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Gluing approximate solutions of minimum type
on the Nehari manifold *

Yanyan Li & Zhi-Qiang Wang

Abstract

In the last decade or so, variational gluing methods have been widely
used to construct homoclinic and heteroclinic type solutions of nonlinear
elliptic equations and Hamiltonian systems. This note is concerned with
the procedure of gluing mountain-pass type solutions. The first procedure
to glue mountain-pass type solutions was developed through the work of
Séré, and Coti Zelati - Rabinowitz. This procedure and its variants have
been extensively used in many problems by now for nonlinear equations
with superlinear nonlinearities. In this note we provide an alternative de-
vice to the by now standard procedure which allows us to glue minimizers
on the Nehari manifold together as genuine, multi-bump type, solutions.

1 Introduction

In the last decade or so, variational gluing methods have been widely used to
construct homoclinic and heteroclinic type solutions of nonlinear elliptic equa-
tions and Hamiltonian systems (see, e.g. Rabinowitz [7] and references therein).
The idea is to first construct some basic solutions (or approximate solutions)
which are characterized by minimax method and which are used as building
blocks for construction of multi-bump type solutions. These multi-bump type
solutions then are obtained by some gluing procedures and look roughly like
sums of the basic solutions. The general idea is clear by now, though for dif-
ferent types of basic solutions one has to employ different procedures for the
concrete problems. Different type of basic solutions have been glued together
by various authors, which include minimizers and mountain-pass type solutions.
In fact even cat > 1 solutions have been glued together, see for example Gian-
noni and Rabinowitz [4].

This note is concerned with the procedure of gluing mountain-pass type so-
lutions. The first procedure to glue mountain-pass type solutions was developed
through the work of Séré ([8] [9]) and Coti Zelati - Rabinowitz ([2] [3]), and this
procedure and its variants have been extensively used in many problems by now
for nonlinear equations with superlinear nonlinearities (see, e.g. Rabinowitz
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216 Gluing approximate solutions

[7] and references therein). In these papers the basic solutions are mountain-
pass type solutions. On the other hand, under slightly stronger conditions these
mountain-pass solutions can also be characterized as minimizers of a constrained
problem, namely, minimizers on the Nehari manifold. In this paper we provide
an alternative device to the by now standard procedure which allows us to
glue minimizers on the Nehari manifold (or local minimizers, approximate local
minimizers) together as genuine (multi-bump type) solutions. Though the new
procedure is somewhat parallel to the original one for mountain-pass solutions
there are still technical complications needed to be fixed. On the other hand, it
seems the new device in gluing minimizers on Nehari manifold is simpler than
those for gluing mountain-pass solutions in the full space. For instance, one step
involved in [2] and [3] is to do a minimization problem on some annulus regions
and to use elliptic estimates to achieve the smallness of certain map. This step
has to be done on a case by case basis for ODEs, PDEs with subcritical expo-
nents and PDEs with critical exponents and seems to be somewhat laborsome
for PDE problems, especially for those involving critical exponents ([5] [6]). Our
device given here will avoid this step and treat all problems uniformly.

For simplicity we only present our device for an ODE problem to demon-
strate the procedure. Although the results are not new, the procedure we use is
different from the known one and may prove to be of advantage in dealing with
some other problems with the presence of a Nehari manifold. The same device
clearly works for analogous subcritical exponent periodic PDEs

—Au+ a(z)u = f(z,u), in RY,

with suitable growth condition on f and periodic dependency in x; and presum-
ably should also work for analogous critical exponent periodic PDEs.

2 An ODE problem

Consider
—u" +a(t)u= f(t,u), teR (1)

We look for homoclinic solutions of this equation, i.e.,solutions such that lim|_, o u(t) =
0 and limy o u'(t) = 0. Assume
f1) a(t) € C(R,R) is T—periodic and ming a(t) > 0.

(f1)

(f2) f(t,u) € C(R x R,R) is T'—periodic in .

(£3) fu(t,0) =0 and |fu(t,u)| < C(1 + |ulP) for some p > 1.
(£4)

f4) There is a § > 1 such that f'(¢,u)u® > 0f(t,u)u for all t and u.

There is a variational formulation of the problem. Namely,

I(w) = %A(|a|2+au2)dt—AF(t,u)dt
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for u € X := H'(R). Then critical points of I are solutions of (1). We use || - ||
to denote the norm in X.

There is alternative approach to the above, namely the Nehari manifold.
Define

1w = [ fewde = [ (il + ani

and let
V ={ue X\{0} |(u) = 0}

Then it is well known that under conditions (f; - f1), V is a C!' manifold
and critical points of I on V are also critical points of I in X and therefore
solutions of (1). We use the usual notations. I¢ = {u € V | I(u) < ¢},
IL={ueV|Iu)>c, I!=I'NI,, K={ucV |I'(u) =0}, K=KnI°.
For an integer j, 7ju = u(t — j) the translation of u. Then for any j, mjw € K°.

Let

c:= 11‘}f I(u),

the ground state energy of I. Using the following compactness results for (PS)
sequences of I one easily gets that ¢ is always achieved at some u which is a
ground state solution of (1).

Proposition 2.1 Let (u,) C V be such that I(u,) — b and (Ijy)'(un) — 0.
Then there is anl € N (depending on b), v1,...,v; € K \ {0}, a subsequence of
U, and corresponding (jin)l_, C Z' such that

l !
lun =D 7o vill =0, Y I(vi) =1,
i=1 =1

and for i # £, |jin — Jen| — 00.

This is just a reformulation of Prop. 2.31in [3], since V' is a natural constraint
of I in the sense that (I}y)'(u) = 0 iff I'(u) = 0.

Due to the translation invariance of the problem, there may be many solu-
tions on the energy level c. We shall assume

K¢ has an isolated point, say, w. (%)

For an integer k > 2, let fz (J1,+*,Jk), a k-tuples of integers. We shall show
that there are real solutions of (1) which roughly look like Zle 7;,w. More
precisely, let

2rg = min{v, u} > 0,

where v = inf{||u|| | v € K\ {0}} and p = inf{|ju —w| | u € K}.
Theorem 2.2 Assume (f1 - f4) and K¢ has an isolated point. For 0 < a < §

and 0 < r <1y there is jo > 0 such that for all k-tuples of integers ; satisfying
min; |j; — je| > Jjo

k
KiEan N (Y mow) #0.
=1
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Here, N,.(-) denotes the r-neighborhood in X.

The proof of Theorem 2.2 is based on an indirect argument with the basic
idea going back to [8] [2] [3]. Our procedure below is somewhat different from
the one used in the original argument ([8] [2] [3]), and in a way simpler.

Step 1. First, for R > 0 we define a cut-off operator
Tr(u) = p(2R™"|z])u(z)

where p(t) = 1 for 0 < ¢t < 1 and p(t) = 0 for t > 2. With j = (ji,---,jx)
satisfying inf;z¢ |j; — je| > 2R, for y = (y1,...,yx) with y; > 0,4 =1, ...,k and
Zle y; = 1, we define

k
Go(y) = b(y) Z yi7, Tr(w)

where b(y) > 0 is such that Go(y) € V. We fix a §p € (0,1/k) so that
max, y(dob(y)w) < 0 (which can be done due to (f3)) and define

k
Ak: = {y = (ylv"'vyk) € Rk|zy’t = 17y’i Z 60} ’

i=1

a (k — 1)-dimensional simplex. Then Gy € C(Ag,V). By the explicit form of
Gy we have, as R — o0,

k k
1(Go(w) = Y 1(b(w)uim Ta(w)) = 3 Tb(y)yie) + o1) < ke+ o{1),
So we get
ngnoo max I(Go(y)) < ke. (2)

Note that I(Go(yc)) > ke, where ye = (3, ..., ) the center of Ay.
Define
I'= {G S C(Ak,V) | G\(')Ak = GO}.

For j = (41, -, Ji) satisfying inf;z, |j; — je| > 2R, used for Gy, we define for
any u € V
u (@) = p(R Vo — jil)u(a), i=1,...k.

Lemma 2.3 Given Gy as above with j = (J1, -5 Jk) and R fized, for any G € T
there exists yo € Ay such that

Y(G(yo) D) =0, i=1,..,k

Proof. Regarding Ay as a part of an affine (k — 1)-plane which we denote by

AR we see AF71 — (4,...,1) is a (k — 1)—plane passing through the origin
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in R* which we denote by A¥~!. For any G € I' we introduce a map from

Ay =Ap —(%,..., 1) into A*! (with § =y — (%,..., +)), by

h(@) = (b1, hie) = (V(G@)WD), .., v (Gy)™)).

Then the claim is proved if we can show that
deg(h, A, 0) # 0.

Note that 0 is the center of Aj. But this degree only depends on Gy because
all G agree with G on the boundary of Aj. Finally, we compute the above
degree for Gy and we claim it is 1. We prove this by an induction in k. For
k = 2 it is easy to check it by hand: when y; = §y and y» = 1 — §p we have
1 =0 —3 <0and §o =1— 6 — 3 > 0; and hy = (bdo7;, Tr(w)) < 0 and
therefore ho = v(b(1 —60)7;, Tr(w)) > 0 for hq +hg = 0. At the other end point
of Ay we have similar computations, which together shows that h is homotopy
to the identity map.

Now for k > 3, Ay, has k faces (opposite to each vertex and denoted by
F;). Ou the ith-face F;, if y = (y1,...,yx) € F; then y; = &g — % And we
get h; = v(bdo7;, Tr(w)) < 0. Using this fact, we may first project (by radial
scalings on flk’l) the image of h to €Ay for some € > small. Then using an
expansion scaling we may have the image of A}, into itself. We denote this
operation by P, i.e., Ph is a map from A;, — A*~! such that Ph(dA;) C dA;.
By the homotopy property, deg(h,Ak,O) = deg(Ph,Ak,O). Note that taking
y = 0 we see v(g1(y)) = -+ = v(gr(y)) = 0. By some standard properties of
the degree (see, e.g. [1]),

deg(Ph, Ay, 0) = deg(Ph, Ay, dA}).

Now on F} the center c¢; has coordinates y; = dg — % and for i = 2,...,k,
Yi = lk_ff — +. Using this it is easy to see that c; is not covered by Ph(UF_,F;),
for if not ¢; = Ph(y) for some y € F; with ¢ > 2, then we have h;(y) < 0
and therefore (Ph);(y) < 0, this is a contradiction with y; > 0 for ¢;. By the

excision property

deg(Ph,dAy,0A) = deg(Ph, Fy, c1).

However, this is what we would get from the (kK — 1)-map. The induction is
complete.
We need another technical result.

Lemma 2.4 Letu € V be such that u'Y € V for alli =1,....k (obtained by
using j = (j1, ..., jr) satisfying inf;ze |j; — je| > 2R). Then I(u) > kec.

Proof. First, we write W = Ule Br(j:). Then

I(w) = %/|Vu|2+a|u|2—/F(ac,u)
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k
1 ) . )
= Z(—/ |Vu(1)|2+a|u(i)|2—/ F(m,u(z)))
i1 2 Bar(ji) Bar(ji)
1
. / Vul? + aluf - / F(z,u)
2 R\W2r R\War
+Z / (1V(@ = o)) + (1 — pan?
Bar(ji)\Br(ji)
+2V(pu) V(1 = p)u) + 2p(1 ~ plau?)
k .
>/ (F(z,u) - F(a,u))
i—1 Y B2r(3:)\Br(J:)

Usingu € Vand u™ € V for all i = 1, ..., k, we get

/ Vul? + afuf? - / Fa,uu
R\WQR R\WZR
k

w3 (V1 = )l + @ - p)%aus
i—1 Y B2r(3:)\Br(j:)

+2V(pu)V((1 = p)u) + 2p(1 - pau?)
- () ), (%)

— z,u)u — f(z,u')u' = 0.
Z/;zR(J1)\BR(jL)(f( ) f( ) )

Bringing this into the earlier formula we have

I(w) > kc+/R\W L, upu - Fo,u)

k

1 1 o
> L a wyu — = f(z, 0 )u®
2 Bmui)\BR(ji)(? 2

i=1

—F(z,u) + F(z, u(i)))

which implies I(u) > ke since the last two terms on the right hand side are both
non-negative. Indeed, by (f4) we have

3@y~ Pla,u) > 0,

and, writing g(t) = 1 f(z, tu)tu — F(z,tu) by the mean value theorem, we have

for some & € (0,1),

S wu— 2 fa,u®)yu® — Fe,u) + Fla, ut)
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= S 3R e = Giu)p(R e = il — Flz,w)

+F(z, p(R™ |z — ji|Ju)
= g(1) —g(p)
= d(p+&1-p)QA-p)

= S @6+ P O+ p(1 - ) — (a6 + (1~ )} (1~ p)

> 0.

which completes the present proof &

Let zgr = bg Zle 75, Tr(w) with inf; 2, |je — ji| > 2R, where bg > 0 is such
that zgr € V. Note bg —> 1 as R — oo.

For any € > 0, by choosing R > 0 large we may get, by (2), maxa, I(Go(y)) <

kc+ e. Also we remark that when rg > r > 0 is fixed, for all small ¢ and large
R it holds that I(Go(y)) > ke — € implies Go(y) € Nz(zr). We fix r > 0 now
such that for all R > 1 if G € T satisfying ||G(y) — Go(y)|| < r then G(y)® # 0
forally and : =1,..., k.
Step 2. If we assume the conclusion of Theorem 2.2 is not true, using a defor-
mation argument from a pseudo-negative gradient flow we deform Gy to a map
G1 : A — V such that maxa, I[(G1(y)) < kc—¢, ||G1(y) — Go(y)|| < r and
G1ilsa, = Go. Then using Lemmas 2.3 and 2.4 we will have a contradiction.
We need the following lemma.

Lemma 2.5 There exist §, > 0 and R, > 0 such that for all R > R, and for
all u € N.(2r) \ Nz (2r)
1T (w)|| = 6y

Proof. If the conclusion is not true, we would have a sequence R, — oo and
Uy, € Nr(2r) \ Nz (zr) such that I'(un) — 0. Then (u,) is a (PS), sequence for
I with some b. By Proposition 2.1

l
i = > 7 vill = 0
i=1

for some integer ! and v1,..,v; € K and |j; . — je,n| — o0 for ¢ # £. Since as
k
Ry, — o0, Han - Zi:l Tji,Rnw” — 0, we get

l k
” ZTji,nvi - ZTji,Rnw” — 0.
i=1 =1

From this it is easy to argue by using (*) that [ = k, v; = w for all ¢ and for n
large ji.n = ji,r,- This is a contradiction to [|u, — 2r,[| > 5. ¢

Now we can finish the proof of our main theorem.
We take 0 < € < BTT‘;" and R > R, so that maxa, I(Go(y)) < kc+ € and
that I(Go(y)) > kc — € implies Go(y) € Nz (2r)-
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Next, choose € < €1 < c. Let

B = X\ N, (za)]
) = N ) 4 a— X\ N, GRll

and let U be a locally Lipschitz pseudo-gradient vector field for I on V' \ K such
that
@) U@ < ey
(ii) I'(w)U(u) > 2¢.
Let n be the flow given by the solution of

W sV n0.0) =

Let u = Go(y) be such that I(u) > kc—eso that u € Nz (zr). Using Proposition
2.1 we can show either (i) 7(t,u) reaches 0B, (zr) for some t < 1 or (ii) n(t, u)
remains in B,(zg) for t € [0,1]. If (i) occurs, in some time interval [t1,t2],
1(t, u) reaches from dB: (2r) to dBy(zr). Then it must reach %~ already in
the time interval. Otherwise,

7 to 2]
T = It =t < [ omve e < [ otmar

8 r t1
and
to

2> I(ta, ) — Ion(tn, ) = [ Grauae > 260 [ o)

t1 t1

This implies € > 7’"85"', a contradiction. Thus if (i) occurs there is a unique
o

o(u) < 1 such that I(n(o(u),u)) = kc —e. If (ii) occurs we may have either
n(t,u) has to go from Bz (zr) to the boundary of Bz (zr) and similar argument
shows that there is a unique o(u) < 1 such that I(n(o(u),u)) = ke—¢, or n(t, u)
stays in Bz (zg) for t € [0,1]. In the latter case if 7(t, u) does not reach I*~¢ we
would have ¢ equal to 1 along n(t,u) and we have 2¢ > I(n(0,u)) — I(n(1,u)) >
2¢1, a contradiction. In both cases, we have ||n(o(u),u) — u| < r. We get
G1(y) = n(c(Go(y)), Go(y)) which is a continuous map from Ay into V' and
agrees with Go(y) on 0Ay. Moreover,

G1(y) — Go(y)|| <. (3)

To finish the proof of Theorem 2.2, let us produce a contradiction as follows.
Applying Lemma 2.3 to G1(y) we conclude that there exists y € Ay such that

(G (y) ) =0, i=1,..,k

Due to (3), we obtain G1(y)® # 0 for i = 1,..., k, i.e., G1(y)? € V for i =
1,...,k. Applying Lemma 2.4, we get a contradiction with max I(G1(y)) < kc—e.
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