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Exponential dichotomies for linear systems with
impulsive effects *

Raul Naulin

Abstract

In this paper we give conditions for the existence of a dichotomy for
the impulsive equation

u(t, o)’ = At), t 4 t,
a(t)) = Cra(ty),
where p(t, ) is a positive function such that lim (¢, &) = 0 in some sense.
The results are expressed in terms of the properties of the eigenvalues of

matrices A(t), the properties of the eigenvalues of matrices {C} and the
location of the impulsive times {tx} in [0, c0).

1 Introduction

In this paper we study the dichotomic properties of the impulsive system

p(t,e)a' (t) = A()a(t), t+#ty, J=]0,00), (1)
z(t)) = Cra(ty), keN={1,2,3,...},

where m(tf) = limt%tkj: x(t). The function A(-) and the sequence {C%} have
properties to be specified later. The function u(t,e) depends on a parameter &,
in general, belonging to a metric space E. We will assume that u(t, ), for each
fixed ¢, is continuous. The cases we are interested in most are p(t,e) = ¢ > 0,
w(t,e) = p(t), such that limy oo u(t) = 0 and p(t,e) = 1. In what follows, for
technical purposes we shall suppose that

0 < p(tye) <1, V(t,e) € J X E. (2)

For ordinary differential equations, the singular perturbed case (u(t,e) = ¢ >
0) has been intensively studied in [7, 15]; the regular case (u(t,e) = 1) has been
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226 Exponential dichotomies for linear systems

considered in [6]; the general setting of the problem (1), when u(t,e) = u(t),
lim¢_, oo p(t) = 0 was studied in [13].

The aim of this paper is to give a set of algebraic conditions of existence
of a (u1, pz)-dichotomy [4], meaning by this conditions involving the properties
of the functions of eigenvalues of matrices A(t), the eigenvalues of matrices
belonging to the sequence {Cy}, and the location of the impulsive times {¢}.

2 Notations and basic hypotheses

In this paper V stands for the field of complex numbers. We will assume that
a fixed norm || - || on the space V" is defined. For a matrix A € V™*"  ||A||
will denote the corresponding functional matrix norm. If m and n are integral
numbers, then the set {m,m + 1,m + 2,...,n} will be denoted by m,n. The
symbol {t¢;} identifies a strictly increasing sequence of positive numbers, sat-
isfying limg_, oo tx = 00. The solutions of all considered impulsive systems are
uniformly continuous on each interval Jy = (tx—_1,tx]. Further notations;

- For a bounded function f, we denote || f|lcc = sup{||f(¢)| :t € J},

- For an absolutely integrable function f, we denote || |1 = [ [ £(t)|dt,

- For a bounded sequence {Cj}, we denote ||[{Cx}||co = sup{||Ck| : k € N},
- For a summable sequence {C}, we denote |[{Ci}||1 = > re; [|Cklls
-C({tx}) ={f:J — V™ : f is uniformly continuous on all intervals J},
-BC{tx}) ={f € C({tx}) : f is bounded}.

- The function i[s,t) will denote the number of impulsive times contained in
the interval [s,t) if ¢t > s;if s <t < tpy1 < -+ <t < t, we define

ZCiZCk+Ck+2+"'+Ch7 Zci =0,

[s,t) [t,t)
[[Ci=¢CCra-Cr, JCi=1.
[s,t) [t,t)

We will denote by X () = X(¢,¢) the fundamental matrix of the impulsive
system (1). By this we mean a function X : J — V™*” uniformly continuous,
of class C! on each interval Ji, such that X (0%) = I and X satisfies (1). The
definition and basic properties of function X (¢, ), for each fixed e, are described
in [2, 8].

Below, we list the basic hypotheses H1-H5 we will use.

H1: The function A is bounded and piecewise uniformly continuous on J with
respect to {tr}. This last means: For any p > 0, there exists a number 6(p) > 0,
such that ||A(t) — A(s)|| < p, if [t —s| <9, t,s € Ji for allk € N.

H2: There exist numbers p > 0 and g > 1, such that

lils,t) —=p(t —s)| < ¢, s <.
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H3: {Cy}32, is a bounded sequence of invertible matrices.

H4: There exists a positive number -y, such that for any k, all eigenvalues uy
of the matriz Cy, satisfy the condition ~v|uk| > 1.

Definition 1 We shall say that {\1, A, ..., \,}, the eigenvalues of matriz A,
are ordered by real parts (respectively, ordered by norms) iff

Rel; < Redg < ... < Rehy, (respectively |A1| < |A2] < ... < |A,)).

In the sequel, we will assume that {1 (¢), A2(t), ..., An(t)} the eigenvalues of
matrix A(t) are ordered by real parts, and {u1(k), u2(k), ..., pn(k)} the eigen-
values of matrix C}, are ordered by norms.

We will consider the following piecewise constant function

I (k)

Um 2 J = R, U (t)
t — tk—1

, ifte Jg. (3)

In order to alleviate the writing, let us denote for m € 1,n — 1
_ Re(An(t) = Ansa (1))
u(t,e)

The following hypothesis is a slight modification of a condition of splitting used
in [9].

am(t,€) + U (t) — U1 (E).

H5: There exists a positive constant M such that the function

Un(t,e) = /Ot M(i 3 exp {/St (T, 5)dT} ds,

’ /tJr(><> u(sl, €) eXp{/ts U (T, €)T} ds

[Un(t,€)ll < M, ¥(t,e) € [0,00) x E.

satisfies

3 The quasidiagonalization method

We will assume that, for some positive number r, the families of matrices { A(¢) :
t € J} and {Cy : k € N} are contained in the set

M(r) = {F e V™™ . |F|| < r}.

For each matrix F' € M(r) and o > 0, by Theorem 1.6 in [1], we may choose a
nonsingular matrix S such that

ST'FS = A(F) + R(F,0), |R(F,0)|| < 0/2, (4)



228 Exponential dichotomies for linear systems

where A(F') denotes the diagonal matrix of eigenvalues of matrix F', ordered by
real parts. Let us consider the ball B[F,p] = {G € V™*" . ||f — G|| < p}. For
any G € BJ[F, p] we have

ST'GS = Re A(F) +iImA(F) + S~ (G — F)S + R(F,0), i* = -1,
where
A(F) = diag{\1, A2, ..., A}, Re A(F) = diag{Re A\1,Re Az, ..., Re A, }.
From this decomposition we obtain
S™'GS = Re A(G) +iIm A(F) + T(F, p) + R(F, o),

where
T(F,p) = (A(F) — A(G)) + S1(G - F)S.

(From Hurwitz’s theorem (see [5], page 148), the function £ : V™"*" — Yynxn
defined by L£(F) = Re A(F) is continuous. This assertion implies, for a fixed
number o > 0 and a matrix F' € M(r) the existence of a nonsingular matrix S
and a p > 0, such that if G € B[F, p], then

S71GS = Re A(G) + i Im A(F) + T(F, o), T(F,0) := T(F, p) + R(F, o),

and |[I'(F,o)|| < 0. Since M(r) is compact, then given a ¢ > 0, there ex-
ist a covering F = {B[Fj, p;]}jL; of M(r), and nonsingular matrices S =
{S1,52,...,Sm} having the following property: For a fixed G € M(r) there
exists an index j € {1,2,...,m}, such that G € B[F}, p;] and

S71GS; = Re A(G) +iTm A(Fy) +T;(0), |T;(0)]| < o. (5)

Let p > 0 be a Lebesgue number of the covering F. According to H1, there
exists a § > 0, non depending on k, such that for ¢,s € Jy, |t — s| < d we have
|A(t) — A(s)|| < p. Let us define

n(k,d) = inf{j e N: Bt 51
J

and the partition of the interval Jg:
Pk = {tg,tlf, e ’tfl(k)}7 t’g = tk717 tfz(k) — tk7

defined by
tp — tk—1
n(k,d)

We emphasize that n(k,d) = 1 iff ¢, — tx—1 < 6. This and H2 yield

[th | —th| =6y, i € 1,n(k), 6 :=

n(k,8) < L(p,0)(tx — tre1), L(p,0) := max{q%l, §}. (6)
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According to the decomposition (5), we may assign to the interval (tf ;5] a
nonsingular matrix S ; € S and Fy; € {F} }}"zl, such that
SpiA(t)Ski = ReA(t) + iImA(Fyi) + Tri(o), t € (51,71, (7)
where we have abbreviated A(t) = A(A(t)) and
ITki(o)]l < o (8)

Regarding the sequence {Cj}?° |, we will accomplish a similar procedure.
Let us consider a matrix D € M(r) and o > 0. For some nonsingular matrix 7'
we will have, instead of (4), the decomposition

T~'DT = N(D) + R(D,0), |R(D,0)|| <o, 9)
where the matrix N (D) is defined by means of the eigenvalues D:

N(D) = dia‘g{:u’hqu'le“n}? |,L61| S |/J“2| S S |/’Ln|

We may write (9) in the form
T-1DT = |N(D)|e! A18(D) 1 R(D, ),

where
Arg(D) = diag{arg(p1), arg(p2), - - ., arg(tn)}
and
IN(D)| = diag{|pal, pel, - .-, [un}-

For a matrix C € B[D, p], p > 0, we write
T1CT = |N(O)etAr9(D) 4 (IN(C)| — IN(D)))e? Ar9(D)

+ T7Y(C=D)T +R(D,0), |R(D,p)| < 0.

The Hurwitz’s theorem implies that the function N : VX" — VX" defined
by N (C) = |C] is continuous. Since M(r) is compact, then for a given o > 0,
there exists a covering D = {B[D;, p:]}*; of M(r), and a set of nonsingular
matrices T = {T1,T5,...,Ts}, such that for each Cj, there exists a T, € T and
Dy, € {D;}™, such that

Ty 'CiThe = [N (Cr)le! AT9PK) £ Ty (o), [Ti(o)]| < o. (10)

4 A change of variables

Let g : [0,1] — [0,1] be a strictly increasing function, g € C*, such that
g(0) = ¢'(0) = ¢’(1) = 0, g(1) = 1. For an ordered pair (@, R) of invertible
matrices we define

0: [a,b] — V™", 0(t) = Q exp {g <z:z> Ln(QlR)} .
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The path 0 is of class C>°. Moreover 6(t) is a nonsingular matrix for each
t, and 0(a) = @, 6(b) = R, 0'(a) = 0, §'(b) = 0. In the sequel, we shall
say that the path 6 splices the ordered pair of matrices (@, R) on the interval
[a,b]. In order to perform a change of variable of system (1), we splice matrices
(Sk.isSk,it1), i € 1,n(k) — 1 on an interval [tF — vg(e)6k.i/2,tF + vk (€)dk.i/2],
where vi(e) = inf{ u(t,e) : ¢ € Ji}, and 0, are small numbers satisfying
v (€)dk,i < dk and another condition we will specify in the forthcoming definition
of number v (see (13). Let us define the path

91@71' : [tf - Vk(E)(Sk,i/Q, tf + l/k(E)(Skﬂ'/Q] — pnxn
splicing the matrices (Sk,;, Sk,i+1) in the following way

t— % + vk (),
i (€)0k i

Ok.i(t) = Ski exp {g < ) Ln(Sk;SkJH)} .

For the constant
Ki(o) = max { (|Sk + [|Ln(S; *S)|) exp {|Ln(S; 'S} : 1< k,i <m}

we have the estimates
Kl (0')

Or.i() e < K1(0), 107 :(t)]]c0 < ——.
10k,i ()| 0 < K1(0), [|64:(1)] S ()0

(11)
The matrix Ty, assigned to the impulsive time t6T1 = t5,; = tﬁ(k) and

the matrix Si41,1 are spliced on the interval [t’g“, t’g“ + pit1(€)0k+1,0/2] by a

path we denote by 6% 11,0. The matrices (Sy (x), Tk+1) are spliced on the interval
[tfl(k) —U(€)0k n(k) /2, tﬁ(k)] by a path we denote by 0y, ,,(x). We emphasize that
Or+1,0(tk) = Tk, = Op n(r)(tr). A special mention deserves the time ¢ = 0 which
is not considered as an impulsive time. We will attach to the time ¢ = 0 the
matrix S 1. For these splicing paths are valid similar estimates to (11), with a
modified constant for which we maintain the notation K (o).

Let us define the intervals

I = [tg—H — Vk(€)5k70/2,t§+1 + Vk+1(5)6k+1,0/2]7 k=1,2,...,

12
Ik,i = (tf — Vk({-f)(sk’i/?,tf -+ I/k({:‘)(sk’i/Q), s 1,77,(]{?) — 1, ( )
and the number
co n(k)
v = Z Z Ok (13)
k=1 i=1

The choice of the numbers dj; is at our disposal. Therefore, v can be made as
small as necessary. Let us consider the C'*° function

Opr10(t), t € [thT 5T vy 1(e)0k0/2], k=0,1,...
Skir t € [tF + vk(e)k,i/2,tF 1 — vi(€)0k,i41/2), i€ 0,n(k)— 1,
Or.i(t), t € [tF — vk (e)dki/2,tF + vi(e)0k,i/2), i€ 1,n(k)—1,
Okni) (t), t € [thiy 1 — Vh(E)0hn@i) [2:thpy)s k=12,

S(t) =
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From this definition S’(¢) = 0 except on the intervals I, and Iy ;. Since S(tx) =
Ty, the change of variable z = S(t)y reduces System (1) to the form

plt, )y (1) = (STHOABS(E) — u(t, )OS O) yl(t),t At (14)
y(t) = (IN(C)let AT8DR) 4 Ty (0) ) y(ta) k€N,

where ||Tx(0)|| < o. Thus, this change of variable yields a notable simplification
of the discrete component of (1). Let us define the left continuous function
L:J— Vrx™ by
L(0) = S11, L(t) = Sks, te(tiy,tf], i€ 1,nk).
From S~1(t)A(t)S(t) = L~ (t)A(t)L(t) + F(t,0), where
F(t,0) = STHOA[®)S() — L (A L(Y), (15)

we may write System (14) in the form
rel - p(te)y'(t) = (L AW)L(E) + F(t,0) — p(t,2)S™H(6)S' (1) y(t), t # tn,
y(t}) = (Nie? A8(DR) 4 Ty (o)) y(ts), keN,
From (7) and the definition of the piecewise constant functions
G(t) = ImA(Fy), t € (tF_1,tF], T(t,0) =Ty,(0), te (tF,,tF],  (16)
we can write the last system in the form
u@@M%):(Rmﬂﬂ+ﬂ%ﬂ+F@J)+F@a)
—(t,€)STHOS (1) )y(b), ¢+ b, (17)
y(t}) = (Neel A8D) 1 Bi(o)) y(t), keN.

Lemma 1 .
Pt o)l <00 1{ER(0)} oo < 0, (18)
(o) F (o)l < Kalo)r, (19)
/ 15=1()S" (1) [dr < Ks(0)L(G,p)(t — ), £ > 5. (20)

Proof. The first estimate of (18) follows from the definition of function I'(¢, o)
given by (16) and (8), and the second follows from (10). From definition (15),
there exists a constant Ko(o) depending only on o such that

[F(,0)]lo0 < Ka(0).
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Moreover, from (15) we observe that F(-,0) vanishes outside of the intervals
I ; and Ij,. Therefore, from the definitions (12)-(13) we obtain

oo F(,a) 1 1
/O IM(ZE) |dt:K2(U)(i§7;/jk1iuk—(€)dt+§;/jk Mk—(g)dt) < Ky(o)v.

In order to obtain (20) we observe that S~1(¢)S’(t) vanishes outside of the
intervals Iy, ; and I. Moreover, there exists a constant K3(c) depending only

on o, such that on each interval [tf_, t¥] we have

/ki ||S*1(T)S/(T)||d7 < Ks3(o).

ti 1

From this estimate and (6), it follows

/ 1571 (1)8' () ldr < K3(0)L(p, 6)(t — 5).

In what follows we unify the notations of the constants K;(0),i = 1,2,3 in a
simple constant K (o).

5 Splitting and dichotomies

We are interested in the proof of existence of a dichotomy for the System (17).
In this task we will follow the way indicated by Coppel in [6]: First we split
System (17) in two systems of lower dimensions and after this, the Gronwall
inequality for piecewise continuous functions [3] will give the required result.
Following the ideas of paper [11], we write System (17) in the form:

p(t, )y (t) = (ReA(t) +iG(t) + T(t,0) + F(t,0)
—u(t, )OS y(t), ¢ # b, (21)

Ay(ty) = (Br +Tu(o)) y(t), keEN,

where Ay(ty) = y(t) —y(t;), By =1 — N te™! Arg(Dk) and

) ; -1
(o) = N le  tATB(D)D, (o) (Nkel Arg(Dy) Fk(a)) .
From hypotheses H3-H4 and (18) we obtain, for a small o, the estimate
ovy?

I < .
Tk (o)] < o

(22)

On the other hand, the fundamental matrix of system

ult, ) (1) = (Re A(t) +iG(0) w(t), £ ta,
Aw(ty) = Bkw(tz), keN,
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coincides with the fundamental matrix Z(t,e) = Z(t) of the diagonal system

u(t,2)2'(t) = (Re A(t) +iG(1) (), t# s, (23)
2(tf) = IN(C)[e! AT8DR) 2 (1), ke,

which is equal to Z(t) := ®(¢)¥(t), where

o [ BAD) +iG() _ Ji Arg(Dy)
v —ep{ [ ZMOELD A g I et A

m

. . . . yﬁ . .
For the projection matrix P = diag{1,1,...,1,0,...,0}, the function ® satisfies
the following estimates:

[@(t)Pl| < exp { > n (k) }-

[0,%)

From definition (3), we may write
¢
|2(¢)P|| < Lexp {/ U (T)dr},
0

0
|1 (1)(I — P)| < Lexp{ / tm 1 (7)dr ),

where L is a constant depending on the condition H3 only. Since ®(¢) and ¥ ()
commute with P, then for £ > s we obtain the following estimates

|Z()PZ(s)]| < Lyexp { / T ) (rdr) (24)

12(s)(I - P)Z A (8)]| < Ly exp { / Rek’"“

+ um+1) (T)dT},

where L is a constant independent of o and e. In the sequel W (¢, s) will denote
the matrix: W (t,s) = Z(t)Z*(s). {From (24), for t > s, we have

W (t, ) P|[|W(s,8)(I — P)|| < L2 eXp{/ am(7,)dr ). (25)

For a given matrix C, we write {C}y = PCP + (I — P)C(I — P).

Definition 2 By a splitting of System (21), we mean the existence of a function
T :J — V™" with the following properties:

T1: T is continuously differentiable on each interval Jy,
T2: For each impulsive time ty, there exists the right hand side limit T(t:),

T3: T(t) is invertible for each t € Jy. T(t}) are invertible for all k,
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T4:

T5:

The functions T and T~ are bounded,
The change of variables y(t) = T'(t)z(t) reduces System (21) to
wu(t, e)z'(t) = (Re A(t) +iG@) + {(T(t,0) + F(t,0)) T(¢) }1
—u(tE){S_l(t)s'(t)T(t)}l)Z(t)v t # tr, (26)

Az(ti) = By + {Tu(o)h) (), keN.

For ordinary differential equations, problem T1-T5 was solved in [6]. For

difference equations, it was solved in [14]. The problem of splitting for impulsive
equations is treated in [11]. None of the cited works study the splitting of system

(21

), where the unbounded coefficient {S~1(¢)S’(t)}1 appears.
Following the general setting of [6, 14, 11], we will seek a function 7" in the

form T'(t) = I+ H(t), where H € BC({tr}), ||Hllco < 1/2, such that T satisfies
conditions T1-T5. In the following we use the notations

Hy = H(ty), HY = H(t]).

Let us consider the following operators: The operator of continuous splitting

OH)() = / ! W(t,s)P(I — H(s))(T(s,0)

to H(s:€)
+F(s,0))(I+ H(s))(I — P)W(s,t)ds

W(t,s)(I = P)(I — H(s))(T'(s,0)

|
r\
3
=
o
N

the operator of discrete splitting

D(H)() = Y Wt t)PI - H)lk(o)(I + H)I - P)W (1)
[to,t)
— Y Wit ty)(I — P)(I - Hy)Tk(o)(I + H ) PW (], t);
[t,00)

and the operator of impulsive splitting

S(H)(t)
= — | W(t,8)P(I—H(s)(S(s)S"(s)(I + H(s))(I — P)W(s,t)ds

to

Jr/too W (t,s)(I — P)(I — H(s))S™*(s)S(s)(I + H(s))PW (s,t)ds .
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Lemma 2 Uniformly with respect to tg € J, for some constant Lo non depend-
ing on o nor on €, we have the following estimates

[O(H) oo < La(o + K(o)v), (27)

and
IDH)(t) oo < Lo (28)

Proof. From condition H5 and (25) we have the estimate

lom )l = [ mEs e [t edrt (T(s.o)l + |Ps.0))ds

~ 9L2
[T ps el [ antredr} (o)l + [P0l ds

. 9%? <U|Um(-,s)lloo +/: %ds) '

Now the estimate (26) follows from (18) and H5, for some constant Ls.
For a fixed t > 0, let us consider the impulsive times divided as follows:

t1 <to<...<tp <t <tlpy1 <tpya<...

From (17) and (24) we can write the estimate

ID(H) (@)
[e.e]
< 9L10 Xp{/ amrsdr}—l—ngU exp{/ amrsdr}
ti i=k+1
) _
< 912110 (2+ Zexp{/t‘ o (T,€)dT} + exp{/ am (T, e dT})
i=1 K 1=k+2
9% /. X1 b
< e+ —— / m(r,e)dr}d
1 ;ti_ti—l tiilexp{ i o (1, €)d7 }ds
o0 1 tit1 s
+i=2k;_2 7&‘“—% /t exp{/t am(T,E)dT}dS)

From (2) and H2 we obtain

9Liop p o i
IPE O < 3R (2+4(q_1)/0 e exp{/s (7, €)dr }ds

+4(qp_ 0 /too H(;; 3 exp{/ts Qo (T, E)dT}).

From this estimate it follows (28) for some constant Lo. O
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The estimate of operator S is more complicated. From (25) we obtain
ISC® < Li(t) + (1),

where

I( :/ exp{/ am (T,€)dT }H|STH( s)|lds,
Ir(¢) :/ exp{/ o (7, )dT }{|STH( s)|lds.

We can write I7 in the form

:/ exp{/ (7, )T} / 1571(6)8" (¢)||déds

Integration by parts gives
t t
L(t) = exp{/ am(T,{-Z)dT}/ 1SS’ || (u)du
to to

- [t [antmerr) [ 1571w

Taking into account the estimate (20) we obtain

L(t) < K(o)L(6,p)exp{ | aum(r,e)dr}(t—to)

to

—K(o)L(4,p) / am(s,e)exp{ | am(r,e)dr}(t— s)ds

to

Once again, integrating by parts the last integral, from the right hand side of
this inequality we obtain

L(t) < K(o)L(5, p) /t exp { / (7, €)dr b s (29)

By similar tokens

L) < K(U)L(d,p)/ exp{/ o (1,€)dT }hds . (30)
¢ ¢
Using (2) and the hypothesis H5 we obtain the estimate
Ii(t) < MK (o) L(3,p)l| (-, €)loos & =1,2.
Thus, for a given a > 0, if ||u(-, €)||oo is small enough, we will have

ISH)@D)] < e (31)
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Theorem 1 The conditions H1-H5 imply, for a small values of the norm
{u(-,€)}, the existence of a function T : [tg,00) — V™*™ satisfying T1-T5.
Moreover ||T|| < 3, [T} < 2.

Proof. According to Lemma 4 and Lemma 5, the operator 7 = O + D+ S, for
small values of o, v and « (see (31), satisfies
T :{H € BO{t}}) : [|H|lw <1/2} — {H € BC({t}) : | H|oo < 1/2}.

Also, for small values of o, ¥ and « this operator is a contraction. This and
further details of this theory are well known for exponential dichotomies. The
corresponding result for the dichotomy (24) are similar [6, 14, 12]. &

Once we have split (17), we write System (26) in the form
u(t, )2/ (1) = (ReA(t) +iG(1) + {(T(t,0) + F(t,0)) T(H) h
—u(tE){S‘l(t)S'(t)T(t)h)Z(t)v t # tr, (32)
2(tF) = (Nt AT8(DE) 1 {Gh(o) 1) 2(tn), k€N,
where
Gr(o) = (I — Nyel Arg(Dk>{fk(a)}1) T Nyt Arg(Dr) _ i Arg(D).
From (22) we obtain
IGr(0)]| < Lso, Lz =2|{Ci}e, if0 <20 <[{CR}IS  (33)

The right hand side equation of (32) commute with projection P. Therefore,
(32) may be written as two systems of dimensions m and n —m,

ult )25 (1) = (Re () +iGy(t) +T5(t,0) + Fy(t,0)
Hult, Vi (1)) 7(1), tF b, (34)
2(t0) = (Mege 8D 4 Gy (o)) 25(te), REN, (35)
where j = 1,2. The matrices A;(t), Aa(t) are defined by
Ar(t) = {Aa(8)s Ao (B), -, Am(B)}s Aa(t) = {Amr1 (), Ama (D), -, An (D),
and similarly the diagonal matrices G;(t), Ni; and Dy ; are defined. The

)
matrices Gy ;j(o) satisfy estimate (33). I';(¢,0) has the estimate (18), where
instead of o it is necessary to write 30, F;(t,0) has the estimate (19) and

| [ vitnarl <31 [ 708 (arl < SLERK()E-5), 12
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The Gronwall inequality for piecewise continuous functions [3] gives the follow-
ing estimates for Z;(t), the fundamental matrices of systems (34), j = 1,2:

12:8) 2 (s)]| < Lexp { / (re)dr), s<t,

1 Z2(t) Z5 1 (s)|| < Lexp{/ ua (T, E)dT}, t <s,

where L is a constant non depending on ¢ neither on o, and

_ Re(An (1))
it e) = W + Um(t) + Lao + 3L(4,p) K (0),
/j,2(t,€) = W + Uerl(t) + Lyo + 3L(5,p)K(J),

with a constant Ly = 3 + L3. Since the decoupled system (34) is kinetically
similar to System (1), we obtain for this system the following

Theorem 2 If the hypotheses H1-HS5 are fulfilled, then for a small value of
l(-,€)|| the System (1) has the following (u1, us2)-dichotomy:
t
X 2PX(2)] < Lexp{ [ a(rejir, s<t (36)

t
| X(t,e)PX~(s,¢)| < Lexp{/ Mg(T,E)dT}, t<s,

where L is a constant independent of € and o.

6 Dichotomies for linear differential systems

In this section we present some applications of formulas (36).

The case ||u(-,¢)|lw <€

Theorem 3 Under conditions H1-H5, if |u(-,e)|| < e, € € (0,00), then there
exists a positive number o such that for each € € (0,e¢), the impulsive system
(1) has the dichotomy (36).

In the particular case p(t,e) = €, we obtain the system
ed/(t) = A(t)z(t), t#te, J=10,00), (37)
z(th) = Cra(t;), keN={1,2,3..},
and the dichotomy (36) has the form

pte) = Re(Mn(t)) + eum(t) + Lago + 3eL(d,p) K (o)
Re(Am+1(t)) + €Um+1%t) + Lo + 3eL(0,p) K (o) .
£

2 (t7 E)
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Considering in (37) Cy = I for k € N, we obtain that the solutions of this
sytems coincide with the solutions of the ordinary system with a small and a
positive parameter at the derivative

ey (t) = At)y(t). (38)

Denoting by Y (¢, ¢) the fundamental matrix of System (38), from (36) we obtain
the dichotomy

t
[Y(tPY (sl < Kexp{ [ m(redr}, s<t

Y (t,e)(I — P)Y ~!(s,¢)| < Kexp{ - /ts pa (T, 5)}, t <s,

where
Ja(te) = Re(Am(t)) + L4E;7 +eL(é, O)K(o)’
Ja(t,e) = Re(Am41(t)) + L4ia +3eL(4,0)K (o) '

If Re(Am(t)) < —a < 0 and Re(An(t)) > B > 0, for all values of ¢, for a small
€0, we obtain for (38) the dichotomy

IY(te)PY (s,)| < Lexp{-(t=5)}, s<t,
YT~ PV (s,0)]| < Lexp {5 (e~ )}, ¢ <5,

for € € (0, 0] and L is independent of e. This dichotomy was obtained by Chang
[7] for almost periodic systems and by Mitropolskii-Lykova [9] for a system (38)
which function A(t) is uniformly continuous on J.

The case u(t,e) = pu(t) - 0, if t — o0

In this case the condition lim; ,o p(t) = 0 allows to obtain a small value of
|p(t, €)] if we consider ¢ € [tg,00). All the reasoning leading to Theorem 2 can
be acomplished on the interval [¢g, c0) instead of [0, 00).

Theorem 4 If we assume valid H1-H5, where U(t,¢) is defined with

Am (t) - )‘m+1(t)
(1)

(therefore Ul(t,e) does not depend on ), then the impulsive system

o (t,e) = + tUm (t) = umt1 (1),

p(t)'(t) = A®)a(t), t#tx, J=[0,00)
z(t)) = Cra(t;), keN={1,2,3,..},
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has the dichotomy

X (#)PX~1(s)] < K exp {f; ul(r)dr} . s<t,
I X(t)I - P)X(s)| < Kexp{[ p2(r)}, t<s,

where
Re(An(t)) + Lap(t)o + p(t)L(6,0)K (o)
Nl(t) = )
u(t)
 Re(unsa () + Laou(t) + 3u(t)L(5,0)K (o)
pa(t) = .
u(t)
As an application of the above formula let us consider the ordinary system
u(t)' (1) = A(t)a(t), Jim p(t) = 0. (39)

Theorem 5 If A(:) satisfies H1 and the function Uy, (t) defined in H5 with

Am (t) — /\m+1(t)
() ’

is bounded, then system (39) has the dichotomy (36), where
Re(\m(t)) + 3ou(t) + u(t)L(5,0)K (0)

am(t,e) =

pa(t) = (D) )
_ Re(Am+1(t)) — 3ou(t) —3u(t)L(5,0)K (o)
palf) = ) p(t) ’

The above theorem gives conditions of existence of a (w1, p2)- dichotomy for
(39) with an unbounded function pu(t) "1 A(t). These systems have been studied
in [13).
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