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On the existence of infinitely many solutions to a

damped sublinear boundary-value problem ∗

Anna Capietto & Marielle Cherpion

Abstract

We prove the existence of infinitely many solutions (with prescribed
nodal properties) to a damped sublinear boundary-value problem. The
proofs are performed by means of an abstract continuation theorem and
the time-map technique for strongly nonlinear operators.

1 Introduction

We study the existence and multiplicity of solutions to the boundary-value prob-
lem

(r(k−1)u′)′ + r(k−1)a(u′)f(r, u) = r(k−1)h(r, u, u′),
u′(0) = 0 = u(R)

(1.1)

(k > 1). As it is well-known, solutions to (1.1) are radially symmetric solutions
to the following elliptic boundary-value problem on a ball B = B(0, R)

∇ · (∇u) + a(|∇u|)f(|x|, u) = h(|x|, u, |∇u|) in B,
u = 0 on ∂B.

(1.2)

We deal with a so-called ”sublinear” problem. More precisely, we assume that
a(ξ) = a0 + |ξ|q (a0 > 0, 0 < q < 2) and that the following conditions are
satisfied:

(Hf ) The function f : [0, R]× [−ε0, ε0]→ R is continuous and such that

f(r, 0) ≡ 0

and

lim
s→0

f(r, s)

s
= +∞ uniformly in r ∈ [0, R].
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66 Existence of infinitely many solutions

(HF ) For F (r, s) :=
∫ s
0
f(r, x) dx, F is differentiable with respect to r ∈ [0, R]

and there exists a continuous positive function α : [0, R]→ (0,+∞) such
that for all r ∈ [0, R], all s ∈ [−ε0, ε0],∣∣∣∣∂F∂r (r, s)

∣∣∣∣ ≤ α(r)F (r, s).
(Hh) The function h : [0, R]× [−ε0, ε0]× R→ R is continuous and there exists

H > 0 such that for all (r, s, ξ) ∈ [0, R]× [−ε0, ε0]× R,

|h(r, s, ξ)| ≤ H |ξ|.

Moreover, there exists a continuous function C : R→ (0,+∞) such that

lim
s→0

h(r, s, ξ)

s
= C(ξ) uniformly in r ∈ [0, R]. (1.3)

We point out that problem (1.1) can be considered “singular” in a two-fold
sense. Indeed, on one hand, under condition (Hf ) the uniqueness of the solutions
to initial value problems associated to (1.1) must be guaranteed by (HF ); on
the other hand, a singularity in the r-variable arises because of the boundary
condition in zero. For more comments on (HF ) we refer to [3, 4, 6, 16].
Our main result is the following (cf. Theorem 4.1).

Theorem A Assume (Hf )-(HF )-(Hh) and let a : R→ R be defined by a(ξ) :=
a0 + |ξ|q with 0 < q < 2, a0 > 0. Then there exists n0 ∈ N such that for every
n > n0 problem (1.1) has at least two solutions un and vn with un(0) > 0 and
vn(0) < 0, both having exactly n zeros in [0, R). Moreover, we have

lim
n→+∞

|un(r)| + |u
′
n(r)| = 0 = lim

n→+∞
|vn(r)|+ |v

′
n(r)|, uniformly in r ∈ [0, R].

Multiplicity results for a boundary-value problem of the form (1.1) can be
found e.g. in [1], [2], [4], [6], [8], [12]. However, apart from [6] where additional
regularity conditions are imposed, in those papers the authors considered the
case a ≡ 1 and/or h ≡ 0. In some of the above quoted papers, the differential
operator under consideration is strongly nonlinear. We refer to [4] for a more
comprehensive list of references.
We work in the framework of topological degree methods and use some of

the ideas developed in [4] (see also [5], [9]). In this situation, two main tasks
have to be accomplished. First, one has to study an autonomous problem

u′′ + a(u′)g(u) = 0,
u′(0) = 0 = u(R),

(1.4)

where g : [−ε, ε]→ R, ε > 0, is a continuous function such that

lim
s→0

g(s)

s
= +∞.
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Secondly, suitable estimates on the (possible) solutions to a family of parameter-
dependent problems (cf. (Pλ)) have to be established.

In this paper (cf. Section 2) we overcome the first difficulty by studying
problem (1.4) in the equivalent form

(φ(u′))′ + g(u) = 0,
u′(0) = 0 = u(R),

(1.5)

where φ is an odd increasing homeomorphism defined through a. In this way,
we can use the time-map technique for equations containing the φ-Laplacian
(see [4], [7], [8], [10], [11], [12], [13]) and establish a multiplicity result for (1.4)
(cf. Theorem 2.2 and Theorem 5.4 in [4]).

Then, in order to show that the (nodal) properties of the solutions to (1.4)
can be ”continued” to problem (1.1), some estimates on the number of zeros of
the (possible) solutions to the associated parameter-dependent boundary-value
problem (cf. (Pλ)) have to be established. To this end, we argue on the lines
of [4]; however, some technical difficulties due to the presence in (1.1) of the
functions a and h have to be overcome (see in particular the proofs of Lemma
3.1, Lemma 3.3 and Claim 2 in Theorem 4.1).

We end this introductory section by observing that a result analogous to
Theorem A can be performed for a more general strongly nonlinear boundary-
value problem

(r(k−1)ψ(u′))′ + r(k−1)a(u′)f(r, u) = r(k−1)h(r, u, u′),
u′(0) = 0 = u(R),

(1.6)

where ψ is an odd increasing homeomorphism satisfying suitable assumptions.

Furthermore, on the lines of [4], one could prove the existence of an additional
double sequence of solutions to (1.1) (whose norm tends to infinity) provided
that g has a ”superlinear” behaviour at infinity and assumption (Hh) is modified
accordingly.

This paper is organized as follows. In Section 2 we study the autonomous
problem (1.4). In Section 3 we introduce a parameter-dependent non-autonomous
problem and develop some estimates on its solutions. In Section 4 we recall an
abstract continuation theorem which is then applied for the proof of the main
result.

In what follows, for any Banach space X , for any linear compact operator
L : X → X and for any subset Ω ⊂ X we will denote by deg(I−L,Ω) the Leray-
Schauder degree of I − L (if defined). The space C1([0, R]) of the continuously
differentiable real functions u on [0, R] will be equipped with the norm

||u||1 = max
{√
|u(t)|2 + |u′(t)|2 : t ∈ [0, R]

}
.

Finally, C1#([0, R]) denotes the space of functions u ∈ C
1([0, R]) satisfying the

boundary condition u′(0) = 0 = u(R).
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2 An autonomous problem

Let us consider the second order ODE

u′′ + a(u′)g(u) = 0,
u′(0) = 0 = u(R),

(2.1)

where a : R→ R is defined by a(ξ) := a0 + |ξ|q, 0 < q < 2, a0 > 0. Set

φ(s) =

∫ s
0

1

a(x)
dx. (2.2)

We assume that g : [−ε, ε]→ R is continuous (ε > 0) and such that

lim
s→0

g(s)

φ(s)
= +∞. (2.3)

We shall also assume (without loss of generality) that g(s)s > 0 for all s ∈
[−ε, ε] \ {0} and we set G(s) =

∫ s
0 g(ξ) dξ.

We observe that problem (2.1) can be written in the form

(φ(u′))′ + g(u) = 0,
u′(0) = 0 = u(R).

It is not difficult to check that φ is an odd increasing homeomorphism. Then,
as in [10], it is possible to study (2.1) with the time-map technique by means of
the system

u′ = φ−1(y),
y′ = −g(u).

(2.4)

More precisely, for

L(ξ) =

∫ ξ
0

x

a(x)
dx, (2.5)

we shall use the fact that if u is a solution of (2.4), then E(r, u(r), u′(r)) :=
G(u(r)) +L(u′(r)) is constant. Observe that our assumptions on g ensure that
the orbits of (2.1) are closed curves on the phase-plane. Then, denoting by L−1

the inverse of the restriction to R+ of the function L, we can introduce the
function T1 : (0, ε)→ (0,+∞) by

T1(α) =

∫ α
0

dx

L−1(G(α) −G(x))
. (2.6)

It is straightforward to check that T1(α) represents the time needed for a rotation
along the orbit of ”energy” G(α) in the upper (resp. lower) half plane from the
point (0,L−1(G(α))) to the point (α, 0) (resp. from (α, 0) to (0,−L−1(G(α)))).
Analogously, for α1 < 0 s.t. G(α1) = G(α), the function T2 : (0, ε)→ (0,+∞)
defined by

T2(α) =

∫ 0
α1

dx

L−1(G(α) −G(x))
(2.7)



Anna Capietto & Marielle Cherpion 69

is the time needed for a rotation along the orbit of ”energy”G(α) from the point
(α1, 0) to the point (0,L−1(G(α))) (resp. from (0,−L−1(G(α))) to (α1, 0)). For
a classical reference on this topic, the reader can consult [15]. See also [7].
For the completion of the study of the autonomous case, we need the follow-

ing result.

Proposition 2.1 Let a : R→ R be defined by a(ξ) := a0 + |ξ|q with 0 < q < 2,
a0 > 0 and φ given by (2.2). Assume g : [−ε, ε] → R is a continuous function
such that g(s)s > 0 for all s ∈ [−ε, ε] \ {0} and satisfying (2.3). Then the
functions T1(α) and T2(α) defined by (2.6) and (2.7) are such that for i = 1, 2
we have

lim
α→0

Ti(α) = 0.

Proof. Observe that L(s) = (Φ∗ ◦φ)(s) with Φ∗(s) =
∫ s
0
φ−1(x) dx. The proof

follows the same arguments as in Lemma 2.1 in [11] and Theorem 3.2 in [10]
where the assumptions on the function g, as well as the result on the asymptotic
behaviour of the time-maps, are relative to a neighbourhood of infinity. For a
more detailed proof, one can also see Theorem 2.2.8 in [7]. �
Once the time-maps are defined, we can introduce the ”generalized Fučik

spectrum” as in [3], [4], [7] in order to get a characterization of the existence of
solutions with a fixed number of zeros. Indeed, using Proposition 2.1, one gets
the following multiplicity result for the autonomous problem (2.1).

Theorem 2.2 [4, Th. 5.4] Let a : R → R be defined by a(ξ) := a0 + |ξ|q with
0 < q < 2, a0 > 0 and φ given by (2.2). Assume g : [−ε, ε]→ R is a continuous
function such that g(s)s > 0 for all s ∈ [−ε, ε] \ {0} and satisfying (2.3). Then
there exists k0 ∈ N such that for every k ≥ 2k0 problem (2.1) has at least two
solutions uk and vk with uk(0) > 0 and vk(0) < 0, both having exactly k zeros
in [0, R).

We end this section by giving two important properties of L, which will be
crucial in the sequel.

Proposition 2.3 Let a : R→ R be defined by a(ξ) := a0 + |ξ|q with 0 < q < 2,
a0 > 0 and L given by (2.5). Then for all ξ ∈ R, we have

ξ2

a(ξ)
≤ 2L(ξ).

Proof. An easy computation gives ( s
2

a(s) )
′ ≤ 2L′(s), for all s ≥ 0. Then by

integration, we get
ξ2

a(ξ)
≤ 2L(ξ) .

Proposition 2.4 Let a : R→ R be defined by a(ξ) := a0 + |ξ|q with 0 < q < 2,
a0 > 0 and L given by (2.5). Then for any c1 > 1, c ≥ c21 + 1 and ξ > 0 small
enough, we have

c1L
−1(ξ) ≤ L−1(cξ). (2.8)
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Proof. Notice that since limx→0
L(c1x)
L(x) = c

2
1, then for any c ≥ c

2
1+1 and x > 0

small enough we have L(c1x) ≤ cL(x). As L−1 : R+ → R+ is continuous, we
have for ξ > 0 small enough

L(c1L
−1(ξ)) ≤ cL(L−1(ξ)) = cξ

and since L−1 is increasing c1L−1(ξ) ≤ L−1(cξ). �

Remark 2.5 In general, if one sets Φ∗(s) =
∫ s
0 φ
−1(x) dx, where φ is an odd

increasing homeomorphism, an inequality like (2.8) can be proved separately for
the functions Φ−1∗ and φ−1. This is done in [4] under the ”lower σ-condition”

lim inf
s→0

φ(σs)

φ(s)
> 1, ∀σ > 1.

In our situation, we observe that L(s) = (Φ∗ ◦ φ)(s), so we could have proved
Proposition 2.4 by combining the inequalities for Φ−1∗ and φ−1. A direct proof
of Proposition 2.4 is simpler thanks to the fact that we can explicitly use the
function L and its properties.

3 Preliminary results

We consider the boundary-value problem

(r(k−1)u′)′ + r(k−1)a(u′)f(r, u) = r(k−1)h(r, u, u′),
u′(0) = 0 = u(R),

(3.1)

where k > 1, a : R → R is defined by a(ξ) := a0 + |ξ|q with 0 < q < 2, a0 > 0
and for a fixed ε0 > 0, the functions f and h satisfy the following properties.

(Hf ) The function f : [0, R]× [−ε0, ε0]→ R is continuous and such that

f(r, 0) = 0

and

lim
s→0

f(r, s)

s
= +∞ uniformly in r ∈ [0, R].

(HF ) For F (r, s) :=
∫ s
0 f(r, x) dx, F is differentiable with respect to r ∈ [0, R]

and there exists a continuous positive function α : [0, R]→ (0,+∞) such
that for all r ∈ [0, R], all s ∈ [−ε0, ε0],∣∣∣∣∂F∂r (r, s)

∣∣∣∣ ≤ α(r)F (r, s).
(Hh) The function h : [0, R]× [−ε0, ε0]× R→ R is continuous and there exists

H > 0 such that for all (r, s, ξ) ∈ [0, R]× [−ε0, ε0]× R,

|h(r, s, ξ)| ≤ H |ξ|.
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Moreover, there exists a continuous function C : R→ (0,+∞) such that

lim
s→0

h(r, s, ξ)

s
= C(ξ) uniformly in r ∈ [0, R]. (3.2)

A typical example for the function h is h(r, s, ξ) = η(s)|ξ|β with β > 1 for
|ξ| < 1, 0 < β < 1 for |ξ| ≥ 1 and η(s) ∼ s for s→ 0. �
Following a degree approach, problem (3.1) will be treated by means of the

parameter-dependent family of problems (λ ∈ [0, 1])

(rλ(k−1)u′)′ + rλ(k−1)a(u′)fλ(r, u) = λr
λ(k−1)h(r, u, u′),

u′(0) = 0 = u(R),
(Pλ)

where fλ : [0, R]× [−ε0, ε0]→ R is defined by

fλ(r, s) = λf(r, s) + (1− λ)g(s), (3.3)

and g : [−ε0, ε0]→ R is a continuous nondecreasing function such that

(Hg) lim
s→0

g(s)

s
= +∞.

We shall also assume (without loss of generality) that g(s)s > 0, for every
s ∈ [−ε0, ε0] \ {0}. Note that our assumptions on g guarantee that condition
(2.3) is satisfied.
Set Fλ(r, s) :=

∫ s
0 fλ(r, x) dx. It is immediate to remark that in the situation

described above we have

(HFλ) Fλ(r, s) is differentiable with respect to r ∈ [0, R] and there exists a con-
tinuous positive function α : [0, R]→ (0,+∞) such that for all r ∈ [0, R],
all s ∈ [−ε0, ε0], ∣∣∣∣∂Fλ∂r (r, s)

∣∣∣∣ ≤ α(r)Fλ(r, s).
Moreover, using (Hf ) and (Hg), we have

lim
s→0

fλ(r, s)

s
= +∞ uniformly in λ ∈ [0, 1]

and, by (HFλ), for all r ∈ [0, R], all s ∈ [−ε0, ε0] \ {0} and all λ ∈ [0, 1],

Fλ(r, s) > 0. (3.4)

In our main result we will prove the existence of infinitely many solutions of
(P1) using an abstract continuation theorem. To this end, we need the following
lemma concerning the Cauchy problem

(rλ(k−1)u′)′ + rλ(k−1)a(u′)fλ(r, u) = λr
λ(k−1)h(r, u, u′),

u(0) = d, u′(0) = 0.
(3.5)
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Lemma 3.1 For all ε ∈ (0, ε0], if u is a (local) solution of problem (3.5) with
d small enough, then u can be defined on [0, R] and ||u||1 ≤ ε.

Proof. Let ε > 0 be fixed and u be a solution of (3.5). Assume that there
exists ρ ∈ (0, R] such that for all r ∈ [0, ρ],

|u(r)| ≤ ε and |u′(r)| ≤ ε.

Let
Eλ(r, s, ξ) := Fλ(r, s) + L(ξ)

where L is given in (2.5) and for all r ∈ [0, ρ], we consider the function

vλ(r) := Eλ(r, u(r), u
′(r)). (3.6)

We have, using (Hh), (HFλ) and Proposition 2.3

v′λ(r) =
∂Fλ

∂r
(r, u(r)) +

u′(r)

a(u′(r))

(
λh(r, u(r), u′(r)) −

λ(k − 1)

r
u′(r)

)

≤
∂Fλ

∂r
(r, u(r)) + λh(r, u(r), u′(r))

u′(r)

a(u′(r))

≤
∂Fλ

∂r
(r, u(r)) +H

(u′(r))2

a(u′(r))

≤ α(r)Fλ(r, u(r)) + 2HL(u
′(r))

≤ α̃(r)vλ(r),

where α̃ : [0, R] → (0,+∞) is a continuous function. Integrating on (0, r), we
get

vλ(r) ≤ vλ(0)e
∫
r
0
α̃(s) ds = Fλ(0, d)e

∫
r
0
α̃(s) ds

and by definition of vλ, we have

L(u′(r)) ≤ vλ(r) ≤ Fλ(0, d)e
∫ r
0
α̃(s) ds. (3.7)

For the rest of the proof, we argue as in the proof of Lemma 2.3 in [4]; however,
we give the details for the reader’s convenience.
Consider (a1, a2) ∈ (0, 1)2 such that

a1 +Ra2 ≤
1

2
and a2 ≤

1

2
(3.8)

(observe that, for every R > 0, a similar choice of a1 and a2 is always possible).
Since limd→0L−1(Fλ(0, d)e

∫
r
0
α̃(s) ds) = 0 uniformly in λ ∈ [0, 1], for every ε ≤ ε0

there exists dε > 0 such that dε ≤ a1ε and for all 0 < |d| ≤ dε, all λ ∈ [0, 1],

L−1(Fλ(0, d)e
∫ r
0
α̃(s) ds) ≤ a2ε.

Then, for 0 < |d| ≤ dε, we deduce from (3.7) that for all r ∈ [0, ρ],

|u′(r)| ≤ L−1(Fλ(0, d)e
∫ r
0
α̃(s) ds) ≤ a2ε ≤

ε

2
. (3.9)
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The above estimate implies that for all r ∈ [0, ρ],

|u(r)| ≤ d+

∫ r
0

|u′(s)| ds ≤ d+RL−1(Fλ(0, d)e
∫
r
0
α̃(s) ds)

≤ a1ε+Ra2ε = (a1 +Ra2)ε ≤
ε
2 .

(3.10)

Since (3.9) and (3.10) hold independently on ρ, we can extend u on [0, R] as a
C1-function. Finally, (3.9) and (3.10) imply that

||u||1 = max
r∈[0,R]

√
|u(r)|2 + |u′(r)|2 ≤ ε.

Remark 3.2 We deduce from Lemma 3.1 that if u is a solution of (3.5) with
d small enough then u′ is bounded. Hence condition (3.2) in (Hh) implies that
there exists δ̃ > 0 such that for all r ∈ [0, R],

0 < |u(r)| ≤ δ̃ =⇒ |h(r, u(r), u′(r))| ≤ C|u(r)|,

with C independent of u′.

Lemma 3.3 There exists δ̄ > 0 such that if u is a solution of (Pλ) with |u(0)| =
d̄ small enough then for all r ∈ [0, R],

|u(r)|2 + |u′(r)|2 ≥ δ̄.

Proof. Step 1 - Let 0 < ε̃ < a0 be fixed and u(·, d) = u(·) be a solution of
(3.5). Integrating the equation in (3.5) from 0 to r, we have

−u′(r) = r−λ(k−1)
∫ r
0

sλ(k−1)(fλ(s, u(s))a(u
′(s))− λh(s, u(s), u′(s))) ds.

Let δ̃ be given by Remark 3.2. We deduce from (Hf ) that there exists 0 < δ < δ̃
such that for all r ∈ [0, R],

0 < |u(r)| ≤ δ =⇒ |f(r, u(r))| ≥
C

ε̃
|u(r)| and f(r, u(r))u(r) > 0. (3.11)

Hence if d > 0 and r are small enough, for every s ∈ [0, r] we have 0 <
u(s) ≤ δ and

fλ(s, u(s))a(u
′(s))− λh(s, u(s), u′(s)) ≥ λ

C

ε̃
u(s)a(u′(s))− λCu(s)

= λCu(s)

(
a(u′(s))

ε̃
− 1

)
> 0 ,

which proves that u is decreasing in [0, r]. In the same way, if d < 0 is small
enough then

fλ(s, u(s))a(u
′(s))− λh(s, u(s), u′(s)) ≤ λCu(s)

(
a(u′(s))

ε̃
− 1

)
< 0
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and u is increasing in [0, r]. Arguing as in [5], for every θ ∈ (0, 1) we can consider
the first point rθ(d) such that

u(rθ(d); d) = θd.

Moreover, we denote by r0(d) the first zero of u(·; d).
Step 2 - There exists δ̄ > 0 such that if u is a solution of (Pλ) with |u(0)| = d̄
small enough then for all r ∈ [0, R] we have |u(r)|2 + |u′(r)|2 ≥ δ̄.
Let u be a solution of (Pλ) with |u(0)| = d̄ sufficiently small. To prove this

Step we will need the following two claims.

Claim 1 : For every θ ∈ (0, 1) and for every λ ∈ (0, 1), we have

rθ(d̄) ≥

√
2d̄(1 − θ)(1 + λ(k − 1))

(f̂(d̄) + g(d̄))a(ε0) +Hε0
=: β(d̄) > 0,

where f̂ is defined by

f̂(s) =

{
sup{f(r, x), r ∈ [0, R], x ∈ [0, s]} if 0 < s ≤ ε0,

inf{f(r, x), r ∈ [0, R], x ∈ [s, 0]} if − ε0 ≤ s < 0 .

An analogous result holds for rθ(−d̄).
Assume u(0) = d̄ > 0. If d̄ is small enough, we have for every s ∈ [0, r0(d̄)]

that 0 < u(s) ≤ δ and we deduce from Lemma 3.1 that |u′(s)| ≤ ε0. Moreover,
using (Hh), we have for all s ∈ [0, r0(d̄)],

fλ(s, u(s))a(u
′(s))− λh(s, u(s), u′(s)) ≤ (f̂(d̄) + g(d̄))a(ε0) +Hε0.

Hence for r ∈ [0, r0(d̄)] we obtain

−u′(r) = r−λ(k−1)
∫ r
0

sλ(k−1)(fλ(s, u(s))a(u
′(s))− λh(s, u(s), u′(s))) ds

≤
r

λ(k − 1) + 1
((f̂(d̄) + g(d̄))a(ε0) +Hε0)

and integrating from 0 to rθ(d̄) we get

θd̄− d̄ = u(rθ(d̄))− u(0) ≥ −
((f̂(d̄) + g(d̄))a(ε0) +Hε0)(rθ(d̄))

2

2(λ(k − 1) + 1)

which implies

rθ(d̄) ≥

√
2d̄(1− θ)(1 + λ(k − 1))

(f̂(d̄) + g(d̄))a(ε0) +Hε0

and the Claim is proved.
A similar computation holds if u(0) = −d̄.

Claim 2 : There exists δ0 > 0 such that if u is a solution of (Pλ) with |u(0)| = d̄
sufficiently small, we have Eλ(r, u(r), u

′(r)) ≥ δ0 for every r ∈ [0, R].
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First, we observe that, by (HFλ), there is a constant γ such that for all
r ∈ (0, R], all s ∈ [−ε0, ε0] and all λ ∈ [0, 1],

∂Fλ

∂r
(r, s) +

γ

r
Fλ(r, s) ≥ 0. (3.12)

Recall that Eλ(r, s, ξ) := Fλ(r, s) + L(ξ). Using (Hh) and Proposition 2.3,

d

dr
Eλ(r, u(r), u

′(r)) +
γ

r
Eλ(r, u(r), u

′(r))

=
∂Fλ

∂r
(r, u(r)) +

γ

r
Fλ(r, u(r)) +

u′(r)

a(u′(r))
λh(r, u(r), u′(r)) +

γ

r
L(u′(r))

−λ
(k − 1)

r

(u′(r))2

a(u′(r))

≥
u′(r)

a(u′(r))
λh(r, u(r), u′(r)) +

γ

r
L(u′(r)) −

2(k − 1)

r
L(u′(r))

≥ −H
(u′(r))2

a(u′(r))
+
γ

r
L(u′(r)) −

2(k − 1)

r
L(u′(r))

≥ L(u′(r))

(
−2H +

γ

r
−
2(k − 1)

r

)
≥ 0

if γ ≥ 2HR+ 2(k − 1). Multiplying by rγ and integrating from rθ(d̄) to r, we
obtain

Eλ(r, u(r), u
′(r))rγ − Eλ(rθ(d̄), u(rθ(d̄)), u

′(rθ(d̄)))rθ(d̄)
γ ≥ 0

and

Eλ(r, u(r), u
′(r)) ≥ Eλ(rθ(d̄), u(rθ(d̄)), u

′(rθ(d̄)))rθ(d̄)
γR−γ

= R−γ
(
L(u′(rθ(d̄))) + Fλ(rθ(d̄), u(rθ(d̄)))

)
rθ(d̄)

γ

≥ R−γF 0(θd̄)rθ(d̄)
γ

≥ R−γF 0(θd̄)(β(d̄))γ ,

where F 0(θd̄) = min{Fλ(r, θd̄) : r ∈ [0, R], λ ∈ [0, 1]} > 0. We finish the proof
of the Claim by setting δ0 = R

−γF 0(θd̄)(β(d̄))γ .

If the claim in Step 2 were not true then for every δ̄ > 0, there exists r̄ ∈ [0, R]
such that |u(r̄)|2 + |u′(r̄)|2 < δ̄, which contradicts Claim 2. �
Now, for every d ∈ R0 and for every λ ∈ [0, 1] we can define

n : Sd,λ → N : u 7→ n(u),

where

Sd,λ = {u : u is a solution of (Pλ) and u(0) > d if d > 0, u(0) < d if d < 0}

and n(u) is the number of zeros of u in [0, R). Arguing as in the proof of
Lemma 3.1 and of Lemma 2.5 in [4], it is possible to prove that if u is a solution
of the equation in (Pλ) such that u(r∗) = 0 = u′(r∗) (for some r∗ ∈ (0, R])
then u ≡ 0. This fact guarantees that n is well defined. Moreover, for d small
enough, arguing as in Lemma 3.1 in [12] we can prove that n is continuous.
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4 Main result

In this section we will prove the existence of infinitely many solutions of problem

(r(k−1)u′)′ + r(k−1)a(u′)f(r, u) = r(k−1)h(r, u, u′),
u′(0) = 0 = u(R)

(3.1)

(k > 1), using an abstract theorem. Note that solutions to (P1) are solutions to
(3.1), while solutions to (P0) are solutions to the autonomous problem

u′′ + a(u′)g(u) = 0,
u′(0) = 0 = u(R).

Our main result is the following.

Theorem 4.1 Assume (Hf )-(HF )-(Hh) and let a : R → R be defined by
a(ξ) := a0 + |ξ|q with 0 < q < 2, a0 > 0. Then there exists n0 ∈ N such
that for every n > n0 problem (3.1) has at least two solutions un and vn with
un(0) > 0 and vn(0) < 0, both having exactly n zeros in [0, R). Moreover, we
have

lim
n→+∞

|un(r)| + |u
′
n(r)| = 0 = lim

n→+∞
|vn(r)|+ |v

′
n(r)|, uniformly in r ∈ [0, R].

To prove this theorem, we will need an abstract continuation result. In
order to state this theorem, let us consider a Banach space X and a completely
continuous operator N : dom N ⊂ X × [0, 1]→ X . Moreover, let A, B be two
open sets such that A ⊂ Ā ⊂ B ⊂ B̄ and (B̄ \A) ⊂ dom N .
Let Σ be the set of the solutions of the abstract equation u = N (u, λ), i.e.

Σ = {(u, λ) : u = N (u, λ)}.

For any subset D ⊂ X × [0, 1], we denote the section of D at λ ∈ [0, 1] by
Dλ = {x ∈ X : (x, λ) ∈ D} and we also set Nλ = N (·, λ). We are now in
position to state the following

Theorem 4.2 [4, Th. 2.1] Let k : Σ ∩ (B̄ \ A)→ N be a continuous function;
suppose that there exists a positive integer n satisfying the following conditions

n /∈ k(∂(B̄ \A)) (4.1)

and
k−1(n) is bounded. (4.2)

Then, for an open set Un0 such that (k
−1(n))0 ⊂ Un0 ⊂ Un0 ⊂ (B̄ \ A)0 and

Σ0 ∩Un0 = (k
−1(n))0, the Leray-Schauder degree deg(I −N0, Un0 ) is defined. If

deg(I −N0, U
n
0 ) 6= 0, (4.3)

then there is a continuum Cn ⊂ Σ with

{λ ∈ [0, 1] : ∃u ∈ X : (u, λ) ∈ Cn} = [0, 1]
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and such that

(u, λ) ∈ Cn =⇒ (u, λ) ∈ (B \ Ā) and k(u, λ) = n.

In particular there is at least one solution ũ ∈ (B \ Ā)1 of the operator equation

u = N (u, 1)

with
k(ũ, 1) = n.

Proof of Theorem 4.1. First note that problem (Pλ) can be put into the
form u = N (u, λ) where

N : dom N ⊂ C1#([0, R])× [0, 1]→ C1#([0, R])

is a completely continuous operator (see for example [14]). In order to give the
appropriate definition for the sets A and B, we need some estimates on n. Let
δ be given by (3.11) and d̄ ≤ δ sufficiently small.

Claim 1 : There exists n∗ ∈ N such that for any solution u of (Pλ) we have

|u(0)| = d̄ =⇒ n(u) < n∗.

The proof follows the same lines as the proof of Lemma 3.1 in [12], using
Lemma 3.1 and Lemma 3.3.

Claim 2 : For every N > 0 there exists dN > 0, dN < d̄, such that for any
solution u ∈ Sd,λ (for some d) we have

|u(0)| ≤ dN =⇒ n(u) > N.

Let us consider u ∈ Sd,λ. We observe that for every N > 0 there existsM(N) >
22(2k−1) such that for all |s| ≤ ε0

1√
M(N)

∫ s
0

du

L−1(s2 − u2)
<
1

N
. (4.4)

Let M̃(N) := M(N) + C
a0
. By (Hf ), there is η := ηM̃(N) such that for all

r ∈ [0, R], all 0 < |s| ≤ η and all λ ∈ [0, 1],

|fλ(r, s)| > M̃(N)|s|. (4.5)

Let εN ≤ min{η, d̄}. From Lemma 3.1, we can consider dN > 0 small enough
such that

|u(0)| ≤ dN =⇒ ||u||1 ≤ εN .

Now, let (u, λ) ∈ Σ with |u(0)| ≤ dN . The equation in (Pλ) can be written as

u′ =
y

rλ(k−1)
,

y′ = −rλ(k−1)(fλ(r, u)a(u′)− λh(r, u, u′)).

(4.6)
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We shall be concerned with the zeros {ri}i=1,...,I of u in the interval [R/2, R].
More precisely, we first estimate the distance between two successive zeros ri
and ri+1 of u in the case when

u′(ri) > 0, u′(ri+1) < 0, and u(r) > 0, ∀r ∈ (ri, ri+1).

From (4.6) we infer that y′(r) < 0 for every r ∈ (ri, ri+1). Since y(ri) > 0 and
y(ri+1) < 0, we deduce that there exists exactly one point r

∗ ∈ (ri, ri+1) such
that y(r∗) = 0 and again from (4.6) it follows that

u′(r) > 0, ∀r ∈ (ri, r
∗), u′(r) < 0, ∀r ∈ (r∗, ri+1) and u′(r∗) = 0.

Let A = (R/2)λ(k−1) andB = Rλ(k−1). Using (Hh), (3.11) and (4.5), we observe
that

fλ(r, u)−
λh(r, u, u′)

a(u′)
≥

(
M̃(N)−

C

a0

)
u =M(N)u.

Hence for r ∈ (ri, r∗) ⊂ [R/2, R], we get

u′ ≤ y
A
,

y′ ≤ −AM(N)ua
(
y
B

)
.

(4.7)

Multiplying the first inequality in (4.7) by ABM(N)u and the second one by
y

ABa( yB )
and adding up, we obtain

A

B
M(N)uu′ +

yy′

a( yB )AB
≤
M(N)uy

B
−
M(N)uy

B
= 0.

This means that the function ABM(N)
u2

2 +
B
AL(

y
B ) is non-increasing in (ri, r

∗).
Hence, setting u∗ := u(r∗), we obtain

A

B
M(N)

u(r)2

2
+
B

A
L

(
y(r)

B

)
≥
A

B
M(N)

(u∗)2

2

which implies for all r ∈ (ri, r∗),

u′(r) ≥
B

rλ(k−1)
L−1
(
M(N)A2

2B2
((u∗)2 − u2(r))

)

≥ L−1
(
M(N)A2

2B2
((u∗)2 − u2(r))

)
.

Finally, using Proposition 2.4 with c = M(N)A2

2B2 , c1 = (1/2)
2k−1
√
M(N), we

have for all r ∈ (ri, r∗),

u′(r) ≥ (1/2)2k−1
√
M(N)L−1((u∗)2 − u2(r)))
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(notice that with the above choices c1 > 1 and c > c21 + 1). Integrating from ri
to r∗, we get∫ r∗

ri

u′(r)

(1/2)2k−1
√
M(N)L−1((u∗)2 − u(r)2)

dr ≥ r∗ − ri.

If we set u(r) = u, then using (4.4) we obtain

r∗ − ri ≤

∫ u∗
0

du

(1/2)2k−1
√
M(N)L−1((u∗)2 − u2)

<
22k−1

N
.

For the completion of the proof of the Claim, it is now sufficient to observe
that a computation analogous to the one developed above can be performed if
we consider the interval (r∗, ri+1) or an interval (ri, ri+1) where u is negative.
Now, let n0 = max(n

∗, 2k0) (for the definition of k0, see Theorem 2.2). Next,
let us consider n > n0 and the number dn arising from Claim 2. In order to
prove the existence of the solutions with exactly n zeros by an application of
Theorem 4.2, we introduce the sets

B = {(u, λ) ∈ dom N : u(0) < d̄}

(d̄ as in Lemma 3.3 and Claim 1) and

An = {(u, λ) ∈ dom N : u(0) < dn}.

Moreover, the functional

k : Σ ∩ (B̄ \An)→ N

will be defined by
k(u, λ) = n(u).

Let us now prove that conditions (4.1) and (4.2) are satisfied. We observe
that

∂(B̄ \An) = {(u, λ) : u(0) = d̄} ∪ {(u, λ) : u(0) = dn}.

If (u, λ) ∈ Σ and u(0) = dn then, by Claim 2, we get n(u) > n; on the other
hand, if (u, λ) ∈ Σ and u(0) = d̄ then, by Claim 1, we have n(u) < n∗. Hence,
being n∗ < n, condition (4.1) is satisfied.
As far as the boundedness of k−1(n) is concerned, if (u, λ) ∈ k−1(n) ⊂

Σ∩ (B̄ \An), then u(0) < d̄ and we deduce from Lemma 3.1 that u is bounded,
hence (4.2) is fulfilled.
Now we have to choose an open set on which to compute the degree. From

Theorem 2.2, we know that problem (2.1) has solutions with exactly n zeros in
[0, R). These solutions enable us to determine an open bounded set Ω0 such
that

(k−1(n))0 ⊂ Ω0.

We define
Un0 = Ω0 ∩ (B̄ \An).
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Arguing as in [4], we can prove that the degree deg(I −N0, Un0 ) is well defined
and deg(I −N0, Un0 ) 6= 0.
Hence, an application of Theorem 4.2 provides the existence of a solution un

of problem (3.1) with

n(un) = n and un(0) > 0.

Moreover, this solution un is such that ||un||1 ≤ ε0.
A similar argument, considering the sets

B = {(u, λ) ∈ dom N : u(0) > −d̄}

and
An = {(u, λ) ∈ dom N : u(0) > −dn}

shows that there exists at least one solution vn of (3.1) such that

n(vn) = n and vn(0) < 0.

The last statement in Theorem 4.1 follows from the properties of n. �
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[10] M. Garcia-Huidobro - R. Manásevich - F. Zanolin, A Fredholm-like
result for strongly nonlinear second order ODE’s, J. Differential Equations,
114 (1994), pp. 132-167.
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