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Three solutions for quasilinear equations in R”
near resonance *

Pablo De Népoli & Maria Cristina Mariani

Abstract

We use minimax methods to prove the existence of at least three so-
lutions for a quasilinear elliptic equation in R™ near resonance.

1 Introduction

J. Mawhin and K. Smichtt [7], proved the existence of at least three solutions
for the two-point boundary value problem

for € > 0 small enough, h orthogonal to sinx and f bounded satisfying the sign
condition u f(z,u) > 0. In [9], To Fu Ma and L. Sanchez considered the problem

—Apu — M |ulP"2u + elulP?u = f(x,u) + h(z) (1.1)
in W,"*(€) with Q@ € R™ a bounded domain, and \; the first eigenvalue of
—Apu = AuP~%u in Q (1.2)
u=0 ondN.
They proved the following result.

Theorem 1.1 Suppose that p > 2 and that the following two conditions hold:

(H1) f:QxR"™ — R" is a continuous function and there exist 6 > % such that
Osf(z,s) — F(x,s) = —o0 as |s] = o0

(H2) There exists R > 0 such that sf(x,s) >0 for allz € Q, |s| > R

Then for every h € LP () with Jo b(z)p1(x)dz = 0, where oy is the first
eigenfunction of (1.2), the equation (1.1) has at least three solutions for € > 0
small enough.
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132 Three solutions for quasilinear equations in near resonance

We recall that the assumptions on f imply the growth condition
|f(z,8)| < c1 4 cals]”

with o = % <p.
These problems have been studied for several authors, see [3, 4, 5, §].

The functional setting

Our aim is to extend this result to equations in R". As W1P(R") is no longer
compactly imbedded into LP(R"™), we shall work in the space D', the closure
of C§(R™) with the norm

1/p
full, = ([ 1Vuta)ras)

By the Sobolev inequality we have: DV? C LP"(R") with p* = NN—_’;, this imbed-
ding is not compact, however in proposition 2.1 we prove that the imbedding
DY C LP(R™) is compact for g € LN/Pn Ll]\;éﬁe.

Simplicity of the first eigenvalue

We recall the simplicity of the first eigenvalue of the p-laplacian that is proved
in [4]. They studied the problem:
—Apu = g(z)|[ulP~2u xR (1.3)
0<u inR", limy_qou(z)=0,

where 1 < p < n. They proved the theorem below, assuming the following
conditions:

(@) g is a smooth function, at least CIOO’Z(R”) for some v € (0, 1), such that
g € LN/P(R")NL>(R") and g(z) > 0 in QF with Q%] > 0. Also g satisfies one
the following two conditions

(G*) g(z) >0 a.e. in R™
(G7) g(z) <0 for x € Q~, with |Q27| > 0.

Theorem 1.2 1. Let g satisfy (G) and (GT). Then equation (1.8) admits a
positive first eigenvalue,

M=t ul, (149

with B(u) = [, |u(z)Pg(x) dx.

2. Let g satisfy (G) and (G~). Then problem (1.8) admits two first eigen-
values of opposite sign:

A= inf Julf, AT = -

P
i of [l

i
B(u)=-1

In both cases the associated eigenfunctions oy, @7 belong to D*P N L.
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8. The set of eigenvectors corresponding to A1 is a one dimensional subspace.

Remark 1.3 The first eigenfunction p1 does not change its sign in ), so we
may assume o1 > 0.

Proof. Taking ¢~ as a test function in (1.3) with A = A; we see that

Lver=x [ Jerpoteyis

It follows that ¢~ =0 (and ¢ > 0 ), or ¢ is also a solution of the minimiza-
tion problem (1.4). In the last case, from the simplicity of the first eigenvalue
w7 = cpi. It follows that ¢~ = —¢1, so p; <0. &

Existence of multiple solutions
In this paper we study quasilinear elliptic equation
—Apu= (A —e)g(@)|[ulP2u+ f(z,u) + h(z) (1.5)
in R™. We assume the following;:
l.1<p<nande>0
2. On the weight g we make the assumptions (G) and (GT) of [4]
3. he L*" and [, hpidz =0

4. We assume that the non linearity f : R®™ x R — R is continuous and
satisfies

(HO) Growth condition.
|f(z,8)] < ex(z) + ea(2)]s]7
with 0 < pand ¢; € L&' ¢y € LP"/9)" Ll(fc/a)urn for some n > 0.
(H1) If F(z,s) = [ f(z,t)dt then L sf(a: s)—F(z,s) - —o0 as |s| = 0.
(H2) Sign condition. There exists R > 0 such that: sf(z,s) > 0 for all
x €R", |s| > R.

For example we may take f(z,s) = ca2(z)|s|”"!s-sgn s where ca(z) satisfies
the conditions above, ca(z) > 0, and o < p.
Note that integrating on condition (H0) we get

s

F(z,s) < ex(@)ls| + ea(@) —-

In the next section we will see that for the functional C'(u f]R" (z,u)dz to
be of class C*(DY?(R™)), condition (HO0) is the natural ch01ce
Our main result is the following theorem:

Theorem 1.4 Under the assumptions above, problem (1.5) has at least three
solutions for € > 0 small enough.
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2 Technical Lemmas

For the proof of theorem 1.4 we will need the following results:

A compactness result in weighted L? spaces

Ifue DY 1< q< p* % + p% =1land g € L",g > 0, then from Hoélder and
Sobolev inequalities, we have that

[urg<c [ wur (2.1)

and it follows that DV'P C Li. The following result proves that under appropri-
ate conditions, this imbedding is also compact. (Other previous results can be
found in [6]).

Proposition 2.1 Let 1 < g < p*, L + p% =1,g€ L"NL}IE for some e > 0.
Then the imbedding

Lp 9(R"

D'? C LY(R™)

18 compact.
Proof. Let (u,) C D*P be a bounded sequence:

lunlly, <C
Then, as D'? is reflexive, we may extract a weakly convergent subsequence

(tun, ). For simplicity we assume that u, — u. We want to prove that in fact
Uy — u strongly. From Hoélder and Sobolev inequalities we have:

Ir NS o
/x>Rg|u—un|q - (/|w|>R|g|r)1 (/|w|>R|un_u|p )p "< C(/DR'g'r)l

Given € > 0, as g € L" we can choose R > 0 verifying

/ glu —un|? < =
|z|>R 2

Now D1P(R™) C VVliCp (R™) continously and by the Rellich-Kondrachov theorem
upn, — u strongly in L*(Bg)

if 1 <t < p*. We choose s > 1 such that s’ =r + ¢, then s < %, and

o 1/s’ s 1/s c
[ gt ([ o) ([ )<
lz|<R |z|<R |z|<R

if n > no(e). So up — win LE(R™). o
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Some results about the Associated Functional

Under the same assumptions of theorem 1.4, we have the following results:
Lemma 2.2 Let C : Dl’p(R”) - R gwen by C(u) = [gn Fx,u)dx. Then
C € CH(D*?(R™)) and C'(u = Jan f(

Proof. From the Holder inequality we have that

jul
CwI < [ @l + ) 2tds < lalg.)

1
« T+ ; ||CQH(:D*/U)/

From the imbedding D'? C LP" we conclude that C(u) is well defined. In a
similar way,

| f(z, u)h|
]Rn

IN

[ @+ catul”a

—1
lell ey o

IN

pr Flleallpe oy

and we have that fRn f(z,u)h is also well defined. Using a similar argument as
in [8], we conclude the proof. O

Lemma 2.3 Assume that f(x,y) is a Caratheodory function, verifying that
|f(z,w)] < e1(z) + ea(z)ul™!

where 1 < o < p*, ¢1 € L¥*(R™) with s; = p*’, and c2 € L N L2 with
S = pia. Then the Nemitski operator Ny : D¥P(R™) — LP" (R") given by
Ny(u) = f(z,u) is compact.

Proof. Let (uy) be a sequence in D'? such that u, — u weakly in D*?. We
may assume, passing to a subsequence, that u, — u a.e..

As 0 < p*, we apply proposmon 2 1 with g = (0 —1)s1 < p*, g =c3'. We
note that g € L” ﬂLH’E with r =
Up — U 1IN Lg

From theorem IV.9 in [2], we obtain, after passing again to a subsequence,
a function m € LZ(R™) such that

p . We get, passing to a subsequence, that

|un(2)] < m(z)

a.e. with respect to the measure g(z)dz. Then, from condition (H0) we deduce
that

|f (2, u) = [z, un) ™ 22| f (@, W)™+ |f (2, un ) |2]

<
< 2 e () + eae)* |7V,

Applying the bounded convergence theorem to [, |f(z,u) — f(z,un)|* dz we
obtain that f(x,u,) = f(z,u) in L**(R"). &
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Remark 2.4 The weak solutions of equation (1.5) are the critical points in
Dy? of the functional

1

N —
Je(u):;/ |VulPdr — 22 c

/n lulPg(z)dz — / (F(z,u) + h(z)u)

Under the previous assumptions it is easy to check that J. € C1(DP).
Let
W= {w b / g(@)]er [P prw = 0}
Rn

We recall that as a consequence of proposition 2.1 W is a weakly closed linear
subspace.

Lemma 2.5 Ife < )1 , J. is coercive in DVP, and there exist m > 0 such that
inf,ew Je(u) > —m.

Proof. We suppose 0 < € < A1, then
1 AL —
J(u) > 1 (1 _M e) / VP —/ (F(z, ) + hu)
P )\1 n n

€ p o
Je(u) = Y [ully , = C1 = Calully , = [l ey 1w

and

p*

As o < p, it follows that J. is coercive.

We define
Aw = inf{/ |Vwl|? : w e W,/ g(z)|w(@)P = 1}
Rr Rr

We claim that Ay > M. In fact if \y = Ay then we would have w € W

verifying
/ ol? = Ay, / wlPg(z)dz = 1
R™ R™

So by the simplicity of the first eigenvalue, w = cp; but this contradicts the
definition of W.
Then, for u € W we have

p*

Aw — A1 » -
Je(u) > Erw— [ully , — C1 = Calully , = [l ey llw

Then J. is uniformly coercive in W respect to ¢, and in particular is uniformly
bounded from below. &
For stating the next result we need the two open sets:

ot = {w e Dbr . / g(m)|<p1|p_2np1w > O},

0™ = {w € D' . / g(@) 1P 21w < O}
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The next condition is a variant of the Palais-Smale condition (PS).

We will say that a functional ¢ : D'? — R verifies the (PS)o+ . condition
if any sequence (u,) in O (respectively in O~) with ¢(u,) — ¢, ¢'(u,) — 0,
has a subsequence (up,) — u € OT.

Proposition 2.6 The operator —A,, : D¥? — (DYP)* satisfies the (Sy) condi-
tion: if u, — u (weakly in DVP(R™) ) and limsup,,_,. (—Aptn,u, —u) < 0,
then w, — u (strongly in D*P )

Proof. This follows from the uniform convexity of D?(R") (see [3])

Lemma 2.7 J. satisfies the (PS) condition, and it verifies (PS)o+ . if ¢ <
—-m.

Proof. Let (u,) C D' be a (PS) sequence such that
Je(un) — ¢, Jé(un) —0

Since J. is coercive, it follows that (u,) is bounded in D', which is reflexive,
so (after passing to a subsequence) we may assume that u, — u weakly. We
want to show that in fact, u,, — u strongly. We have that

JL(un)(up —u) = /|Vun|p*2Vun -V (up —u)

Clearly [ h(un—u) — 0 since u, — u weakly. Then u,, — u strongly in L?(R")
since the imbedding D*? C L? is compact. It follows that: [ |, [P~ ?up (un —
u)g(z)dx — 0

From proposition 2.3 and the Holder inequality

[ 1 un =iz = [1£0)~ w0 =)o+ [ Fa0)(wn—0) 0.
Since J.(un)(un —u) — 0, it follows that
/ |Vun|p72Vun -V(up —u)dz — 0

or equivalently, (—Apuy,, u, —u) — 0. By the Sy condition, this implies that
Uy, — u strongly in D%P.

To prove that J. satisfies (PS)p+ . for ¢ < —m, consider (u,) C OF be a
(PS). sequence. There exists a convergent subsequence: u,, — u, and it is
enough to prove that u € OF, but if u € 90* = W, then ¢ = J(u) > —m, a
contradiction. O

Lemma 2.8 Ife > 0 is small enough, there exists two numbers, t— < 0 < tT,
such that J.(tTp1) < —m.
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Proof. From [ h(z)¢:(z)dz = 0, we have that
1
Je(tpr) = ;/ 94etPl g(x) — F(x,tp1(z))dz .
n -

Since ¢1 € L™, we can assume that 0 < ¢ (z) <1 for all z € R™.
First, since ¢g € L', we can choose p big enough, such that:

1 m
—/ Plgdr < —
P Jia|>p 2

and we split the integral J. in two parts: J. = J! + J2, where J! is the integral
over |z| < p, and J2 is the integral over |z| > p.
We define

At) = {x:]a] < p: ¢i(a) > Rt}
B(t) = {z: || < p: ¢1(a) < R/t)

Then

/ S — F(, tn (2))]da
Bt) P

is uniformly bounded in € and ¢ for € < €. Let

p

i = | ., (Gte1@@to1(0) - Flater(o))

[ et - Fata)] d
B(t) LP

Then, from (H1) and Fatou lemma, M.(t) < —2m for ¢ big enough, and ¢ < &.
By (H2) there exists 0 < g¢ < &g such that

guPtg(z) < f(z,u) in B, x [R, 1]
Then if p1(xz) > R/t and |z| < p we have:
et L p1()P " g(x) < f(=,ten)

and
JHtpr) < M.(t) < —2m.

From (H?2), since F(x,ty1) > 0, if we choose &; satisfying &; < ti,, then,
9 1 » m

JZ, (ter) < = etPide < —

P Jjz|>p 2

and we conclude that J;, (tp1) < —m for any e; < €¢. In a similar way, choosing
first ¢ big enough, and then &; small, we can prove that J,(—tp1) < —-m
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Proof of theorem 1.4

For £ > 0 small enough, from lemmas 2.7 and 2.8 we have that

—oo < inf J, < —m
fok=

and since (PS). o+ holds for all ¢ < —m, it follows from the deformation lemma
that the above infima are attained, say at «~ € O~ and ut € O*. Since OF
are both open in D'? we have found two critical points of J.. Let

=i f e
¢ = Inf max J (v(®))
with
I ={yeC([0,1], D'P(R") : 7(0) = u™,7(1) = u"}

We observe that v([0,1]) N W # 0 for any v € T, so we conclude that

c=infJ. > —-m
W

Je verifies (PS), and from Ambrossetti-Rabinowitz’s Mountain Pass Theorem
[1] we conclude that c is a third critical value of J., and since J.(u®) < —m,
the corresponding critical point is different from u™,u™.
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