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Existence of non-negative solutions
for a Dirichlet problem *

Cecilia S. Yarur

Abstract

The aim of this paper is the study of existence of non-negative solutions
of fundamental type for some systems without sign restrictions on the non
linearity.

1 Introduction

We study the existence of non-negative non-trivial solutions to the boundary-
value problem

Au = ayvP? — qqvPt in B’
Av = bou® — bju® in B’ (1.1)
u=v=0 ondB,

where a;, b; are non-negative constants, p; > 0, ¢; > 0 for ¢ = 1,2, B is the unit
ball centered at zero in RN, N > 3, and B’ = B\ {0}.

The above problem involves many problems of a quite different nature de-
pending on the values of a;, b;. For instance, if as = bs = 0 the solutions u, v are
sub-harmonic functions, while if a; = b; = 0 the solutions are super-harmonic.

For a better understanding of this system, we recall that P.L. Lions [12], Ni
and Sacks [15], and Ni and Serrin [16], studied conditions for existence or non
existence of non-negative solutions u to

—Au=u? inB, u=0 ondB. (1.2)

The range of existence of solutions to (1.2) is ¢ < (N + 2)/(N — 2). On the
other hand, the problem

Au=u? inB, u=0 ondB,

has a non-negative non-trivial solution if and only if ¢ < N/(N — 2), see [5] for
the non-existence and [18] for existence and related problems.
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360 Existence of non-negative solutions

We state next some known results concerning particular cases of problem
(1.1). Assume first that a; = b; = 0. Thus, we are concerned with

—Au =ayvP? in B’
—Av =bou?? in B’ (1.3)
u=v=0 ondB.

The following result is well known.

Theorem 1.1 Assume that ay = by =0, page > 1 and as > 0, by > 0. Then,
there exists a classical solution to (1.3) if and only if

N N
+
p2+1 q2+1

Troy [17] proved radial symmetry of positive classical solutions to problem
(1.3). The existence of positive classical solutions of (1.3) was studied by Hul-
shof and van der Vorst [11] and de Figueiredo and Felmer [9]. The behavior of
solutions was studied by Bidaut-Véron in [2]. The existence of some singular
solutions, that is solutions with either
limsup,_,o u(z) = +oo or limsup,_,,v(z) = 400, is given by Garcia-Huidobro,
Manésevich, Mitidieri and Yarur, see [10]. Using Pohozaev-Pucci-Serrin type
identity, Mitidieri [13, 14] and van der Vorst [19] proved non existence of clas-
sical solutions of (1.3). Non-existence of radially symmetric singular positive
solutions was given by Garcia-Huidobro, Mandasevich, Mitidieri and Yarur in
[10].

We note that since u and v are super-harmonic functions, and due to a result
of Brezis and P.L.Lions [1], u® € LY(B) , vP* € L'(B) and there exist ¢ > 0
and d > 0 such that

>N —2.

—Au = agvP? + ¢y in D'(B)
—Av = byu® 4+ ddy in D'(B)
u=v=0 onJdB.
If (¢,d) # (0,0) we call this singularity of fundamental type.
Let us consider now a; = by = 0, in (1.1). Hence, we are looking for the
solutions of:
—Au = agvP? in B’
Av =bu? in B’ (1.4)
u=v=0 onJdB.

Since v is sub-harmonic, there exists no non-negative classical solutions to (1.4).
The following result is given in [6] for pag; > 1 and in [7] for p2q; < 1.

Theorem 1.2 Assume a; = by =0, p2 >0, g1 > 0, and p2qg1 # 1. Then there
exists a non-trivial non-negative solution to (1.4) if and only if
N N -2
— +
p2t1l @1 +1

>N-—-2, and p; < N/(N-2).



Cecilia S. Yarur 361

The above result is based on the results given in [3].
We say that (u,v) has a strong singularity at 0 if either

limsup |z|¥ ~2u(z) = +oo  or limsup |z|V¥ %v(z) = +00.
z—0 z—0

It can be proved that there exists a region in the plane ps — g1 where there
exist both strong and fundamental non-negative singular solutions, see [7]. This
region is given by

N -2 N
+
2+l a+l

>N-2, and ps <N/(N—-2)<gq.

Assume now that ag = by = 0, and thus the problem (1.1) is

Au=avP* in B’
Av=bu? inB (1.5)
u=v=0 ondB,

Since u and v are sub-harmonic we have non existence of non-negative solutions

with either u or v bounded.
In [4] and [20] it was proved non existence of positive solutions if either

N N -2 N -2 N
A <N-2, or n <N -2
r+l ¢+l rm+l g+l
If ay = 0 ( similarly for b; = 0) we have
—Au = ayvP? in B’
—Av =byu? —bju® in B’ (1.6)
u=v=0 ondB (1.7)

The following result was proved in [8].

Theorem 1.3 Let ps >0, g1 >0 and qgo > 0. Leta; =0, az > 0, by > 0 and
ba > 0. Assume that for i = 1,2 we have

N N N -2
< , + >N -2 1.8
2= N2 p2+1 ¢+1 (18)

Assume that one of the following holds:
(i) paq; > 1 for alli=1,2.
(i) p2q; < 1, for alli=1,2.
(iii) If paq; = 1 for some i = 1,2 then ab?b; is sufficiently small.

(iv) p2gi <1 < pagj, for some i, j=1,2, i # j, and ab?b; is sufficiently small.



362 Existence of non-negative solutions

Then, there exist d, > 0, d* > 0 with d, < d* such that for any d € (d.,d*),
there exists (u,v) a non-negative solution to (1.6) satisfying

m |2V 72 (u(z), v(z)) = (0,d).

li
z—0
Moreover, if paq; > 1,1 = 1,2 then d. = 0, and if p2g; < 1, i = 1,2 then
d* = 0.
For the general case we have the following previous result, see [8].

Theorem 1.4 Let p; > 0, po > 0, ¢ > 0 and g2 > 0. Let a;, b; i = 1,2 be
non-negative constants. Assume that

N
pi< g @< i=1,2 (1.9)

Assume that one of the following holds:

N-2

(i) pig; > 1, for all 4,5 =1,2.
(i1) pig; <1, for all 4,5 =1,2.
(i) If pig; = 1 for some i = 1,2 and some j = 1,2 then al’*b; is sufficiently
small.
(iv) pigj <1 < prqi, for some i,j,k,1=1,2 and a*b; is sufficiently small.

Then, there exist ¢ > 0, d > 0 and (u,v) a non-negative solution to (1.1) such
that
lim [z~ (u(@), v(2)) = (¢, d).

x—0

Here we prove the following general existence result of non negative non-
trivial solutions to (1.1). Set

N -2 N

m‘f’q_'_—l—(N—Q). (1.10)

L(p,q) :==

Theorem 1.5 Let p;, q;, i = 1,2, positive numbers. Then, there exists a non-
negative nontrivial solution (u,v) of (1.1) if one of the following holds:

(i) a1 >0, by >0, and pa < N/(N —2), g2 < N/(N — 2)

min{r(pla Q1)7 F(q17p1)7 F(P% QI)a F(q%pl)} > 07

with small coefficient a; ( respectively b; ) for some j = 1,2 if p; <1 (
respectively ¢; <1) and 1 < m?)é{pi, qgi}-
=1,

(i) a1 =0, by >0, ps < N/(N —2) and

min{r(lh,m)? F(q27p2)} > 07

with small coefficient ay ( respectively b;) if p2 < 1 (respectively q; < 1)
for some j =1,2, and 1 < m‘iﬂé{pm%‘}-
=1,
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(i) a1 =0 =0b1, and
maX{F(p27Q2)7F(q2ap2)} > 07

with small coefficient as ( respectively ba) if p2 < 1 (respectively go < 1)
and 1 < max{ps,qa2}.

2 Proof of Theorem 1.5

We note that for p and ¢ non-negative numbers the condition I'(p,q) > 0 is
equivalent to
p(2— (N —-2)q)+ N > 0.

Moreover, if pg > 1,

L) = (¢~ (V= 2)pg 1), ¢ = 2D
I(g,p) = (- (N=2)(pg—1), &= ;Zti)'

Recall that u(z) = Cy|z|~¢, v(z) = Ca|z|~¢ for some positive constants C; and
(s is a non-negative solution of

—Au =P, —Av=uf

if I'(p,q) < 0 and I'(g,p) < 0. This particular solution also plays a fundamental
role for example for the system

—Au =P, Av=1uf,
where this solution exists if I'(p, ¢) < 0 and I'(g,p) > 0.
Proof of Theorem 1.5. Set
fz(t) = ait”", gi(t) = bitqi, 1= 1,2.

We will construct radially symmetric non-negative solutions to (1.1), by mono-
tone iteration as follows. Let d > 0, (u1,v1) = (0,dm), where m(r) := |z|>~V -1
and let (un,v,) be given by (un+1,vn+1) T (tn, v,) where T' = (T1,T5) is the
operator given by

Ti(u,0)(r) = / - N/ N1, (u(8))dtds

/ 1= N/ tN =L o (v(t))dtds, (2.1)

To(u,v)(r) = / N / V=10, (u(t))dtds

/1N/tN1 ))dtds,
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We are looking for «, § and C such that
T, (Cr®,Crd) < Cr®, Ty(Cr®,Cr’) < Or°
and v; = dm(r) < Cr?. Hence, the sequence (un,v,) satisfies
u, < Cre, v, < Cr? forallne N,

and the convergence of (uy,,v,) to a solution of (1.1) follows.
To find C, d, o and § we use the following: Let k be any number such that
k+ N # 0, and define

¢(k) := min{2 — N,k + 2}.

Then ) )
my(7) :=/ slfN/ N drds < Kr?() (2.2)

where K = K(N, k).
Moreover, for any k satisfying K + N > 0, and k + 2 # 0, set

(k) := min{0, k + 2}.

We have ) .
R ;:/ sHV/ N R dtds < Krv(®), (2.3)
T 0

where K = K(N, k). Hence,
T (Cr®, Cr‘s) = a1C" ' mp, 5 + a2CP? hy,s.
From (2.2) and (2.3) and if we choose p16 + N # 0 and p2d + N > 0 we obtain
Tl(Cro‘,Cr‘s) <K (a10p1r¢(p15) + a20p2r¢<P25>) . (2.4)
We note that ¢(p16) <2 — N < 1(p26), and thus
T1(Cr®,Cr®) < K (a1 CP* + ayCP?) o, (2.5)
where

- { #(p19) if a; #0,
= b(ped)  ifar =0,

Therefore, if « < o and K (a;CP* +a3CP?) < C, we obtain 77 (Cr?, Cr‘s) < Cre.
Arguing as above, we have

To(Cr®,Cr’) <dr* N + K (bqu1r¢(q1a) + b2cq2rw<qza>) . (26)
with gga+ N # 0, goa + 2 # 0, and goa + N > 0. Therefore,

To(Cr, Cr®) < (d+ K (b,CT + byC92)) 1P, (2.7)
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where
_ | dqa)  if by #0,
P=1 2-N  ifb =0.

Hence,
To(Cre, Cr‘s) <crf,

if 6 <pandd+ K(b;C? 4+ bC0%2) < C.

Next we prove the existence of «, §, C and d under the hypothesis of the
theorem. The existence of C' and d, is classical. We can choose d = C/2 and
fori=1,2

Ka,C?" < C/2, Kb C% <C/4.

Therefore, if either for all i , p; < 1and ¢; < 1, or p; > 1 and ¢; > 1, the existence
of C follows. By the contrary if max{p;,q;,¢ = 1,2} > 1 and min{p;, ¢;,i =
1,2} <1, we obtain existence with a restriction on the coefficients.

We summarize the conditions that o and § must satisfy as follows:

< min{2 — N,p1d+2} ifa; #0
=\ min{0,ps6 + 2} ifa; =0

5 < min{2 — N,qqa+ 2} ifb; #0
- 2— N 1fb1:O

Moreover, we need that

p2d + N >0, ga+ N >0, (2.8)

We also used that p1d + N #0, gga+ N # 0, p2d +2 # 0, gea+ 2 # 0. These
last conditions are not relevant since we can take « and ¢ smaller and hence
these new « and J satisfy the conditions.

Case (i). Assume first that a; > 0 and b; > 0. If p; < N/(N — 2), and since
I'(p1,q1) > 0, and T'(p2,q1) > 0, we can take

a=2—-N, d=min{2 - N,2—(q1 —€)(N —2)},
where € > 0 is such that
F(p1,Q1 — E) > 0, and F(pg,ql — E) > 0.

Now, since g2 < N/(N — 2), we have that g+ N > 0. From ps < N/(N —2)
and I'(p2,q1 —e) > 0, we also have psd + N > 0. It remains to prove that
a=2— N < p10 + 2, which follows easily from I'(p;,q1 — ) > 0.

If pp > N/(N —2), from I'(p1,¢q1) > 0 we deduce that ¢ < N/(N — 2).
Thus, we may proceed as before but now with

d=2—N, a=pi1(2—N)+2.
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Case (ii). Assume that a; =0 and b3 > 0. Let us choose
§=2—-N, a=min{0,2 — (ps —€)(N — 2)},

where £ > 0 is such that I'(q1,p2 — &) > 0 and I'(g2,p2 —€) > 0. Then the
conclusion follows as in the above case.

Case (iii). Assume that by = 0 and a3 = 0. Assume that py < g2. Since
I'(gz2, p2) > 0, then pa < N/(N — 2). Let us choose

0 =2—N, and a = min{0,2 — (p2 —¢)(N — 2)},

and thus the conclusion follows by taking I'(ge, p2 —€) > 0.
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