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Nonlinearities in a second order ODE *

Pablo Amster

Abstract

In this paper we study the semilinear second order ordinary differential
equation
u' +ru 4+ gt,u) = f(t).
Under a growth condition on g, we prove the existence and uniqueness for
the Dirichlet problem and establish conditions for the existence of periodic
solutions.

1 Introduction
The two-point boundary-value problem for a semilinear second order ODE
u” +ru’ + g(t,u) =0, u(0)=uo, u(T)=ur

has been studied by many authors. In his pioneering work, Picard [7] proved the
existence of a solution by an application of the well known method of successive
approximations under a Lipschitz condition on g and a smallness condition on
T. Sharper results were obtained by Hamel [2] in the special case of a forced
pendulum equation (see also [4], [5]). The existence of periodic solutions for this
equation was first considered by Duffing [1] in 1918. In the absence of friction
(i.e. r = 0), variational methods have been applied by Lichtenstein [3], who
considered the functional

T u/ 2
I(u) = /O (2) Gt u(t))dt,

where G(t,z) = fow g(t, s)ds. Finally, we want to mention the topological ap-
proach introduced in 1905 by Severini [8] who used a shooting method. He also
presented and gave a survey of results obtained using Leray-Schauder techniques
and degree theory. For further results, see [6].

In this work, we prove the existence and uniqueness of a solution to the
Dirichlet problem under a growth condition on g. Then, we apply this result
for finding periodic solutions.
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14 Nonlinearities in a second order ODE

Let S: H?(0,T) — L*(0,T) be the semilinear operator given by
Su=u"+ru +g(t,u).
Assume that the function g satisfies the growth condition

Mgc_” fort € [0,7] and u,v € R (u #v), (1.1)

u—v p(t)

where p € C([0,7)) is strictly positive, 7o := pr — p’ € H'(0,T) is non-
decreasing, and ¢, < A, with A, the first eigenvalue of the problem

—(pu') = Mpu, u(0)=u(T)=0.

To state a general existence and uniqueness result for the Dirichlet problem
associated to our equation, we need the following apriori bounds.

Lemma 1.1 Assume that g satisfies (1.1) and let u,v € H?(0,T) with Tr(u) =
Tr(v). Then

Ip(Su = Sv)ll2 > (Ap = ¢p)[[u =2

and

_ T
llp(Su — Sv)||2 > v — ¢ (/ p(u’ — v’)2)1/2
0

NS

Proof. A simple computation shows that

T T
(St — Sv)l2llu— o]z > / p(u! —vf)? / o — 0) (' — ') — cpllu — o2
0 0

T

and because — fOT ro(u — v)(u —v') = 3 [ ro(u — v)? > 0, the result follows

since ||Ju — v||3 < )\—lp fOTp(u' —v')2 %
Remarks i) For simplicity and by the previous lemma, we may denote by k;
the best constant such that |ju — v||12 < ki||p(Su — Sv)||2 for u,v € H*(0,T)
with Tr(u) = Tr(v).
ii) In particular, if » € H'(0,T) is non-decreasing, the result holds for p = 1
and ¢ < A\ = (%)2

Theorem 1.2 Let g satisfy (1.1). Then the Dirichlet problem

Su=f(t) in (0,T)

u(0) =ug, u(T)=ur (1.2)

is uniquely solvable in H?(0,T) for any f € L?(0,T) and arbitrary boundary
data.
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Proof. Without loss of generality, we may suppose that p=1. For 0 <o <1
we consider the operator S, given by S,u := uv” + ru’ + og(t,u). We remark
that if k, is the constant of lemma 1.1 for S,, then k, < k.

From the theory of linear operators, for fixed w € H'(0,7) we may define
u = Ku as the unique solution of the problem

Sou= f(t) —g(t,w) in (0,7
u(0) =wuo, u(T)=ur.

Continuity of K : H*(0,T) — H'(0,T) follows immediately from the inequality
[ Eu — K12 < ka1l So(Kw) — So(KD)|2 = kallg(-, ) — g(-,0)2

and the fact that ||g(-,@) — g(-,v)|]2 = 0 for w — v in H*(0,T) < C([0,T)).
Moreover, if ¢(t) = “L="2t + ug we have that

KU = ¢ll1,2 < k|l f = g(,0) = Soplla < C
for some constant C' = C(R). Moreover, as
(K@) |2 = [If — g(, @) — r(E@)'[|2

it follows that K (Bg) is H?-bounded. Thus, by the compactness of the imbed-
ding H?(0,T) — H*(0,T) we conclude that K is compact.

Let us assume that u = o Ku for some o € (0,1]. Then v’ +ru' 4+ og(t,u) =
of,and

lu—oplli2 < killSou— Sy (0@)|l2 = killof — Se(op)l|2

This proves that the set {u : v = o Ku} is uniformly bounded, and by Leray-
Schauder theorem K has a fixed point. Uniqueness of the solution follows from
lemma 1.1. &

As a simple consequence, we have an existence result for the general Dirichlet
problem

Su = f(t,u,u’) in (0,T)

w(0) =wo, u(T)=ur (13)

Corollary 1.3 Let f be continuous and g satisfy (1.1). Assume that the grow-
ing condition

[f(tu,2)] < cl(u,z)| +d (1.4)

holds for some constant ¢ < Then (1.3) is solvable in H?(0,T).

1
E1l[plleo ©



16 Nonlinearities in a second order ODE

Proof. By (1.4) and the previous theorem, the operator K : H'(0,7) —
H'(0,T) given by K% = u, with u the unique solution of

Su = f(t,u,w’) in (0,7T)
uw(0) =ug, u(T)=ur

is well defined and compact. Moreover, as

|Ka — ¢

1,2 < k1l[p(S(Ka) — So)l2 < k1llplleo (159)l2 + cllull1,2 + d)

then K (Bg) C Bg for R large and the result follows from Schauder Theorem.

2  Solutions to the periodic problem
In this section we’ll apply the previous results to the periodic problem

Su=f(t) in (0,7T) (2.1)
u(0) = u(T), w'(0) = /(D) |
It is well known that the forced pendulum equation v’ + bsin(u) = f admits
periodic solutions for constant b if f is periodic and orthogonal to constants.
We’ll show in the general case that in the presence of friction this orthogonality
condition can be reinterpreted in terms of a certain p; > 0. More precisely, we’ll
show that in some cases -including the generalized pendulum equation- (2.1) is
not solvable for any f such that <p1, f > is large enough.

Lemma 2.1 For any c € R there exists a unique p. such that p.(0) = p.(T) = ¢
and pl, — rp. s constant. Furthermore, p. = cp1, and py is strictly positive.

Proof. From the equation p/, — rp. = k. we obtain that

t
Pe = <c+kc/ e_fgrds> elor
0

and from the condition p.(0) = p.(T) = ¢ we conclude that

l—elr

ke =c——+——
¢ fOT e Tds

= Ck’l

Thus, p. = ¢p1. Moreover, if k; > 0 it’s immediate that p; > 0, and if k&1 < 0,
assuming that p; vanishes there exists tg € (0,7") such that p;(t9) = 0 < p(¢o).
Then k1 = p/(to) > 0, a contradiction. &

Using the preceding lemma we’ll see that periodic solutions of Su = f satisfy
an orthogonality condition. Indeed, from

u +ru' 4 g(tu) = f
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we obtain
(pv') = kru’ + prg(t,u) = prf -
T T
By the equality piju’| = u‘ = 0 we have
0 0

/OTplg(t,U) = /OTP1f~

Corollary 2.2 With the previous notation, let us assume that g(t,u) < gmax
for any t € [0,T], u € R and some constant gmaq. € R (respectively, g(t,u) >
Imin for any t € [0,T], u € R and some constant gmin € R). Then (2.1) is not
solvable for any f € L*(0,T) such that (p1, f) > gmaz|lp1ll1 (resp. (p1,f) <
gmin”pl”l)-

Now we’ll give some existence results for (2.1), assuming that ¢ satisfies
(1.1). Our method is based in the existence and uniqueness result given by
Theorem 1.2: indeed, for fixed s € R we may define us as the unique solution
of the problem

Su = f(t) in (0,T)
uw(0)=u(T)=s

Lemma 2.3 The mapping s — us is continuous for the H'-norm.

Proof. For s = sp and ws = us — us, we have

T
0 = /p(Sus—SUSO)ws
0

T T row? T w2 T
1\2 s ! Vs 2
— | plw) + == — | roorto [ wg
0 0 2 0 0 2 0

T 2
Because fo o5+ > 0, we conclude that

< pwlws

T N wf
To—~
0 2

T

Cp T 1\2 /
0<(1-38) [ pw)’ < pulw,
P 0

Since ws(0) = ws(T) = s — so — 0 it suffices to prove that ||ws]|1,00 is bounded.
As |lus—s|l1,2 < k1|[p(f—g(-, 8))||2, we deduce that ws is H'-bounded. Moreover,
from the equality u = f — rul, — g(¢,us) we obtain that |Jws| 22 is bounded,
and from the imbedding H2(0,T) — C*([0,T]) the proof is complete. &

From the previous remarks, the solvability of (2.1) is equivalent to the
solvability of the equation ¥(s) = fOT p1f, where ¢ : R — R is given by
P(s) = fOT p19(t,us). Continuity of ¢ follows immediately from the previous
lemma, and hence (2.1) will admit a solution if and only if there exist s* such
that

Y(sT) = (p1, f) > (s7)
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Remark. Writing us(t) — s = fot p~1/2pl/2y! we obtain that
[us = slloe < dpllp(f —9(-, )2
T, 1/2 \/E

0 p Xp—cp’
Thus, if we consider the condition

for ¢, = (

lpg(-;s)ll2 < c|ls| +d  with edp, < 1 (2.2)

then uy(t) € JE for any t € [0,T], where J¢ is the interval centered in s with
radius dp(c|s| + d) + €, € = Op|lpfll2. As a simple consequence we have the
following

Theorem 2.4 Let g satisfy (1.1)-(2.2), and assume that there exist s* such

that r
fo plf
P2l

for e = 6pllpfll2- Then (2.1) admits a solution us for some s between s~ and
+

st.

In particular, if there exist s* such that

g|[O,T]><jf+ > > 9|[0,T]xjj,

glorixae, =02 glorxge

then (2.1) admits a solution us for some s between s~ and s for any f 1 py
such that é,||pfll2 < e.

Proof. As uZ([0,T]) C JZ, we obtain:

T T T
/ p1g(t, ugt) Z/ ple/ p19(t, us—)
0 0 0

and the result holds. &

Using the fact that |s| —d,(c|s|+d) — +o00 we deduce the following existence
results:

Corollary 2.5 Let g satisfy (1.1)-(2.2), and assume, for some M > 0 that
g(t,x)sg(z) > 0 for |z| = M

or
g(t,z)sg(x) <0 for |x| =M

Then (2.1) is solvable for any f L p;.
Corollary 2.6 Let g satisfy (1.1)-(2.2), and assume that

lim g(¢,x)sg(x) = 400 or lim g(t,x)sg(x) = —o0
| =400

|z|—+oo

|z
uniformly on t. Then (2.1) is solvable for any f.
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Proof. Under the first assumption, there exists M such that

S pif]

g(t,x)sg(m) 2 lenl

for |x| > M

Hence, taking s > 0 such that s — d,(cs + d + ||pfll2) > M we have

/OTplg(t,Us) > |/0Tp1f| > /OTp1f~

In the same way, for s < 0 with s + d,(—cs + d + ||pfll2) < —M we obtain

fOT p1g(t, us) < fOT p1f and the proof is complete. The case g(t, z)sg(z) — —oo
is analogous. &

Remark. In the previous corollaries (2.5)-(2.6), we also have that all the so-
lutions belong to a compact arc of H!(0,T'), namely {us: —S < s < S} with

_ M+ 6,(d + [Ipfll2])

S 1—1dpc

We may also apply theorem (2.4) to the forced pendulum equation with
friction

u” +ru +bsin(u) = f. (2.3)
We first remark that in this case condition (1.1) reads

Ib(t)| < % for any ¢ € [0, (2.4)

for some p > 0 with pr — p’ nondecreasing and ¢, < Ap.

Theorem 2.7 With the previous notation, let us assume that
i) b satisfies (2.4) and does not vanish in (0,T).
it) [|[p(f £b)|2 < 5 for some ¢ < 3.

LT

iii) | [y p1f] < cos(c)|p1blx

Then there exist s1 € [—3,3], s2 € [, 37] such that us, + 2km is a periodic
solution of (2.3) for any integer k.

Proof. From the previous computations for s = § + km we obtain that

™
s = slloo < 0pllp(f = (=1)*blla e < 5

As sinus = (—1)* cos(us — s), taking k such that (—1)*b > 0 we conclude that

T T T
/ prbsinug = / p1|b| cos(us — s) > cos(c)||p1bll1 > / pif
0 0 0
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In the same way, for s = 5 + (k£ 1)7

T T T
/ pibsinu, = —/ p1|b| cos(us — s) < —cos(c)||p1b|l1 < / p1f
0 0 0

and the result holds. &

Remark. In particular, condition iii) is fulfilled if f is orthogonal to p;.

If we assume that ||pf]l2 < 35, We also obtain existence under slightly dif-

ferent conditions.

Theorem 2.8 With the previous notation, let us assume that
i) b satisfies (2.4) and does not vanish in (0,T)
it) lpfllz < 55 Ip(f = [bDll2 < 5 for some ¢ < 3.

T
i) sin(3,Ipfll2) < 2L < cos(@,llp(f — 1B)l2)-
Then, if b > 0 (resp. b < 0) there exist s; € [0,3], so € [§,7]| (resp. s1 €
[—Z,0], sz € [m, 37]) such that us, + 2km is a periodic solution of (2.3) for any
integer k.

Moreover, if we replace i) and iii) by

i) 612 < 2, Ip(f + bl)l2 < £ for some ¢ < .

T
gy - f
i) sin(6, [p12) < T < cos(@, Ip(f + D))
then if b < 0 (resp. b > 0) there exist s1 € [0, 5|, so € [§, 7] (resp. s1 € [—F,0],
sy € [, 37]) such that us, + 2k is a periodic solution of (2.3) for any integer
k.

Proof. It follows like in the previous theorem, using the fact that if s = kx
then |lus — slloe < dp|lpf]|2, and

T
| / prbsinu| < (|1l sin(6, [pf 1)
0
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