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degenerate parabolic systems ∗
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Abstract

Explicit decay rates for solutions of systems of degenerate parabolic
equations in the whole space or in bounded domains subject to homo-
geneous Dirichlet boundary conditions are proven. These systems in-
clude the scalar porous medium, fast diffusion and p-Laplace equation
and strongly coupled systems of these equations. For the whole space
problem, the (algebraic) decay rates turn out to be optimal. In the case
of bounded domains, algebraic and exponential decay rates are shown to
hold depending on the nonlinearities. The proofs of these results rely
on the use of the entropy functional together with generalized Nash in-
equalities (for the whole space problem) or Poincaré inequalities (for the
bounded domain case).

1 Introduction

In this paper we derive explicit and, in some situations, optimal decay rates
for solutions of the following strongly coupled system of degenerate parabolic
equations:

∂tb(u)− div a(u,∇u) = f(u) in Ω× (0,∞), (1)

b(u(·, 0)) = b(u0) in Ω, (2)

either in the whole space Ω = Rd or in a bounded domain Ω ⊂ Rd (d ≥ 1) with
Lipschitzian boundary. In the second case we impose homogeneous Dirichlet
boundary conditions

u = 0 on Ω× (0,∞). (3)

Here u : Ω× (0,∞)→ Rn is a vector-valued function, a(·, ·) is a matrix-valued
function with n rows and d columns, and ∇u stands for the Jacobian of the
n-dimensional vector field u, i.e. (∇u)ij =

∂ui
∂xj
. The divergence of a matrix field

is defined in the usual way, i.e. it is the vector whose j-th component is the
scalar divergence of the j-th matrix column.
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190 Decay rates for solutions of degenerate parabolic systems

Our assumptions on the nonlinearities are such that the trivial (zero) solution
is a solution of the steady-state system. The objective of this paper is to study
the rate of convergence of u(t) to zero in Lq and in terms of the entropy of the
system (see below).
It turns out that the decay rate of u(t) to zero in the whole space case is

algebraic with optimal rate. In the case of bounded domains the decay rate can
be better than the rate for the whole space, however, under stronger conditions
on the nonlinearities. In particular situations which include the non-degenerate
case, even exponential decay can be shown.

2 Main results

First we specify the assumptions on the nonlinearities.

(A1) The function b : Rn → R
n with b(0) = 0 is strictly monotone and a

gradient, i.e. there exists a function χ ∈ C1(Rn) with b = ∇χ, χ(0) = 0,
and constants β,B > 0, m > 0 such that for all u, v ∈ Rn,

β|u− v|1+1/m ≤ (b(u)− b(v)) · (u− v) ≤ B|u− v|1+1/m.

(A2) The function a : Rn ×Rn×d → Rn×d is continuous in Rn ×Rn×d, satisfies
a(u, 0) = 0 for all u ∈ Rn and is elliptic in the sense

(a(u, z1)− a(u, z2)) · (z1 − z2) ≥ α|z1 − z2|
p

for all u ∈ Rn, z1, z2 ∈ Rn×d, with constants α > 0 and p ≥ 2.

(A3) The function f : Rn → Rn satisfies

f(u) · u ≤ 0, |f(u)| ≤ Ce(b(u)),

for all u ∈ Rn, where the function e is the Legendre transform of χ, i.e.

e(b(u)) = b(u) · u− χ(u), u ∈ Rn. (4)

The “·” product of matrices in (A2) is defined as sum over both indices of
products of equally indexed matrix elements, i.e. A · B := trace(ABT ), where
“T ” stands for matrix transposition.
The initial datum satisfies

(A4) e(b(u0)) ∈ L1(Ω) with measurable u0.

Systems of equations like (1)–(2) arise in a variety of physical situations. For
example, they describe the evolution of a fluid in non-Newtonian filtration or
the water flow through porous media (see [16] and the references therein). In
this context, often single equations with n = 1 are considered (see [19]). Systems
of equations with n > 1 arise, for instance, in non-equilibrium thermodynamics
[8], semiconductor modeling [9, 13] and alloy solidification processes [12].
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The porous medium equation (m > 1) or the fast diffusion equation (0 <
m < 1)

∂t(u
1/m)−∆u = 0, u ≥ 0,

are included in (1). Furthermore, the p-Laplace equation

∂tu− div(|∇u|
p−2∇u) = 0

is also included. Notice that the corresponding functions b(u) and a(u, z) satisfy
the conditions (A1) and (A2).
We introduce our notion of weak solution of the system (1)–(2), (1)–(3)

respectively (see [2]). We call u ∈ Lp(0, T ;W 1,p0 (Ω)) a weak solution of (1)–
(2) ((1)–(3) respectively) on the time interval [0, T ), if b(u) ∈ L∞(0, T ;L1(Ω)),

∂tb(u) ∈ Lp
′
(0, T ; W−1,p

′

0 (Ω)), a(u,∇u) ∈ Lp
′
((0, T )× Ω), u satisfies (1) in the

distributional sense and the initial condition (2) is satisfied in the weak sense,
i.e. ∫ T

0

〈∂tb(u), w〉dt+

∫ T
0

∫
Ω

(b(u)− b(u0)) · ∂twdxdt = 0

for all smooth function w such that w(x, T ) = 0 for all x ∈ Ω. Here, p′ =
p/(p− 1). Clearly, W 1,p0 (Ω) =W

1,p(Rd) if Ω = Rd.
Later we need an auxiliary result for integration by parts in time:

Lemma 2.1 Let Ω = Rd or let Ω ⊂ Rd (d ≥ 1) be a bounded domain. Let u
be a weak solution of (1)–(2), (1)–(3) respectively. Furthermore, let (A4) hold.
Then e(b(u)) ∈ L∞(0, T ; L1(Ω)) and for almost all t ∈ [0, T ) the following
formula holds:∫

Ω

e(b(u(t)))dx−

∫
Ω

e(b(u0))dx =

∫ t
0

〈∂tb(u), u〉dt.

Here 〈·, ·〉 denotes the duality bracket between W 1,p(Ω) and W−1,p
′

0 (Ω)).

A proof of this result for bounded domains can be found in [2, Lemma 1.5].
For the whole space case, the proof is almost exactly the same as in the bounded
domain case. Since 〈∂tb(u), u〉 ∈ L1(0, T ) the entropy

H(t) =

∫
Ω

e(b(u(x, t)))dx (5)

is actually well defined for all t ∈ [0, T ] and absolutely continuous on [0, T ].
The existence of (global) weak solutions of (1)–(2) in bounded domains sub-

ject to mixed Dirichlet-Neumann boundary conditions has been shown by Alt
and Luckhaus in [2] (also see [17]). They obtained an existence result for elliptic-
parabolic systems, that is, assuming the function b to be only monotone (instead
of strictly monotone). This result has been extended in different directions by
various authors, for instance under more general assumptions on a(u, z) or b(u0)
[1, 11, 18]. No existence result seems to be available for the whole space problem.
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The uniqueness of weak solutions (always in bounded domains) in the case
of a single equation has been first shown in [2] under the additional assumption
∂tb(u) ∈ L1. This condition could be removed by Otto in [21]. In the case of
systems of equations, uniqueness results seem to be available only for functions
a(u, z) = Az + g(u) (see [2, 14]).
We now state the main theorems. The first theorem is valid in the whole

space or for bounded domains.

Theorem 2.2 Let Ω = Rd or let Ω ⊂ Rd (d ≥ 1) be a bounded domain with
∂Ω ∈ C0,1. Let the hypotheses (A1)–(A4) hold, and

m >
1

2
, p >

d(m+ 1)

dm+ 1
.

Let u be a weak solution of the system (1)–(2), (1)–(3) respectively, for t ∈ [0,∞)
with

b(u) ∈ L∞(0,∞;L1(Ω)).

Then there exist constants C1, C2, C3 > 0 only depending on α, β, B, β0, d,
m, n, and p with

β0 = ‖b(u)‖L∞(0,∞;L1(Ω))

such that for all t > 0,

H(t) ≤ (H(0)−δ + δC1t)
−1/δ, (6)

‖u(t)‖L1+1/m ≤ C2(H(0)
−δ + δC1t)

−m/δ(m+1), (7)

and if m > 1,

‖u(t)‖L1 ≤ C3(H(0)
−δ + δC1t)

−(m−1)/δm, (8)

where

δ =
dm(p− 1) + p− d

dm
> 0. (9)

We show in Remark 3.3 below that the above decay rates are optimal in the
whole space case. In the following two theorems we treat the case of bounded
domains; there we get (in general) better convergence rates than in Theorem
2.2 but partly under stronger conditions on m and p.

Theorem 2.3 Let Ω ⊂ Rd (d ≥ 1) be a bounded domain with ∂Ω ∈ C0,1. Let
the assumptions (A1)–(A4) hold and

m >
1

p− 1
and m ≥

d− p

d(p− 1) + p
.

Let u be a weak solution of the system (1)–(3) for t ∈ [0,∞). Then there exist
constants C1, C2 > 0 only depending on α, β, B, d, Ω, m, n, and p such that
for all t > 0,

H(t) ≤ (H(0)−γ + γC1t)
−1/γ ,

‖u(t)‖L1+1/m ≤ C2(H(0)
−γ + γC1t)

−m/γ(m+1),
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where

γ =
(p− 1)m− 1

m+ 1
> 0.

Remark 2.4 The second condition on m is equivalent to

p ≥
d(m+ 1)

dm+m+ 1
.

Therefore, if p ≥ 3, the conditions of Theorem 2.3 on m (for fixed p and d) are
weaker than those of Theorem 2.2. In the case p < 3 the conditions of Theorem
2.2 can be weaker or stronger than those of Theorem 2.3, depending on the
precise values of p and d. In particular, if p = 2, Theorem 2.2 contains the fast
diffusion case m < 1 which is excluded in Theorem 2.3.
The decay rate 1/δ of Theorem 2.2 is always smaller than or equal to the

rate 1/γ of Theorem 2.3. More precisely, if m > (d − p)/(d(p − 1) + p) then
δ > γ, and if m = (d− p)/(d(p− 1) + p) then δ = γ.

Theorem 2.5 Let Ω ⊂ Rd (d ≥ 1) be a bounded domain with ∂Ω ∈ C0,1. Let
the assumptions (A1)–(A4) hold and

m =
1

p− 1
.

Let u be a weak solution of the system (1)–(3) for t ∈ [0,∞). Then there exist
constants C, µ > 0 only depending on α, β, B, d, Ω, m, n, and p such that for
all t > 0

H(t) ≤ H(0)e−µt,

‖u(t)‖L1+1/m ≤ Ce−mµ/(m+1)·t.

Remark 2.6 Notice that the decay rate 1/γ becomes arbitrarily large if p →
1 + 1/m. In this sense Theorem 2.5 is a limiting case of Theorem 2.3. Indeed,
if p = 1 + 1/m (i.e. m = 1/(p− 1)) than we obtain exponential decay.

Remark 2.7 Theorems 2.3 and 2.5 are valid too, if homogeneous mixed Diri-
chlet-Neumann boundary conditions are prescribed, i.e.

ui = 0 on ΓD × (0,∞), ai(u,∇u) · ν = 0 on ΓN × (0,∞),

where i = 1, . . . , n. Here, ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, measd−1(ΓD) > 0,
ΓN is open in ∂Ω, and ν is the unit normal vector of ∂Ω.
Indeed, in the proofs we use the Poincaré inequality which is valid for func-

tions u which vanish on a part of the boundary with positive (d−1)-dimensional
Lebesgue measure [24, Lemma 1.46].

Remark 2.8 Theorem 2.2 has been proven in [5]; Theorems 2.3 and 2.5 are
new. Note that Theorem 2.5 contains the nondegenerate case p = 2, m =
1. The energy-transport equations arising in nonequilibrium thermodynamics
and semiconductor theory are a special example of strongly coupled parabolic
systems with p = 2 and m = 1. In [8] exponential convergence of solutions
of the energy-transport system has been proven. Therefore, Theorem 2.5 is an
extension of the result in [8].
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3 Proof of Theorem 2.2

For the proof of Theorem 2.2 we need an inequality which relates the Lq norm
of a function to the Lp norm of its gradient, for appropriate p, q. In bounded
domains, this is provided by the Poincaré inequality. In the whole space case,
we shall replace the Poincaré inequality by the Nash inequality.
The classical Nash inequality reads as follows [3, 4, 20]: There exists a

constant Γ > 0 such that for all w ∈ L1(Rd) ∩H1(Rd),

‖w‖
1+2/d
L2 ≤ Γ‖w‖

2/d
L1 ‖∇w‖L2 . (10)

For the degenerate parabolic system (1)–(2) under the assumption (A1) however,
it is more natural to work in the space L1+1/m instead of L2. We shall call the
corresponding inequality generalized Nash inequality:

Lemma 3.1 Let Ω = Rd or let Ω ⊂ Rd (d ≥ 1) be a bounded domain with
∂Ω ∈ C0,1. Let m > 1/2, d ∈ N and p ∈ [1,∞) such that

p >
d(m+ 1)

dm+m+ 1
.

Then there exists a constant Γ > 0 only depending on d,m and p such that for
all w ∈ W 1,p0 (Ω) with |w|

1/m ∈ L1(Ω):

‖w‖1+σ
L1+1/m

≤ Γ‖ |w|1/m‖σmL1 ‖∇w‖Lp , (11)

where

σ =
dpm+ (m+ 1)(p− d)

dpm2
> 0.

The classical Nash inequality (10) is obtained for m = 1 and p = 2.

Proof. The generalized Nash inequality is a consequence of the Gagliardo-Niren-
berg and the Hölder inequality. This is not very surprising since there are close
relations between the Sobolev, the Gagliardo-Nirenberg and the Nash inequality
[3].
First, let w ∈ D(Ω) and r ∈ (1,∞) with 1/m < r < 1 + 1/m. Then there

exists a constant G > 0 only depending on d, p and r such that the Gagliardo-
Nirenberg inequality holds:

‖w‖L1+1/m ≤ G‖∇w‖
θ
Lp‖w‖

1−θ
Lr , (12)

where

θ =
m
m+1 −

1
r

1
p −

1
r −

1
d

.

It is easy to check that the inequality p > d(m + 1)/(dm + m + 1) implies
0 < θ < 1.
For all v ∈ L1(Ω) ∩ Lm+1(Ω), the Hölder inequality

‖v‖Lrm ≤ ‖v‖
α
L1‖v‖

1−α
Lm+1
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holds, where

α =
m+ 1− rm

rm2
.

The inequalities 1/m < r < 1 + 1/m imply 0 < α < 1. Taking v = |w|1/m we
obtain

‖w‖Lr ≤ ‖ |w|
1/m‖αmL1 ‖w‖

1−α
L1+1/m

.

Substituting the Lr norm of w in (12), we conclude

‖w‖1/θ−(1−α)(1−θ)/θ
L1+1/m

≤ G1/θ‖ |w|1/m‖αm(1−θ)/θL1 ‖∇w‖Lp .

Since

1

θ
−
(1− α)(1 − θ)

θ
= 1 + α

1− θ

θ
= 1 +

dpm+ (m+ 1)(p− d)

dpm2
= 1 + σ,

we obtain the Nash inequality (11) for all w ∈ D(Ω). The assertion then follows
from a density argument.

Proof of Theorem 2.2. The proof is divided into several steps.

Step 1: Entropy inequality. Using equation (1) and conditions (A2)–(A3), we
obtain for 0 < s < t (see Lemma 2.1),

H(t)−H(s) =

∫ t
s

〈∂tb(u), u〉dτ (13)

= −

∫ t
s

∫
Ω

a(u,∇u) · ∇udxdτ +

∫ t
s

∫
Ω

f(u) · udxdτ

≤ −α

∫ t
s

‖∇u(τ)‖pLpdτ.

The condition (A1) yields b(u) ·u ≥ β|u|1+1/m for all u ∈ Rn. Therefore, for
all i = 1, . . . , n,

‖ |ui(t)|
1/m‖L1 ≤ ‖ |u(t)|

1/m‖L1 ≤ (1/β)‖b(u(t))‖L1 ≤ b0/β,

where b0 = supt>0 ‖b(u(t))‖L1(Ω). Since p satisfies the hypotheses of Lemma
3.1, we can apply the generalized Nash inequality (11):

‖ui(t)‖
1+σ
L1+1/m

≤ Γ(b0/β)
σm‖∇ui(t)‖Lp ,

and hence

‖u(t)‖1+σ
L1+1/m

=
( n∑
i=1

‖ui(t)‖L1+1/m
)1+σ

≤ max(1, nσ)Γ(b0/β)
σm

n∑
i=1

‖∇ui(t)‖Lp = C0‖∇u(t)‖Lp ,
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where

C0 = max(1, n
σ)Γ(b0/β)

σm.

Employing the above inequality in (13) we obtain

H(t)−H(s) ≤ −αC−p0

∫ t
s

‖u(τ)‖p(1+σ)
L1+1/m

dτ.

Step 2: Relation between the entropy and ‖u‖L1+1/m. In order to relate the
L1+1/m norm of u(τ) to H(τ) we use the condition (A1). Then, for all u ∈ Rn,

e(b(u)) =

∫ 1
0

(b(u)− b(σu)) · udσ

=

∫ 1
0

(b(u)− b(σu)) · (u − σu)
dσ

1− σ
(14)

≤ B

∫ 1
0

|u− σu|1+1/m
dσ

1− σ
=
mB

m+ 1
|u|1+1/m.

Therefore

H(τ) ≤
mB

m+ 1
‖u(τ)‖

1+1/m

L1+1/m
, (15)

which yields

H(t)−H(s) ≤ −C1

∫ t
s

H(τ)mp(1+σ)/(1+m)dτ,

where

C1 = αC
−p
0

(
m+ 1

mB

)mp(1+σ)/(m+1)
.

This implies
dH

dt
≤ −C1H

1+δ

for almost all t > 0, where δ > 0 is given by (9). Notice that δ > 0 if and only if
p > d(m + 1)/(dm + 1). The above differential inequality immediately implies
(6). The decay (7) is obtained from condition (A1) and (14):

H(t) ≥
mβ

m+ 1
‖u(t)‖1+1/m

L1+1/m
for almost all t > 0,

with C2 =
(
(m+ 1)/mβ

)m/(m+1)
.

Step 3: Decay rate in L1. In order to derive the decay rate (8), we employ the
estimate (7) and the Hölder inequality

‖w‖Lm ≤ ‖w‖
1−1/m2

Lm+1
‖w‖1/m

2

L1 ,
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applied to w = |ui(t)|1/m, to obtain

‖u(t)‖L1 =

n∑
i=1

‖ui(t)‖L1 ≤ (b0/β)
1/m

n∑
i=1

‖ui(t)‖
1−1/m2

L1+1/m

≤ max(1, n1/m
2

)(b0/β)
1/m‖u(t)‖1−1/m

2

L1+1/m

≤ C3(H(0)
−δ + δC1t)

−(m−1)/δm,

where
C3 = max(1, n

1/m2)(b0/β)
1/mC

1−1/m2

2 .

This proves the theorem.

Remark 3.2 The most serious restriction of Theorem 2.2 is the uniform bound-
edness of b(u(t)) in L1(Ω). In the following two important cases sufficient as-
sumptions can be given:

(1) Let Ω = Rd, let the solution u(t) = (u1(t), . . . , un(t)) of (1)-(2) satisfy
ui(t) ≥ 0 for almost all t > 0, i = 1, . . . , n, and assume

bi(u) ≥ 0,
n∑
j=1

fj(u) ≤ 0 for all u = (u1, . . . , un) with uk ≥ 0, i, k = 1, . . . , n.

Also let b(u0) ∈ L1(Rd).

(2) n = 1 (scalar case) and b(u0) ∈ L1(Ω).

If (1) or (2) holds then b(u) ∈ L∞(0,∞;L1(Ω)) for the solution u = u(t) of
(1)-(2). In the case (1) it is sufficient for the proof to add the rows of (1) and
to integrate (formally) over Rd:

‖b(u(t))‖L1(Rd) =
n∑
j=1

∫
Rd

bj(u(t))dx =

d∑
j=1

∫
Rd

f(u(t))dx + ‖b(u0)‖L1(Rd)

≤ ‖b(u0)‖L1(Rd).

To be more precise, use a regularization of the characteristic function on the
ball BR(0) with center 0 and radius R as test function in the weak formulation
of (1). It is not difficult to see that one obtains for R→∞:

‖b(u(t))‖L1(Rd) = lim
R→∞

‖b(u(t))‖L1(BR(0)) ≤ ‖b(u0)‖L1(Rd).

In the scalar case (2) we take an increasing regularization Sγ of the sign
function (with γ > 0 the regularization parameter) such that Sγ(0) = 0 and
sign−Sγ → 0 as γ → 0 in L1(Ω) and multiply Eq. (1) by Sγ(b(u(t))). Integration
by parts and the limit γ → 0 give the desired result.

Remark 3.3 We consider examples for Ω = Rd and n = 1 (single equation)
with b(u) = |u|1/m−1u, a(u, z) = |z|p−2z:
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(1) Heat equation (m = 1, p = 2): Let u0 ∈ L1(Rd) ∩ L2(Rd). Then

‖u(t)‖L2 ∼ t
−d/4 as t→∞.

More precisely, we have

‖u(t)‖L2 ≤
C2‖u0‖L2

(1 + 2C1‖u0‖
4/d
L2 t)

d/4
,

which is sharper for large t than the usual estimate ‖u(t)‖L2 ≤ ‖u0‖L2 (see, for
instance, [23]).

(2)Porous medium equation (m > 1, p = 2): Let u0 ∈ L1+(R
d)∩L1+1/m(Rd),

where L1+(R
d) = {u ∈ L1(Rd) : u ≥ 0 in Rd}. Then

‖u(t)‖L1 ∼ t
−d(m−1)/(dm+2−d) as t→∞. (16)

This estimate is sharp in the sense that the Barenblatt-Prattle solution has the
same decay rate. Indeed, the Barenblatt-Prattle solution

V (t, x) = t−dk

([
C −

m− 1

2m

( |x|
tk

)2]
+

)1/(m−1)
(17)

with k = 1/(2 + d(m− 1)) and C > 0 solves the equation

∂tV = ∆V
m in Rd, (18)

with V (0, x) = Dδ(x), where D is a constant depending on C. Thus U = V m

solves the equation (1) with the special choice of the nonlinear functions a and
b given above. An easy calculation shows

‖U(t)‖L1 ∼ t
−dk(m−1) = t−d(m−1)/(dm+2−d) as t→∞.

We also refer to [6, 10] for related results.

(3) Fast diffusion equation (m < 1, p = 2): Let u0 ∈ L1+(R
d) ∩ L1+1/m(Rd)

and assume m > max(1/2, 1− 2/d). Then

‖u(t)‖L1+1/m ∼ t
−dm2/(dm+2−d)(m+1) as t→∞. (19)

The Barenblatt-Prattle solution V (see Eq. (17)) solves the fast diffusion
equation (18) for m > 1− 2/d, and the function U = V m satisfies

‖U(t)‖L1+1/m ∼ t
−mdk(m+2)/(m+1) = t−dm

2/(dm+2−d)(m+1) as t→∞.

This decay rate is the same as derived above for the solution u (also see [6, 10]).
The condition m > max(1/2, 1− 2/d) is weaker than the condition derived

by Otto [22], i.e. m > d/(d + 2) and m ≥ 1 − 1/d, if and only if d ≥ 3. For
d = 2, both conditions give the restriction m > 1/2.



A. Jüngel, P. A. Markowich, & G. Toscani 199

(4) p-Laplace equation (m = 1, p ≥ 2): Let u0 ∈ L1(Rd) ∩ L2(Rd). Then

‖u(t)‖L2 ∼ t
−d/(2d(p−2)+2p) as t→∞.

The function

U(t, x) = t−dκ

([
C −

p− 2

p

( |x|
tκ

)p/(p−1)]
+

)(p−1)/(p−2)

with κ = 1/(d(p−2)+p) and C > 0 solves the p-Laplace equation with U(0, x) =
Dδ(x) where, again, D is a constant which depends on C. This function satisfies

‖U(t)‖L2 ∼ t
−dκ/2 = t−d/(2d(p−2)+2p) as t→∞,

which is the same decay rate as above. For related results, see, e.g., [15].

Remark 3.4 The rates of decay of the solution u(t) of the equation

∂t(u
1/m) = ∆u in Rd

to the Barenblatt-Prattle solution U(t) (with the same mass) in L1(Rd) have
been recently obtained in [7, 10, 22] by spatial-temporal rescaling techniques
(cf. section 3.2). For instance, from [7, Thm. 6.1] we have the estimate

‖u(t)1/m − U(t)1/m‖L1 ∼ t
−1/((dm+2m−d) as t→∞,

for m > 1, whereas for 1−1/d < m < 1 (and d = 2, 3, 4, m 6= 1
2 ) [10, Thm. 1.2]:

‖u(t)− U(t)‖L1 ∼ t
−(1−d(1−m))/(dm+2−d) as t→∞.

Using the triangle inequality and Remark 3.3 we can only conclude the same
rate for u(t)− U(t) as for u(t) itself (i.e. the rate (16) in L1 for m > 1 and the
rate (19) in L1+1/m for max(1/2, 1 − 2/d) < m < 1). Clearly, these rates are
not sharp.
We do not obtain the same results on the time decay of the difference

u(t)−U(t) as in [7, 10, 22] since we do not control the entropy dissipation rate.
However, our method is simpler and valid for a very large class of problems.

4 Proofs of Theorem 2.3 and 2.5

Proof of Theorem 2.3. As in the proof of Theorem 2.2 we have for 0 < s < t
the inequality (see (13))

H(t)−H(s) ≤ −α

∫ t
s

‖∇u(τ)‖pLpdτ.

Instead of the generalized Nash inequality we use now the Poincaré inequality
(see, e.g., [24])

‖u(τ)‖L1+1/m ≤ C0‖∇u(τ)‖Lp , (20)



200 Decay rates for solutions of degenerate parabolic systems

since u(τ) ∈ W 1,p0 (Ω). For this inequality we need 1 − d/p ≥ −d/(1 + 1/m)
which is equivalent to m ≥ (d − p)/(d(p − 1) + p). Then, together with the
relation (15), we obtain

H(t)−H(s) ≤ −C1

∫ t
s

H(τ)pm/(m+1)dτ,

where

C1 = αC
−p
0

(m+ 1
mB

)mp/(m+1)
.

This implies
dH

dt
≤ −C1H

1+γ

for almost all t > 0. Notice that γ = mp/(m+ 1)− 1 > 0 since m > 1/(p− 1).
Integrating this inquality gives the first assertion. The second assertion can be
shown as in the proof of Theorem 2.2.

Proof of Theorem 2.5. Let µ > 0 to be specified later. We use again the
integration by parts formula, but now in a slightly modified form:

eµtH(t)− eµsH(s) =

∫ t
s

eµτ (〈∂tb(u), u〉+ µH(τ))dτ

≤

∫ t
s

eµτ (−α‖∇u(τ)‖pLp + µH(τ))dτ.

Again using the Poincaré inequality (20) and the relation (15), observing that
p = 1 + 1/m, we obtain

eµtH(t)− eµsH(s) ≤

∫ t
s

eµτ (−α+ µmBCp0/(m+ 1))‖∇u(τ)‖
p
Lpdτ.

Choosing 0 < µ ≤ αmBCp0/(m+ 1), we see that the integral on the right-hand
side is nonpositive, and therefore, for s = 0,

H(t) ≤ H(0)e−µt.

This finishes the proof.
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[14] A. Jüngel. Regularity and uniqueness of solutions to a system of parabolic
equations in nonequilibrium thermodynamics. To appear in Nonlin. Anal.,
2000.

[15] Z. Junning. The asymptotic behaviour of solutions of a quasilinear degen-
erate parabolic equation. J. Diff. Eqs., 102:33–52, 1993.



202 Decay rates for solutions of degenerate parabolic systems

[16] A. S. Kalashnikov. Some problems of the qualitative theory of non-linear
degenerate second-order parabolic equations. Russ. Math. Surveys, 42:169–
222, 1987.
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Fachbereich Mathematik und Statistik, Universität Konstanz,
78457 Konstanz, Germany
e-mail: juengel@fmi.uni-konstanz.de

Peter A. Markowich
Institut für Mathematik, Universität Wien
1090 Wien, Austria
e-mail: Peter.Markowich@univie.ac.at

Giuseppe Toscani
Dipartimento di Matematica, Universitá di Pavia
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