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A mixed semilinear parabolic problem from

combustion theory ∗

Claudia Lederman, Juan Luis Vazquez, & Noemi Wolanski

Abstract

We prove existence, uniqueness, and regularity of the solution to a
mixed initial boundary-value problem. The equation is semilinear uni-
formly parabolic with principal part in divergence form, in a non-cylindrical
space-time domain. Here we extend our results in [12] to a more general
domain. As in [12], we assume only mild regularity on the coefficients, on
the non-cylindrical part of the lateral boundary (where the Dirichlet data
are given), and on the Dirichlet data.
This problem is of interest in combustion theory, where the non-

cylindrical part of the lateral boundary may be considered as an approx-
imation of a flame front. In particular, the results in this paper are used
in [11] to prove the uniqueness of a “limit” solution to the combustion
problem in a two-phase situation.

1 Introduction

In this paper we prove existence, uniqueness, and regularity of the solution to
the mixed initial boundary-value problem

∑
i, j

∂

∂xi

(
aij

∂u

∂xj

)
+
∑
i

bi
∂u

∂xi
+ c u− ut = β(x, t, u) in R

∑
i, j

aij
∂u

∂xj
ηi = 0 on ∂NR

u = φ on ∂DR,

where R ⊂ RN × (0, T ) is a bounded non-cylindrical space-time domain, ∂NR
is an open subset of the parabolic boundary, ∂pR, and ∂DR = ∂pR\∂NR. This
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is a semilinear uniformly parabolic equation with principal part in divergence
form, in a non-cylindrical space-time domain. We look for a weak solution
u ∈ C(R), with ∇u ∈ C(R). Here we extend our results in [12] to a more
general domain.
The non-cylindrical part of ∂pR is ∂DR ∩ {t > 0}. As in [12], we assume

only mild regularity on the coefficients, and on ∂DR∩{t > 0}. We also assume
a minimum smoothness on the Dirichlet datum φ.
This problem is of interest in combustion theory. In that situation, the non-

cylindrical part of the lateral boundary may be considered as an approximation
of a flame front. The second order part of the equation is the Laplace operator.
In particular, the results in this paper are used in [11] to prove the uniqueness
of a “limit” solution to the combustion problem in a two phase situation. We
point out that in [10] –where we proved the uniqueness of a “limit” solution to
the combustion problem in a one phase situation– both the results in [12] and
in the present paper can be applied. However, in [11] –which is a two phase
situation– the results in [12] do not apply and we need to use the more general
results we are presenting here.
In the combustion context of [10] and [11] the initial datum φ(x, 0) is only

globally Hölder continuous with Hölder continuous spatial gradient near the
initial flame front ∂DR∩ {t > 0} ∩ {t = 0}. The solution u must satisfy that
∇u ∈ C(R ∩ {t > 0}) and ∇u must be continuous up to time t = 0 near
the flame front ∂DR∩ {t > 0}. With that regularity of the datum, standard
Schauder or Sobolev type results cannot be applied, even if we had a cylindrical
space-time domain or ∂NR = ∅. In order to get our results, both in [12] and
here, we reduce the problem posed in a non-cylindrical space-time domain to a
similar problem in a domain which is a space-time cylinder. Once this is done,
the main point is the proof of the regularity of ∇u up to the boundary with
mild regularity assumptions on the data.
We point out that we prove the existence of a weak solution u ∈ Cγ,

γ
2 (R)

with ∇u ∈ C(R ∪ ∂NR) assuming that φ is only Hölder continuous. Further
continuity of ∇u is obtained in every neighborhood of a point in ∂DR where φ
is smooth enough.
We remark that there is a vast body of literature on mixed boundary-value

problems for parabolic equations (see, for instance, [2, 3, 4, 8, 13]). However,
the results we present here, and those in [12], cannot be derived from those
papers.
The paper is organized as follows: In Section 2 we introduce the notation

and hypotheses to be used throughout the paper and, in particular, we define
the non-cylindrical space-time domain we are going to work with. As a previous
step to the study of the mixed semilinear parabolic problem, we prove in Section
3 results on existence, uniqueness and regularity, as well as a priori estimates,
for the corresponding linear problem. Section 4 is devoted to the proof of the
main result in this paper, i.e. Theorem 4.1, which is an existence, uniqueness
and regularity result for the mixed semilinear problem. Finally, we show in
Section 5 how the results in this paper are used to prove the uniqueness of a
“limit” solution to the combustion problem.
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2 Notation and hypotheses

Throughout this paper the spatial dimension is denoted by N , and the following
notation is used:
The symbol ∇ will denote the corresponding operator in the space variables;

the symbol ∂p applied to a domain will denote parabolic boundary.
For an integerm ≥ 0, 0 < α < 1, and a space-time cylinder Q = Ω×(0, T ) ⊂

R
N+1, Cm+α,

m+α
2 (Q) will denote the parabolic Hölder space which is denoted

by Hm+α,m+α2 (Q) in [9].

For D ⊂ RN+1 a general domain, Cm+α,
m+α
2 (D) will denote the space of

functions in Cm+α,
m+α
2 (Q) for every space-time cylinder Q ⊂ D.

For D bounded, we will say that u ∈ Cm+α,
m+α
2 (D) if there exists a domain

D′ with D ⊂ D′ and a function u′ ∈ Cm+α,
m+α
2 (D′) such that u = u′ in D. And

we will denote by Cdini(D) the set of functions which are continuous in D and
such that their modulus of continuity ω(r) with respect to the parabolic norm

‖(x, t)‖ = |x|+ |t|
1
2 satisfy the Dini condition

∫ 1
0

ω(r)

r
dr <∞.

Throughout the paper we will let Ω = R× Σ and Σ ⊂ RN−1 be a bounded
Lipschitz domain with interior unit normal η′. We will denote by η = (0, η′)
the interior unit normal to ∂Ω. We will denote points in Ω by x = (x1, x

′) with
x1 ∈ R and x′ ∈ Σ.
On the other hand p, q will be Lipschitz continuous functions in Σ × [0, T ],

and we will denote

D := {(x, t) ∈ Ω× (0, T ) / p(x′, t) < x1 < q(x′, t)}.

We will assume, in addition, that there exists a constant µ0 > 0 such that
q(x′, t)− p(x′, t) ≥ µ0 in Σ× [0, T ].
We define, as usual, ∂pD := ∂D \ {t = T } and let

∂ND := {(x, t) ∈ ∂pD / x′ ∈ ∂Σ, 0 < t ≤ T, p(x′, t) < x1 < q(x′, t)},

∂DD := ∂pD \ ∂ND,

∂SD := {(x, t) ∈ ∂pD / x1 = p(x′, t) or x1 = q(x′, t)}.

For R0 < µ0, we define

DR0 := {(x, t) ∈ Ω× (0, T ) / p(x
′, t) < x1 < p(x′, t) +R0}.

3 The linear problem

We will prove in this paper an existence, uniqueness, and regularity result, as
well as a-priori estimates, for a mixed initial-boundary value problem associated
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to a uniformly parabolic equation with principal part in divergence form, with
a nonlinear forcing term. This will be done on the non-cylindrical space-time
domain D defined in the previous section. To do so, we devote this section to the
study of the corresponding linear problem. In Proposition 3.1 we prove existence
and uniqueness for the linear problem, with a minimum smoothness of the data.
In Proposition 3.2 we prove a regularity result for the linear problem. We first
prove the following existence and uniqueness result for the linear problem:

Proposition 3.1 Let D, ∂ND, ∂DD and ∂SD be as above. For i, j = 1, · · · , N ,
let aij , bi, c, g ∈ L∞(D). Assume that aij(x, t)ξiξj ≥ λ|ξ|2 for some λ > 0
and every ξ ∈ RN , (x, t) ∈ D. Let φ ∈ Cα,

α
2 (D). Then there exists a unique

function u ∈ C(D), with ∇u ∈ L2loc(D \ ∂SD), such that u is a weak solution to
the following mixed initial boundary-value problem

∑
i,j

∂
∂xi

(
aij

∂u
∂xj

)
+
∑

i bi
∂u
∂xi
+ c u− ut = g in D (1)∑

i,j aij
∂u
∂xj

ηi = 0 on ∂ND (2)

u = φ on ∂DD. (3)

Moreover, there exist 0 < γ ≤ α and C > 0, depending only on α, T , λ,
‖aij‖L∞(D), ‖bi‖L∞(D), ‖c‖L∞(D), ‖φ‖Cα,

α
2 (∂DD)

, ‖g‖L∞(D), the domain Σ and

the functions p and q, such that u ∈ Cγ,
γ
2 (D) and

‖u‖
C
γ,
γ
2 (D)

≤ C. (4)

Now let ψ1(x
′, t) = φ(p(x′, t), x′, t), ψ2(x

′, t) = φ(q(x′, t), x′, t) and assume, in
addition, that ψit ∈ L

2(Σ × (0, T )), ∇x′ψi ∈ L2(Σ × (0, T )) for i = 1, 2. Then
∇u ∈ L2(D).

Proof: Let ψ1, ψ2 be as in the statement. We will first prove the proposition
with the extra assumption that ψit ∈ L

2(Σ × (0, T )), ∇x′ψi ∈ L2(Σ × (0, T ))
for i = 1, 2.
We straighten up both lateral boundaries by taking a new coordinate system.

In fact, we let y = H(x, t) be defined by

y1 =
x1 − p(x′, t)

q(x′, t)− p(x′, t)
, (5)

yi = xi for i > 1. (6)

Then, for (y, t) ∈ Q := (0, 1) × Σ × (0, T ), we let u(y, t) = u(x, t). Then,
u ∈ C(D), with ∇u ∈ L2(D), is a weak solution to (1)–(3) if and only if
u ∈ C(Q), with ∇u ∈ L2(Q), is a weak solution to

Lu :=
∑
i,j

∂
∂yi

(
āij

∂u
∂yj

)
+
∑
i b̄i

∂u
∂yi
+ c̄ u− ut = ḡ in Q, (7)∑

i,j āij
∂u
∂yj

ηi = 0 on ∂NQ := (0, 1)× ∂Σ× (0, T ], (8)

ū = φ̄ on ∂DQ := ∂pQ \ ∂NQ, (9)
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where g(y, t) = g(x, t), φ(y, t) = φ(x, t), c̄(y, t) = c(x, t),

āij(y, t) =
∑
k, l

akl(x, t)
∂Hi

∂xk
(x)

∂Hj

∂xl
(x),

b̄i(y, t) =
∑
j

bj(x, t)
∂Hi

∂xj
(x, t) −

∂H1

∂t
(x, t)δ1i +

∑
j

āji(y, t)
qxj − pxj
q − p

(x′, t).

Note that the equation for u has bounded coefficients and right hand side. On
the other hand, it is uniformly parabolic (with parabolicity constant depending
only on λ and the functions p and q).
The existence and uniqueness of a function u ∈ C

(
[0, T ];L2((0, 1)× Σ)

)
with ∇u ∈ L2(Q), which is a weak solution to (7)–(9), can be obtained, for
instance, from Theorem X.9 in [1], by proceeding as in Proposition 1.1 in [12].
Let us prove that there exist 0 < γ′ ≤ α and C > 0 depending only on the

L∞ norm of the coefficients of the equation in (7)–(9), the constants α, λ, T ,
the domain Σ, ‖φ‖

C
α,α
2 (∂DQ)

, ‖g‖L∞(Q), ‖u‖L∞(Q) and the functions p and q,

such that
‖u‖

Cγ
′, γ

′
2 (Q)

≤ C. (10)

To prove (10) we first take the set Qδ := (0, 1) × Σδ × (0, T ) where Σδ :=
{y′ ∈ Σ / dist(y′, ∂Σ) > δ} and δ > 0 is small to be fixed later. Then we can get
estimate (10) in Qδ by applying Theorem 10.1, Chap. III in [9].
Next, let (y0, t0) ∈ [0, 1]× ∂Σ× [0, T ]. We will straighten up ∂NQ. For that

purpose we denote y0 = (y01 , y
′
0), with y01 ∈ [0, 1] and y

′
0 ∈ ∂Σ and we take

O ⊂ RN−1 a neighborhood of y′0 such that [0, 1]× (∂Σ∩O) is parameterized in
the variables (z1, · · · , zN−1) by

y1 = z1, 0 ≤ z1 ≤ 1, (11)

y′ = σ′(z2, · · · , zN−1), (z2, · · · , zN−1) ∈ N ⊂ RN−2. (12)

Here N is the ball in RN−2 with center in the origin and radius r = 1. Since Σ is
a Lipschitz domain we may assume that, in the neighborhood O, σ′ is the graph
of a Lipschitz function G in the direction yN and that every point y ∈ [0, 1]×O
can be written in a unique way as y = h−1(z), where

y1 = z1

yi = zi, 2 ≤ i ≤ N − 1, (13)

yN = zN +G(z2, . . . , zN−1),

with z ∈ [0, 1]×N × {|zN | < 2δ}, for some δ > 0, and h a Lipschitz invertible
function with non-vanishing Jacobian in [0, 1]× O and h([0, 1] × O) = [0, 1]×
N × {|zN | < 2δ} and h([0, 1]× (O ∩ Σ)) = [0, 1]×N × {0 < zN < 2δ}.
Here δ can be chosen independent of (y0, t0), and will remain fixed from now

on. Let u(z, t) := u(y, t) for zN ≥ 0 and Q̃+ := {(z, t) ∈ Q̃ / zN > 0}, where

Q̃ := (0, 1)×N × {|zN | < 2δ} × (0, T ).
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Then u ∈ C
(
[0, T ];L2((0, 1)×N × {0 < zN < 2δ})

)
, with ∇u ∈ L2(Q̃+), is a

weak solution in Q̃+ to

Lu :=
∑
i, j

∂

∂zi

(
¯̄aij

∂u

∂zj

)
+
∑
j

¯̄bj
∂u

∂zj
+ ¯̄cu− ut = ¯̄g (14)

which is a uniformly parabolic equation with principal part in divergence form
with bounded coefficients and free term. Here

¯̄aij(z, t) =
∑
k, l

ākl(y, t)
∂hi

∂yk
(y)

∂hj

∂yl
(y).

We extend u to {zN < 0} by reflection. This is, we define for zN < 0

u(z, t) = u(z1, z2, · · · ,−zN , t).

In this way, u ∈ C
(
[0, T ];L2((0, 1)×N × {|zN | < 2δ})

)
, with ∇u ∈ L2(Q̃),

becomes a weak solution in the domain Q̃ of equation (14), where we have, for
zN < 0,

¯̄aij(z, t) =

{
¯̄aij(z1, · · · , zN−1,−zN , t) if i < N, j < N, or i = j = N,
−¯̄aij(z1, · · · , zN−1,−zN , t) if i = N, j < N, or i < N, j = N,

¯̄bj(z, t) =

{ ¯̄bj(z1, · · · , zN−1,−zN , t) if j < N,

−¯̄bj(z1, · · · , zN−1,−zN , t) if j = N,

and

¯̄c(z, t) = ¯̄c(z1, · · · , zN−1,−zN , t), ¯̄g(z, t) = ¯̄g(z1, · · · , zN−1,−zN , t).

Thus, u is a weak solution in Q̃ of a uniformly parabolic equation with principal
part in divergence form with bounded coefficients and free term.
We apply again Thm. 10.1, Chap. III in [9] to conclude that there exist

0 < γ′ ≤ α and C > 0 such that

‖u‖
Cγ

′, γ
′

2 (Q̃ 1
2
)
≤ C.

Here Q̃ 1
2
= (0, 1)×N 1

2
×{|zN | < δ}× (0, T ), where N 1

2
is the ball in RN−2 with

center in the origin and radius r = 1/2.
The constants γ′ and C depend only on α, λ, T , Σ, the functions p and

q, the L∞ norm of the coefficients of the equation in (14), and free term in

Q̃, ‖¯̄u‖L∞(Q̃), ‖φ‖Cα,
α
2 (Q̃+∩({t=0}∪{z1=0}∪{z1=1}))

. Here φ(z, t) := φ(y, t) for

(y, t) ∈ ∂DQ. Therefore (10) holds.
Since ‖u‖L∞(D) is bounded by a constant depending only on T , ‖φ‖L∞(∂DD),

‖c‖L∞(D) and ‖g‖L∞(D), we conclude that (4) holds.
Finally, the proof of the results in the statement without the extra assump-

tion that ψit ∈ L
2(Σ × (0, T )), ∇x′ψi ∈ L2(Σ × (0, T )) for i = 1, 2, as well as

the proof of the uniqueness of solution follow as in Proposition 1.1 in [12].
We next prove a regularity result for the linear problem.
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Proposition 3.2 Let D, ∂ND, ∂DD, aij , bi, c, g, φ, ψi as in Proposition 3.1.
Let u ∈ Cγ,

γ
2 (D), with ∇u ∈ L2(D), be the unique weak solution to (1)–(3).

Now assume that Σ ∈ C3, p, q ∈ C1(Σ× [0, T ]), ∇x′p,∇x′q ∈ Cdini(Σ× [0, T ]),
and that ∇x′p(x′, t) · η′ = 0 and ∇x′q(x′, t) · η′ = 0 on ∂Σ× (0, T ). Assume also
that aij ∈ Cdini(D) and aij = δij on ∂ND. Then, ∇u ∈ C(D ∪ ∂ND).
If, in addition, ψ1(x

′, t) ∈ C1(Σ × (0, T ]), with ∇x′ψ1 ∈ Cdini(Σ × (0, T ])
and ∂ψ1

∂η′
= 0 on ∂Σ × (0, T ), there holds that ∇u is continuous in D ∩ {x1 <

q(x′, t)} ∩ {t > 0}.
If, moreover, ψ1(x

′, t) ∈ C1(Σ× [0, T ]), with ∇x′ψ1 ∈ Cdini(Σ× [0, T ]), and
∇φ ∈ Cdini(DR0 ∩ {t = 0}), with

∂φ
∂η = 0 on ∂NDR0 ∩ {t = 0}, there holds that

∇u ∈ C(DR0/2) and there exist a constant C > 0 and an increasing function
ω(r), with ω(0+) = 0, such that

‖∇u‖L∞(DR0/2) ≤ C, (15)

|∇u(x, t)−∇u(y, s)| ≤ ω(|x− y|+ |t− s|1/2), (x, t), (y, s) ∈ DR0/2. (16)

With the same regularity of ψ1 and no regularity assumptions on φ(x, 0), for
every τ > 0, (15)–(16) holds in DR0/2 ∩ {t ≥ τ} with C and ω independent of
φ(x, 0) but depending on τ .
Analogously, if ψ2(x

′, t) ∈ C1(Σ × (0, T ]), with ∇x′ψ2 ∈ Cdini(Σ × (0, T ])
and ∂ψ2

∂η′
= 0 on ∂Σ× (0, T ), and with no regularity assumptions on ψ1 and on

φ(x, 0), there holds that ∇u is continuous in D ∩ {x1 > p(x′, t)} ∩ {t > 0}.
Also, if ψi ∈ C1(Σ × [0, T ]), with ∇x′ψi ∈ Cdini(Σ × [0, T ]), and

∂ψi
∂η′
= 0

on ∂Σ × (0, T ) for i = 1, 2 and ∇φ ∈ Cdini(D ∩ {t = 0}) with ∂φ
∂η = 0 on

∂ND ∩ {t = 0}, there holds that ∇u ∈ C(D).

If aij ∈ C1+µ,
1+µ
2 (D), bi, c, g ∈ Cµ,

µ
2 (D), u is a classical solution in the

sense that u ∈ C2+µ,1+
µ
2 (D).

Proof: In this proof we use the same notation as in the proof of Proposition 3.1.
Since we have assumed that Σ is a C3 domain, we may take as σ′ in (11)-(12)
a C3 regular parameterization. Also η′, the interior unit normal to Σ, is a C2

function of the point y′ ∈ ∂Σ. Then, instead of taking y = h−1(z) as in (13),
we take y = h−1(z) in the following way:

y1 = z1 (17)

y′ = σ′(z2, · · · , zN−1) + η′(σ′(z2, · · · , zN−1)) zN , (18)

so now h is, in addition, a C2 function.
Let us now assume that aij ∈ Cdini(D) and aij = δij on ∂ND. In order to

prove that ∇u ∈ C(D ∪ ∂ND) we consider a point (y0, t0) ∈ (0, 1)× ∂Σ× [0, T ]

and the corresponding function u(z, t) which is defined and continuous in Q̃
with ∇u ∈ L2(Q̃). Also, u is a weak solution to (14) in Q̃.

Let us see that the principal coefficients in (14), ¯̄aij , belong to C
dini(Q̃).

In fact, using that ∇x′p,∇x′q ∈ Cdini(Σ × [0, T ]), we get that ¯̄aij are Dini
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continuous in {zN ≥ 0} ∪ {zN ≤ 0}. Then, we only need to verify that
¯̄aiN (z1, · · · , zN−1, 0, t) = 0 for i < N . We observe that, for y′ ∈ ∂Σ,

āij(y, t) = δij i, j > 1,

ā1j(y, t) =
pyj (y1 − 1)− qyjy1

q − p
(y′, t) j > 1.

Therefore,

¯̄aiN (z1, · · · , zN−1, 0, t) = ∇hi · ∇hN +
∂hN

∂y1


−∂hi

∂y1
+
∑
k ≥ 1

āk1
∂hi

∂yk




+
∂hi

∂y1


 ∑
k > 1

(
pyk(y1 − 1)− qyky1

q − p

)
∂hN

∂yk


 .

From the fact that h
(
z1, σ

′(z2, · · · , zN−1) + η′(σ′(z2, · · · , zN−1))zN
)
= z we de-

duce that, on (0, 1)×∂Σ, ∇hi is tangent to (0, 1)×∂Σ for i < N and ∇hN = η.
Therefore, ∇hi · ∇hN = 0 on (0, 1) × ∂Σ for i < N . Since η1 = 0, there holds
that ∂hN∂y1 = 0. Finally, we use the fact that ∇y′p · η

′ = 0 and ∇y′q · η′ = 0 on

∂Σ × (0, T ) and conclude that we have ¯̄aiN = 0 on {zN = 0} for i < N . We
can now apply Theorem 1.3.1 in [5] in Q̃ to deduce that ∇u is continuous in
(0, 1)×N × {|zN | < 2δ} × (0, T ].
On the other hand, a direct application of Theorem 1.3.1 in [5] to u gives

the continuity of ∇u in D.
The rest of the proof follows as that of Proposition 1.2 in [12]. Namely, under

further assumptions on the Dirichlet data ψi and/or φ we obtain the continuity
of ∇u up to the corresponding subset of the Dirichlet boundary by suitably
applying the results in [5].

From classical Schauder estimates we deduce that, when aij ∈ C1+µ,
1+µ
2 (D)

and bi, c, g ∈ Cµ,
µ
2 (D), there holds that u ∈ C2+µ,1+

µ
2 (D). This completes the

present proof.

4 The semilinear problem

In this section we prove the main result in the paper, Theorem 4.1, which is an
existence, uniqueness and regularity result for the mixed semilinear problem.

Theorem 4.1 Let D, ∂ND, ∂DD, ∂SD, aij , bi, c and φ as in Proposition 3.1.
Let β(x, t, u) ∈ L∞(D ×R) be such that β(x, t, ·) is locally Lipschitz continuous
in R uniformly for (x, t) ∈ D. There exists a unique function u ∈ Cγ,

γ
2 (D) for

some 0 < γ ≤ α, with ∇u ∈ L2loc(D \ ∂SD), such that u is a weak solution to
the following problem

∑
i,j

∂
∂xi

(
aij

∂u
∂xj

)
+
∑

i bi
∂u
∂xi
+ c u− ut = β(x, t, u) in D (19)
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∑
i,j aij

∂u
∂xj

ηi = 0 on ∂ND (20)

u = φ on ∂DD. (21)

Now let ψ1(x
′, t) = φ(p(x′, t), x′, t), ψ2(x

′, t) = φ(q(x′, t), x′, t) and assume, in
addition, that ψit ∈ L

2(Σ × (0, T )), ∇x′ψi ∈ L2(Σ × (0, T )) for i = 1, 2. Then
∇u ∈ L2(D).
Moreover, Propositions 3.1 and 3.2 apply to u. In particular, further as-

sumptions on Σ, p, q, the coefficients aij and on the Dirichlet data ψi and/or
φ give regularity results for ∇u up to the corresponding subset of the Dirichlet
boundary, ∂DD.
If, in addition, β(·, ·, u) ∈ Cµ,

µ
2 (D) uniformly for u in compact subsets of R,

aij ∈ C1+µ,
1+µ
2 (D), bi, c ∈ Cµ,

µ
2 (D), there holds that u ∈ C2+µ,1+

µ
2 (D).

Proof: The proof of existence and uniqueness of the solution is analogous
to that of Theorem 1.1 in [12] and follows by using Schauder’s fixed point
Theorem and the result of Proposition 3.1. We include the proof for the sake of
completeness.
Let B = ‖β‖L∞, and let γ and C be the constants given by Proposition 3.1

when φ is fixed and ‖g‖L∞(D) ≤ B. Let 0 < ν < γ and let K > 0 be such that
‖ · ‖

Cν,
ν
2 (D)

≤ K‖ · ‖
C
γ,
γ
2 (D)
. Let us consider the set

B = {v ∈ Cν,
ν
2 (D) / ‖v‖

Cν,
ν
2 (D)

≤ K C}.

Let T be defined on B by T v := u where u is the unique solution given by
Proposition 3.1 when g(x, t) = β(x, t, v(x, t)). Then

‖T v‖
C
ν, ν
2 (D)

≤ K‖T v‖
Cγ,

γ
2 (D)

≤ K C.

Therefore, T maps B continuously into a compact subset of B. So that T
has a fixed point u which clearly is a solution to (19)–(21).
To prove uniqueness, we let u1 and u2 be solutions to (19)–(21). Then

w = u1−u2 is a solution to (1)–(3) with a different coefficient c (which depends
on u1 and u2), and with g = φ = 0. By Proposition 3.1, w = 0.
If, in addition, β(·, ·, u) ∈ Cµ,

µ
2 (D) uniformly for u in compact subsets of

R, there holds that u is a solution of (1)–(3) with g ∈ Cγ
′, γ

′

2 (D), with γ′ =

min{µ, γ}. Then, if aij ∈ C1+µ,
1+µ
2 (D), bi, c ∈ Cµ,

µ
2 (D), there holds that

u ∈ C2+γ
′,1+ γ

′

2 (D), so that g ∈ Cµ,
µ
2 (D) and we deduce that u ∈ C2+µ,1+

µ
2 (D).

5 The combustion problem

The purpose of this section is to show how the results in this paper apply in [11]
to a problem in combustion theory. In [11] the following two phase free boundary
problem is considered: find a function u(x, t), defined in D ⊂ RN × (0, T ),
satisfying that

∆u+
∑
ai(x, t)uxi − ut = 0 in {u > 0} ∪ {u ≤ 0}

◦, (22)

u = 0 , |∇u+|2 − |∇u−|2 = 2M on ∂{u > 0}, (23)
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where u+ = max(u, 0), u− = max(−u, 0), M is a positive constant and ai are
bounded. We will refer to this free boundary problem as Problem P .
This free boundary problem arises in several contexts (cf. [14]). The most

important motivation to date has come from combustion theory, where it ap-
pears as a limit situation in the description of the propagation of premixed
equi-diffusional deflagration flames. In this case, u is the limit, as ε → 0, of
solutions uε to

∆uε +
∑

ai(x, t)u
ε
xi − u

ε
t = βε(u

ε), (24)

with ε > 0, βε ≥ 0, βε(s) =
1
ε
β( s

ε
), supportβ=[0,1] and

∫
β(s) ds =M . We call

this equation Pε.
Problem P admits classical solutions only for good data and for small times.

Different generalized concepts of solution have been proposed, among them the
concepts of limit solution (that is, u = limuε) and viscosity solution, cf. [7],
[6], resp. The purpose of [11] is to investigate conditions under which the three
concepts agree and produce a unique solution.
The results in [11] can be summarized as saying that –under appropriate

conditions– if a classical solution of problem P exists, then it is at the same
time the unique classical solution, the unique limit solution and also the unique
viscosity solution.
The results of [11] extend those in [10], where similar conclusions are ob-

tained for the one phase version of this problem (i.e., under the assumption
that u ≥ 0).
One of the main results in [11] is Theorem 6.1, which gives simultaneously

the uniqueness of classical and limit solution. The main tool in the proof of this
theorem is the following basic result of [11]:

Theorem 5.1 (Theorem 5.1 in [11]) Let Σ ⊂ RN−1 a bounded C3 domain,
Ω = (0, d)×Σ, Q = Ω× (0, T ), ∂NQ = (0, d)× ∂Σ× (0, T ]. Let w be a classical
subsolution to P in Q, with ∂w

∂η
= 0 on ∂NQ. Assume, in addition, that there

exists δ0 > 0 such that

|∇w+|2 − |∇w−|2 = 2M + δ0 on Q ∩ ∂{w > 0}.

Then, there exists a family vε ∈ C(Q), with ∇vε ∈ L2loc(Q), of weak subsolutions
to Pε in Q, with

∂vε

∂η = 0 on ∂NQ, such that, as ε→ 0, v
ε → w uniformly in Q.

For the precise hypotheses and definitions, and detailed proofs of these re-
sults, we refer the reader to [11].
The results of the present paper are needed in Theorem 5.1 for the construc-

tion of the family vε which is constructed as follows:
Let A be the constant in Lemma 4.1 of [11] and let ε > 0 be small.
Let pε, qε ∈ C1(Σ× [0, T ]) with ∇x′pε,∇x′qε ∈ Cα,

α
2 (Σ× [0, T ]) be such that

{w > Aε} is given by x1 < pε(x
′, t) and {w < −Aε} is given by x1 > qε(x

′, t).
Let the domain be

D ε = {(x, t) ∈ Q/ pε(x
′, t) < x1 < qε(x

′, t)}.
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Let wε be the solution to Pε in D ε with boundary conditions

wε(x, t) =

{
Aε on x1 = pε(x

′, t),
−Aε on x1 = qε(x

′, t),

∂wε

∂η
= 0 on ∂ND ε := ∂D ε ∩ ∂NQ,

and initial datum wε0 ∈ C
α(D

ε
∩ {t = 0}) (for the choice of the function wε0 we

refer to [11]).
Then, the family vε is defined by

vε =

{
w in {|w| ≥ Aε},
wε in D ε.

Now we point out where the results in the present paper apply. From Theo-
rem 4.1, there exists a unique solution wε ∈ Cγ,

γ
2 (D

ε
) with ∇wε ∈ C(D

ε
∩{t >

0}) ∩ L2(D ε). Moreover, since wε0 ∈ C
1+α in a subset of D

ε
∩ {t = 0}, further

continuity of ∇wε can be derived from Proposition 3.2.

References

[1] H. Brezis, Analyse Fonctionnelle, Masson, Paris, 1983.

[2] A. Bove, B. Franchi, E. Obrecht, Parabolic problems with mixed time de-
pendent lateral conditions, Comm. PDEs, 7, (1982), 1253–1288.

[3] A. Bove, B. Franchi, E. Obrecht, Boundary value problems with mixed
lateral conditions for parabolic operators, Ann. Mat. Pura Appl., (4) 131,
(1982), 375–413.

[4] J. Banasiek, G. F. Roach, On corner singularity of solutions to mixed
boundary value problems for second order elliptic and parabolic equations,
Proc. Royal Soc. London, 433 (A), (1991), 209–217.

[5] L. A. Caffarelli, C. Kenig, Gradient estimates for variable coefficient
parabolic equations and singular perturbation problems, Amer. J. Math.,
120 (2), (1998), 391–439.

[6] L. A. Caffarelli, C. Lederman, N. Wolanski, Pointwise and viscosity solu-
tions for the limit of a two phase parabolic singular perturbation problem,
Indiana Univ. Math. J., 46 (3) (1997), 719–740.

[7] L. A. Caffarelli, J. L. Vazquez, A free boundary problem for the heat equa-
tion arising in flame propagation, Trans. Amer. Math. Soc. 347, (1995),
411–441.

[8] G. Lieberman, Mixed boundary value problems for elliptic and parabolic
differential equations of second order, Jour. of Math. Anal. Appl. 113 (2),
(1986), 422–440.



214 A mixed semilinear parabolic problem

[9] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uralceva, Linear and Quasilin-
ear Equations of Parabolic Type, 23, Translations of Mathematical Mono-
graphs, AMS, Providence, Rhode Island, USA, 1968.

[10] C. Lederman, J. L. Vazquez, N. Wolanski, Uniqueness of solution to a
free boundary problem from combustion, Trans. Amer. Math. Soc., 353 (2),
(2001), 655–692.

[11] C. Lederman, J. L. Vazquez, N. Wolanski, Uniqueness in a two-phase free-
boundary problem, preprint.

[12] C. Lederman, J. L. Vazquez, N. Wolanski, A mixed semilinear parabolic
problem in a noncylindrical space-time domain, Diff. and Int. Equat., 14
(4), (2001), 385–404.

[13] A. F. Tedeev, Stability of the solution of the third mixed problem for sec-
ond order quasilinear parabolic equations in a noncylindrical domain, Izv.
Vyssh. Uchebn. Zaved. Mat., (1), (1991), 63–73.

[14] J. L. Vazquez, The free boundary problem for the heat equation with fixed
gradient condition, Free Boundary Problems, Theory and Applications, M.
Niezgodka, P. Strzelecki eds., Pitman Research Series in Mathematics, 363,
Longman, 1996, 277–302

Claudia Lederman
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