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Infinitely many solutions for an elliptic system

with nonlinear boundary conditions ∗

Julián Fernández Bonder, Juan Pablo Pinasco, & Julio D. Rossi

Abstract

In this paper we prove the existence of infinitely many nontrivial so-
lutions of the system ∆u = u, ∆v = v, with nonlinear coupling at the
smooth boundary of a bounded domain of RN . The proof, under suitable
assumptions on the Hamiltonian, is based on variational arguments and
on the Fountain Theorem of the critical point theory.

1 Introduction.

In this paper we study the existence of infinitely many nontrivial solutions of
the elliptic system

∆u = u, ∆v = v, (1.1)

in Ω with nonlinear coupling at the boundary given by

∂u

∂η
= Hv(x, u, v) ,

∂v

∂η
= Hu(x, u, v) , x ∈ ∂Ω . (1.2)

Here Ω is a bounded domain in RN with smooth boundary (say C2,α), ∂∂η is the
outer normal derivative and H : ∂Ω×R×R→ R is a smooth positive function
(say C1) with growth control on H and its first derivatives.

Existence results for nonlinear elliptic systems have received a great deal
of interest in recent years, in particular when the nonlinear term appears as a
source in the equation, complemented with Dirichlet boundary conditions. For
the system (1.1)-(1.2), existence of solutions and of positive solutions, have been
proved in [9] under similar assumptions on the Hamiltonian H that we made
here. See also [10] for an existence result for (1.1)-(1.2) without any variational
assumption on the nonlinearities. For this type of results in the semilinear case
see, among others, [1, 2, 4, 5, 7, 12] and the survey [3].

This work is inspired by the articles [1] and [8] where the authors study

−∆u = Hv(x, u, v)

−∆v = Hu(x, u, v),
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142 Infinitely many solutions for an elliptic system

with Dirichlet boundary conditions in Ω ⊂ Rn, a smooth bounded domain.
The crucial part in the nonlinear boundary conditions case, is to find the

proper functional setting for (1.1)-(1.2) that allows us to treat our problem vari-
ationally. We accomplish this by defining a selfadjoint operator that takes into
account the boundary conditions together with the equations and considering
its fractional powers that satisfy a suitable “integration by parts” formula. For
the proof of our multiplicity result we use a Fountain-type theorem (see [17]) in
a version due to Felmer and Wang [8] (see also [1]).

Let us now state the precise assumptions on the Hamiltonian H .

Hypotheses on H:

|H(x, u, v)| ≤ C
(
|u|p+1 + |v|q+1 + 1

)
, (1.3)

and for small positive r, if |(u, v)| ≤ r, then

|H(x, u, v)| ≤ C
(
|u|α + |v|β

)
, (1.4)

where the exponents satisfy p+ 1 ≥ α > p > 0 and q + 1 ≥ β > q > 0 with

1 >
1

α
+
1

β
, (1.5)

max

{
p

α
+
q

β
;

q

q + 1

p+ 1

α
+

p

p+ 1

q + 1

β

}
< 1 +

1

N − 1
, (1.6)

p

p+ 1

q + 1

β
< 1 and

q

q + 1

p+ 1

α
< 1 . (1.7)

If N ≥ 4, we have to impose the additional hypothesis

max

{
p

α
;
q

β
;

q

q + 1

p+ 1

α
;

p

p+ 1

q + 1

β

}
<

N + 1

2(N − 1)
. (1.8)

On the derivatives of H we impose the following conditions∣∣∂H
∂u (x, u, v)

∣∣ ≤ C (|u|p + |v|p(q+1)/(p+1) + 1) ,∣∣∂H
∂v (x, u, v)

∣∣ ≤ C (|u|q(p+1)/(q+1) + |v|q + 1) . (1.9)

And for R large, if |(u, v)| ≥ R,

1

α

∂H

∂u
(x, u, v)u +

1

β

∂H

∂v
(x, u, v)v ≥ H(x, u, v) > 0, (1.10)

We also impose the following symmetry condition

H(x, u, v) = H(x,−u,−v). (1.11)
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Remark 1.1 (1.5)-(1.8), imply that there exist s and t with s+t = 1, s, t > 1/4
such that

α− p

α
>
1

2
−
2s− 1/2

N − 1
,

β − q

β
>
1

2
−
2t− 1/2

N − 1
,

1−
p(q + 1)

β(p+ 1)
>
1

2
−
2s− 1/2

N − 1
, 1−

q(p+ 1)

α(q + 1)
>
1

2
−
2t− 1/2

N − 1
.

Remark 1.2 When α = p+ 1 and β = q + 1, conditions (1.5), (1.6) and (1.8)
become

1 >
1

p+ 1
+
1

q + 1
> 1−

1

N − 1
, p, q ≤

N + 1

N − 3
if N ≥ 4.

Remark 1.3 We observe that from (1.10), it follows that (see [6])

|H(x, u, v)| ≥ c
(
|u|α + |v|β

)
− C.

The main result in this paper is the following Theorem.

Theorem 1.4 Assume that H : ∂Ω× R × R → R satisfies (1.3)-(1.11). Then
there exists a sequence of nontrivial strong solutions {un, vn} to (1.1)-(1.2) such
that

‖un‖W 1,(q+1)/(q)(Ω) + ‖vn‖W 1,(p+1)/(p)(Ω) →∞.

The rest of the paper is organized as follows, in §2 we establish the functional
setting in which the problem will be posed and prove a regularity result for weak
solutions of (1.1)-(1.2). In §3 we prove the main theorem.

2 The functional setting

In this section we describe the functional setting that allows us to treat (1.1)-
(1.2) variationally.
Let us consider the space L2(Ω)×L2(∂Ω) which is a Hilbert space with inner

product, that we will denote by 〈·, ·〉, given by

〈(u, v), (φ, ψ)〉 =

∫
Ω

uφ+

∫
∂Ω

vψ.

Now, let A : D(A) ⊂ L2(Ω)×L2(∂Ω)→ L2(Ω)×L2(∂Ω) be the operator defined
by

A(u, u |∂Ω) = (−∆u+ u,
∂u

∂η
),

where D(A) = {(u, u |∂Ω)/u ∈ H2(Ω)}. D(A) is dense in L2(Ω)× L2(∂Ω).
We observe that A is invertible with inverse given by

A−1(f, g) = (u, u |∂Ω),
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where u is the solution of

−∆u+ u = f in Ω,
∂u
∂η = g on ∂Ω.

(2.1)

By standard regularity theory, see [11, p. 214], it follows that A−1 is bounded
and compact. Therefore, R(A) = L2(Ω) × L2(∂Ω) thus in order to see that A
(and hence A−1) is selfadjoint it remains to check that A is symmetric [15, p.
512]. To see this let u, v ∈ D(A) and by Green’s formula we have

〈Au, v〉 =

∫
Ω

(−∆u+ u)v +

∫
∂Ω

∂u

∂η
v =

∫
Ω

u(−∆v + v) +

∫
∂Ω

u
∂v

∂η
= 〈u,Av〉;

therefore, A is symmetric. Moreover, A (and hence A−1) is positive. In fact, let
u ∈ D(A) and using again Green’s formula,

〈Au, u〉 =

∫
Ω

(−∆u+ u)u+

∫
∂Ω

∂u

∂η
u =

∫
Ω

|∇u|2 + u2 ≥ 0.

Therefore, there exists a sequence of eigenvalues (λn) ⊂ R with eigenfunctions
(φn, ψn) ∈ L2(Ω) × L2(∂Ω) such that 0 < λ1 ≤ λ2 ≤ ... ≤ λn ≤ ... ↗ +∞ and
φn ∈ H2(Ω), φn |∂Ω= ψn,

−∆φn + φn = λnφn in Ω,
∂φn
∂η = λnφn on ∂Ω.

(2.2)

Let us consider the fractional powers of A, namely for 0 < s < 1,

As : D(As)→ L2(Ω)× L2(∂Ω), with Asu =

∞∑
n=1

λsnan(φn, ψn),

where u =
∑
an(φn, ψn). Let E

s = D(As), which is a Hilbert space under the
inner product

(u, φ)Es = 〈A
su,Asφ〉.

Note that Es ⊂ H2s(Ω). In fact, if we define A1 : H2(Ω) ⊂ L2(Ω)→ L2(Ω) by

A1u = −∆u+ u,

and A2 : H
2(Ω) ⊂ D(A2) ⊂ L2(∂Ω)→ L2(∂Ω) by

A2u =
∂u

∂η
,

then Ã = (A1, A2) satisfies

A = Ã |(u,u) u ∈ D(A1) ∩D(A2),

and hence
As = Ãs |(u,u) u ∈ D(As1) ∩D(A

s
2).
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As D(A1) = H
2(Ω) ⊂ D(A2) we have, D(As1) ⊂ D(A

s
2), therefore

Es = D(As) = D(As1).

Now, by the results of [16, p. 187] (see also [13], [15]), as Ω is smooth, it follows
that Es = D(As1) ⊂ H

2s(Ω).
So we have the following inclusions

Es ↪→ H2s(Ω) ↪→ H2s−1/2(∂Ω) ↪→ Lp(∂Ω).

More precisely, we have the following immersion Theorem,

Theorem 2.1 Given s > 1/4 and p ≥ 1 so that 1
p
≥ 1
2 −

2s−1/2
N−1 the inclusion

map i : Es → Lp(∂Ω) is well defined and bounded. Moreover, if above we have
strict inequality, then the inclusion is compact.

Let us now set E = Es × Et where s+ t = 1, s, t given by Remark 1.1 and
define B : E × E → R by

B((u, v), (φ, ψ)) = 〈Asu,Atψ〉+ 〈Asφ,Atv〉.

E is a Hilbert space with the usual product structure, and hence B is a bounded,
bilinear, symmetric form. Therefore, there exists a unique bounded, selfadjoint,
linear operator L : E → E, such that

B(z, γ) = (Lz, γ)E.

Now we define

Q(z) =
1

2
B(z, z) =

1

2
(Lz, z)E = 〈A

su,Atv〉.

The following Lemma gives us a characterization of L,

Lemma 2.2 The operator L defined above can be written as

L(u, v) = (A−sAtv,A−tAsu).

Proof. Let z = (u, v), η = (φ, ψ) and Lz = (w, y). Then we have

(Lz, η)E = ((w, y), (φ, ψ))E = (w, φ)Es + (y, ψ)Et = 〈A
sw,Asφ〉+ 〈Aty,Ayψ〉.

On the other hand

(Lz, η)E = B(z, η) = 〈A
su,Atψ〉+ 〈Asφ,Atv〉.

Now if we take ψ = 0 we obtain,

〈Asw,Asφ〉 = 〈Atv,Asφ〉,

then
〈Asw −Atv,Asφ〉 = 0.
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As As is invertible, it follows that Asw = Atv and hence w = A−sAtv. Analo-
gously, y = A−tAsu. �
Next, we consider the eigenvalue problem Lz = λz. Using Lemma 2.2 we

can rewrite this as

A−sAtv = λu, A−tAsu = λv,

where z = (u, v). As As and At are isomorphisms, it follows that λ = 1 or
λ = −1. The associated eigenvectors are

for λ = 1, (u,A−tAsu) ∀u ∈ Es,

for λ = −1, (u,−A−tAsu) ∀u ∈ Es.

We can define the eigenspaces

E+ = {(u,A−tAsu) : u ∈ Es},
E− = {(u,−A−tAsu) : u ∈ Es},

(2.3)

which gives the natural splitting

E = E+ ⊕ E−. (2.4)

By (1.3), Remark 1.1 and Theorem 2.1 we can define the functional, H :
E → R as

H(u, v) =

∫
∂Ω

H(x, u, v).

Proposition 2.3 The functional H defined above is of class C1 and its deriva-
tive is given by

H′(u, v)(φ, ψ) =

∫
∂Ω

Hu(x, u, v)φ +

∫
∂Ω

Hv(x, u, v)ψ.

Moreover, H′ is compact.

Proof. From (1.9) we have∫
∂Ω

∣∣∣∣∂H∂u (x, u, v)φ
∣∣∣∣ ≤ C

∫
∂Ω

(
|u|p + |v|p(q+1)/(p+1) + 1

)
|φ|.

By Hölder inequality and Theorem 2.1 we have∫
∂Ω

∣∣∣∣∂H∂u (x, u, v)φ
∣∣∣∣ ≤ C (‖u‖pEs + ‖v‖p(q+1)/(p+1)Et + 1

)
‖φ‖Es .

In a similar way we obtain the analogous inequality for Hv.
Thus H′ is well defined and bounded in E. Next, a standard argument gives

that H is Fréchet differentiable with H′ continuous. The fact that H′ is compact
comes from Theorem 2.1 (see [14] for the details). �
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Now we can define the functional F : E → R as

F(z) = Q(z)−H(z). (2.5)

F is of class C1 and in the next section we prove that it has the structure needed
in order to apply the minimax techniques.
Let us now give the definition of weak solution of (1.1)-(1.2).

Definition 2.4 We say that z = (u, v) ∈ E = Es×Et is an (s, t)−weak solution
of (1.1)-(1.2) if z is a critical point of F . In other words, for every (φ, ψ) ∈ E
we have

〈Asu,Atψ〉+ 〈Asφ,Atv〉 −

∫
∂Ω

Hu(x, u, v)φ−

∫
∂Ω

Hv(x, u, v)ψ = 0. (2.6)

Now, we prove a Theorem that gives us the regularity of (s, t)-weak solutions.
In [9] Theorem 2.2, it is claimed that (s, t)-weak solutions of (1.1)-(1.2) are
strong solutions. However, the proof given there only shows that they are weak
solutions in the following sense∫

Ω

∇u∇φ+ uφ−

∫
∂Ω

Hv(x, u, v)φ = 0,

∫
Ω

∇v∇ϕ+ vϕ−

∫
∂Ω

Hu(x, u, v)ϕ = 0,

for all smooth φ, ϕ.

Theorem 2.5 If (u, v) ∈ Es ×Et is an (s, t)-weak solution of (1.1)-(1.2) then
u ∈ W 1,(q+1)/q(Ω), v ∈ W 1,(p+1)/p(Ω) and (u, v) is in fact a weak solution of
(1.1)-(1.2).

Proof. Let us first consider ψ = 0 in (2.6), then

〈Asφ,Atv〉 −

∫
∂Ω

Hu(x, u, v)φ = 0, (2.7)

for all φ ∈ Es. If we take φ ∈ H2(Ω), we have

〈Asφ,Atv〉 = 〈Aφ, v〉 =

∫
Ω

(−∆φ+ φ)v +

∫
∂Ω

∂φ

∂η
v. (2.8)

On the other hand, using (1.9) we find

Hu(x, u(x), v(x)) ∈ L
(p+1)/p(∂Ω).

Then from basic elliptic theory (see [11]), there exists a function w ∈ W 1, p+1p (Ω)
such that

∆w = w in Ω,

∂w

∂η
= Hu(x, u(x), v(x)) on ∂Ω .
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Now, integration by parts gives us

0 =

∫
Ω

(−∆w + w)φ =

∫
Ω

w(−∆φ + φ) +

∫
∂Ω

w
∂φ

∂η
−

∫
∂Ω

Hu(x, u, v)φ. (2.9)

Combining (2.7),(2.8) and (2.9), we obtain

〈v − w,Aφ〉 =

∫
Ω

(v − w)(−∆φ + φ) +

∫
∂Ω

(v − w)
∂φ

∂η
= 0,

from where it follows that v = w. We argue similarly for u. �

3 Proof of Theorem 1.4

In this section we present an abstract theorem from critical point theory from
[8] (see also [1]), that provides us with infinitely many critical points. Next,
we prove that it can be applied to our functional setting stated in the previous
section.

Let E be a Hilbert space with inner product (·, ·)E . Assume that E has a
splitting E = X ⊕ Y where X and Y are both infinite dimensional subspaces.
Assume there exists a sequence of finite dimensional subspacesXn ⊂ X , Yn ⊂ Y ,
En = Xn ⊕ Yn such that ∪∞n=1En = E. Let T : E → E be a linear bounded
invertible operator.
Let F ∈ C1(E,R). Instead of the usual Palais-Smale condition we will

require that the functional F satisfies the so-called (PS)∗ conditions with re-
spect to En, i.e. any sequence zk ∈ Enk with nk → ∞ as k → ∞, satisfying
F|′Enk

(zk)→ 0 and F(zk)→ c has a subsequence that converges in E.

Then we define the basic sets over which the linking process will take place.
For ρ > 0 we define

S = Sρ = {y ∈ Y | ‖y‖E = ρ}

and for some fixed y1 ∈ Y with ‖y1‖E = 1 and subspaces X1 and X2, we
consider

X ⊕ span{y1} = X1 ⊕X2.

Without loss of generality we may assume that y1 ∈ X2. Next, we define for
M,σ > 0

D = DM,σ = {x1 + x2 ∈ X1 ⊕X2| ‖x1‖E ≤M, ‖x2‖E ≤ σ}.

Now we can state our abstract critical point result whose proof can be found
in [8]:

Theorem 3.1 Let F ∈ C1(E,R) be an even functional satisfying the (PS)∗

condition with respect to En. Assume that T : En → En, for n large. Let ρ > 0
and σ > 0 be such that σ‖Ty1‖E > ρ. Assume that there are constants α ≤ β
such that

inf
S∩En

F ≥ α , sup
T (∂D∩En)

F < α , sup
T (D∩En)

F ≤ β

for all n large. Then F has a critical value c ∈ [α, β].
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Next, we show how the functional setting introduced in §2 can be applied in
Theorem 3.1. Let φn be the eigenfunctions defined in (2.2). We define

En = span{φ1, ..., φn} × span{φ1, ..., φn}

and it is easy to see that ∪∞n=1En = E.
Next, we prove that F satisfies the (PS)∗ condition with respect to the

family En.

Lemma 3.2 The functional F satisfies the (PS)∗ condition with respect to En

Proof. Let (zk)k≥1 ⊂ Enk be a sequence such that

F(zk)→ c and F ′ |Enk (zk)→ 0. (3.1)

Let us first prove that (3.1) implies that (zk) is bounded. From (3.1) it
follows that there exists a sequence εk → 0 such that

|F ′(zk)w| ≤ εk‖w‖E , ∀w ∈ Enk . (3.2)

Let us take

wk = ((wk)1, (wk)2) =
αβ

α+ β
(
1

α
uk,
1

β
vk), where zk = (uk, vk).

Now, using (3.1) and (3.2), for k large,

c+ 1 + εk‖wk‖E

≥ F(zk)−F
′(zk)wk

= 〈Asuk, A
tvk〉 −

∫
∂Ω

H(x, uk, vk)− 〈A
suk, A

t(wk)2〉

−〈As(wk)1, A
tvk〉+

∫
∂Ω

Hu(x, uk, vk)(wk)1 +

∫
∂Ω

Hv(x, uk, vk)(wk)2

=
αβ

α+ β

∫
∂Ω

1

α
Hu(x, uk, vk)uk +

1

β
Hv(x, uk, vk)vk −H(x, uk, vk)

+

(
αβ

α+ β
− 1

)∫
∂Ω

H(x, uk, vk).

Now, by (1.10) and (1.5) we obtain C(1 + ‖zk‖E) ≥
∫
∂Ω
H(x, uk, vk), and then,

by Remark 1.3, ∫
∂Ω

|uk|
α + |vk|

β ≤ C(1 + ‖uk‖Es + ‖vk‖Et). (3.3)

Next we consider w = (φ, 0), φ ∈ Esnk . From (3.2) we have

〈Asφ,Atvk〉 ≤

∫
∂Ω

|Hu(x, uk, vk)φ| + εk‖φ‖Es .
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Now, by (1.9)∫
∂Ω

|Hu(x, uk, vk)φ| ≤ C

(∫
∂Ω

|uk|
p|φ|+ |vk|

p q+1p+1 |φ|+ |φ|

)
.

Using Hölder inequality the last term is bounded by

‖uk‖
p
Lα(∂Ω)‖φ‖L

α
α−p (∂Ω)

+ ‖vk‖
p q+1p+1

Lβ(∂Ω)
‖φ‖

L
β(p+1)

β(p+1)−p(q+1) (∂Ω)
+ ‖φ‖L1(∂Ω).

Now, by Theorem 2.1 and Remark 1.1, we get that the last equation is bounded
by

‖uk‖
p
Lα(∂Ω)‖φ‖Es + ‖vk‖

p q+1p+1

Lβ(∂Ω)
‖φ‖Es + ‖φ‖Es .

Thus,

|〈Asφ,Atvk〉| ≤ C‖φ‖Es

(
‖uk‖

p
Lα(∂Ω) + ‖vk‖

p q+1p+1

Lβ(∂Ω)
+ 1

)
.

By duality (As in invertible over Es) we get

‖vk‖Et ≤ C

(
‖uk‖

p
Lα(∂Ω) + ‖vk‖

p q+1p+1

Lβ(∂Ω)
+ 1

)
. (3.4)

Analogously, we obtain

‖uk‖Es ≤ C

(
‖vk‖

q
Lβ∂Ω)

+ ‖uk‖
q p+1q+1

Lα(∂Ω) + 1

)
. (3.5)

Now combining (3.3), (3.4) and (3.5), we obtain

‖uk‖Es + ‖vk‖Et ≤ c

(
‖uk‖

p/α
Es + ‖vk‖

p q+1
β(p+1)

Et + ‖vk‖
q/β
Et + ‖uk‖

q p+1
α(q+1)

Es + 1

)
,

and as all the exponents are less than one, we get that zk in bounded.
Now, by the compactness of H′ and the invertibility of L we can extract

a subsequence of zk that converges in E. In fact, we can take a subsequence
zkj that converges weakly in E, as H

′ is compact, it follows that H′(zkj ) con-
verges strongly in E. Hence, using the fact that F ′(zkj ) → 0 strongly and the
invertibility of L, the result follows. �
Now we define the splitting of En. Fix k ∈ N and for n ≥ k let

Xn =
(
E−1 ⊕ · · · ⊕E

−
n

)
⊕
(
E+1 ⊕ · · · ⊕E

+
k−1

)
and Yn =

(
E+k ⊕ · · · ⊕E

+
n

)
,

(3.6)
where E+j = span{(φj , A

−tAsφj)} and E
−
j = span{(φj ,−A

−tAsφj)}. By (2.4)
we have En = Xn ⊕ Yn.

Lemma 3.3 There exist αk > 0 and ρk > 0 independent of n such that for all
n ≥ k

inf
z∈Sρk∩Yn

F(z) ≥ αk

where Sρk = {y ∈ E
+ | ‖y‖ = ρk}. Moreover, αk →∞ as k →∞.



J. Fernández Bonder, J.P. Pinasco and J.D. Rossi 151

Proof. We first recall that by Theorem 2.1, Es is embedded in Lγ(∂Ω) for
any γ ∈ [1, 2N−2N−4s ], hence there exists a = a(γ) such that

‖u‖Lγ(∂Ω) ≤ a‖u‖Es for all u ∈ Es.

Also for z ∈ E+k ⊕ · · · ⊕E
+
j ⊕ · · · we have

‖z‖E ≥ λ
min{s,t}
k ‖z‖L2(∂Ω)

with λk →∞ as k →∞.
Now consider z = (u, v) ∈ Yn. For a constant a independent of n, we observe

that there exists κ > 0 such that

‖u‖p+1
Lp+1(∂Ω) ≤ ‖u‖

2/κ
L2(∂Ω)‖u‖

(2N−2)/[(N−4s)κ′]
L(2N−2)/(N−4s)(∂Ω)

≤
a

λ
min{s,t}(2/κ)
k

‖u‖p+1Es

Analogously, we obtain

‖v‖q+1
Lq+1(∂Ω) ≤

a

λ
min{s,t}(2/θ)
k

‖v‖q+1Et

for some θ > 0.
Then for z = (u, v) we have

F(z) ≥ ‖z‖2E − C

(
a

λ
min{s,t}min{2/κ, 2/θ}
k

max{‖z‖p+1E , ‖z‖q+1E }+ 1

)

Then we choose ρ
max{p+1,q+1}
k = λ

min{s,t}min{2/κ, 2/θ}
k and observe that ρk →∞

as k→∞.
Therefore, for z ∈ Sρk ∩ Yn we find that

F(z) ≥ ρ2k − C. (3.7)

Defining αk as the right hand side of (3.7) and noting that both ρk and αk are
independent of n ≥ k we complete the proof of the Lemma. �
Next we define, for z = (u, v) ∈ E

Tσ(z) = (σ
µ−1u, σν−1v) (3.8)

where µ and ν are such that

1

α
<

µ

µ+ 1
,

1

β
<

ν

ν + 1
,

α and β are given by (1.4).

Lemma 3.4 There exist βk > 0, σk and Mk > 0 independent of n such that
for all n ≥ k they satisfy σk > ρk,

sup
Tσk (∂D∩En)

F ≤ 0 and sup
Tσk (D∩En)

F ≤ βk

where

D = {z ∈ E− ⊕ E+1 ⊕ · · · ⊕E
+
k | ‖z

−‖ ≤Mk, ‖z
+‖ ≤ σk}.
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Proof. Let us consider z = Tσ(u, v) with (u, v) ∈ D. Then we can write
z = (σµ−1u+, σν−1v+) + (σµ−1u−, σν−1v−). Using the definition of Q and the
spaces E+ and E− we have

Q(z) = σµ+ν−2(‖z+‖2 − ‖z−‖2).

On the other hand we have that∫
∂Ω

H(z, x) dS ≥ C

(∫
∂Ω

σα(µ−1)|u+ + u−|α + σβ(ν−1)|v+ + v−|β dS − |∂Ω|

)
.

The functions u+ and u− can be written as

u+ =
k∑
i=1

θiφi and u− =
k∑
i=1

γiφi + ũ
−,

where ũ− is orthogonal to φi, i = 1, ..., k in L
2(Ω) × L2(∂Ω). Using Hölder

inequality we get

k∑
i=1

λs−ti (θ
2
i + θiγi) = 〈u+ + u−, As−tu+〉

≤ ‖u+ + u−‖Lα(Ω)×Lα(∂Ω)‖A
s−tu+‖Lα′(Ω)×Lα′(∂Ω).

Then there exists a constant Ck such that

k∑
i=1

λs−ti (θ
2
i + θiγi) ≤ Ck‖u

+ + u−‖Lα(Ω)×Lα(∂Ω)‖u
+‖L2(Ω)×L2(∂Ω). (3.9)

In a similar way, using that v+ = As−tu+ and v− = −As−tu− (see (2.3)) we
have that there exists a constant Ck such that

k∑
i=1

λs−ti (θ
2
i − θiγi) ≤ Ck‖v

+ + v−‖Lβ(Ω)×Lβ(∂Ω)‖u
+‖L2(Ω)×L2(∂Ω). (3.10)

Depending on the sign of
∑k
i=1 λ

s−t
i αiγi we use (3.9) or (3.10) to conclude that

‖u+‖L2(Ω)×L2(∂Ω) ≤ Ck‖u
+ + u−‖Lα(Ω)×Lα(∂Ω)

or
‖u+‖L2(Ω)×L2(∂Ω) ≤ Ck‖v

+ + v−‖Lβ(Ω)×Lβ(∂Ω)

and hence

F(z) ≤ σµ+ν−2(‖z+‖2E − Ckσ
α(µ−1)‖u+‖αL2(Ω)×L2(∂Ω) + C|∂Ω|

or
F(z) ≤ σµ+ν−2(‖z+‖2E − Ckσ

β(ν−1)‖u+‖βL2(Ω)×L2(∂Ω) + C|∂Ω|.
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Thus we may choose ‖z+‖E = σk large enough in order to obtain σk > ρk and
F(z) ≤ 0. Then taking ‖z+‖ ≤ σk and ‖z−‖ =Mk, we get

F(z) ≤ σµ+ν−2k

(
σ2k −M

2
k

)
+ C|∂Ω|

and then choosing Mk large enough we find that F ≤ 0. In this way we have
finished with the proof of the first part of Lemma 3.4. Then we choose βk so
that the second inequality holds. �

Proof of Theorem 1.4: For a given k ≥ 1, Lemmas 3.3 and 3.4 allows us to
use Theorem 3.1. As a consequence the functional F has a critical value ck ∈
[αk, βk]. Since αk → ∞ we get infinitely many critical values of F . Therefore
we have infinitely many solutions of (1.1)-(1.2).
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