), ψ(x̄) = (1 + x̄− ȳ)2 + 4ȳ, the equality (E4) can only hold
if ȳ = 0. So χ′ has no zero for ȳ > 0. Since χ′ is strictly negative for large x̄, it
is strictly negative everywhere, if ȳ > 0.
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