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Existence of non-negative solutions

for a Dirichlet problem ∗

Cecilia S. Yarur

Abstract

The aim of this paper is the study of existence of non-negative solutions
of fundamental type for some systems without sign restrictions on the non
linearity.

1 Introduction

We study the existence of non-negative non-trivial solutions to the boundary-
value problem

∆u = a2v
p2 − a1vp1 in B′

∆v = b2u
q2 − b1uq1 in B′ (1.1)

u = v = 0 on∂B ,

where ai, bi are non-negative constants, pi > 0, qi > 0 for i = 1, 2, B is the unit
ball centered at zero in RN , N ≥ 3, and B′ = B \ {0}.
The above problem involves many problems of a quite different nature de-

pending on the values of ai, bi. For instance, if a2 = b2 = 0 the solutions u, v are
sub-harmonic functions, while if a1 = b1 = 0 the solutions are super-harmonic.
For a better understanding of this system, we recall that P.L. Lions [12], Ni

and Sacks [15], and Ni and Serrin [16], studied conditions for existence or non
existence of non-negative solutions u to

−∆u = uq in B′, u = 0 on ∂B. (1.2)

The range of existence of solutions to (1.2) is q < (N + 2)/(N − 2). On the
other hand, the problem

∆u = uq in B′, u = 0 on ∂B,

has a non-negative non-trivial solution if and only if q < N/(N − 2), see [5] for
the non-existence and [18] for existence and related problems.
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360 Existence of non-negative solutions

We state next some known results concerning particular cases of problem
(1.1). Assume first that a1 = b1 = 0. Thus, we are concerned with

−∆u = a2vp2 in B′

−∆v = b2uq2 in B′ (1.3)

u = v = 0 on ∂B.

The following result is well known.

Theorem 1.1 Assume that a1 = b1 = 0, p2q2 > 1 and a2 > 0, b2 > 0. Then,
there exists a classical solution to (1.3) if and only if

N

p2 + 1
+

N

q2 + 1
> N − 2.

Troy [17] proved radial symmetry of positive classical solutions to problem
(1.3). The existence of positive classical solutions of (1.3) was studied by Hul-
shof and van der Vorst [11] and de Figueiredo and Felmer [9]. The behavior of
solutions was studied by Bidaut-Véron in [2]. The existence of some singular
solutions, that is solutions with either
lim supx→0 u(x) = +∞ or lim supx→0 v(x) = +∞, is given by Garćıa-Huidobro,
Manásevich, Mitidieri and Yarur, see [10]. Using Pohozaev-Pucci-Serrin type
identity, Mitidieri [13, 14] and van der Vorst [19] proved non existence of clas-
sical solutions of (1.3). Non-existence of radially symmetric singular positive
solutions was given by Garcia-Huidobro, Manásevich, Mitidieri and Yarur in
[10].
We note that since u and v are super-harmonic functions, and due to a result

of Brezis and P.L.Lions [1], uq2 ∈ L1(B) , vp2 ∈ L1(B) and there exist c ≥ 0
and d ≥ 0 such that

−∆u = a2vp2 + cδ0 in D′(B)

−∆v = b2uq2 + dδ0 in D′(B)

u = v = 0 on ∂B.

If (c, d) 6= (0, 0) we call this singularity of fundamental type.
Let us consider now a1 = b2 = 0, in (1.1). Hence, we are looking for the

solutions of:

−∆u = a2vp2 in B′

∆v = b1u
q1 in B′ (1.4)

u = v = 0 on ∂B.

Since v is sub-harmonic, there exists no non-negative classical solutions to (1.4).
The following result is given in [6] for p2q1 > 1 and in [7] for p2q1 < 1.

Theorem 1.2 Assume a1 = b2 = 0, p2 > 0, q1 > 0, and p2q1 6= 1. Then there
exists a non-trivial non-negative solution to (1.4) if and only if

N

p2 + 1
+
N − 2

q1 + 1
> N − 2, and p2 < N/(N − 2).
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The above result is based on the results given in [3].
We say that (u, v) has a strong singularity at 0 if either

lim sup
x→0

|x|N−2u(x) = +∞ or lim sup
x→0

|x|N−2v(x) = +∞ .

It can be proved that there exists a region in the plane p2 − q1 where there
exist both strong and fundamental non-negative singular solutions, see [7]. This
region is given by

N − 2

p2 + 1
+

N

q1 + 1
> N − 2, and p2 < N/(N − 2) < q1 .

Assume now that a2 = b2 = 0, and thus the problem (1.1) is

∆u = a1v
p1 in B′

∆v = b1u
q1 in B′ (1.5)

u = v = 0 on ∂B,

Since u and v are sub-harmonic we have non existence of non-negative solutions
with either u or v bounded.
In [4] and [20] it was proved non existence of positive solutions if either

N

p1 + 1
+
N − 2

q1 + 1
≤ N − 2, or

N − 2

p1 + 1
+

N

q1 + 1
≤ N − 2.

If a1 = 0 ( similarly for b1 = 0) we have

−∆u = a2vp2 in B′

−∆v = b2uq2 − b1uq1 in B′ (1.6)

u = v = 0 on ∂B (1.7)

The following result was proved in [8].

Theorem 1.3 Let p2 > 0, q1 > 0 and q2 > 0. Let a1 = 0, a2 ≥ 0, b1 ≥ 0 and
b2 ≥ 0. Assume that for i = 1, 2 we have

p2 <
N

N − 2
,

N

p2 + 1
+
N − 2

qi + 1
> N − 2. (1.8)

Assume that one of the following holds:

(i) p2qi > 1 for all i = 1, 2.

(ii) p2qi < 1, for all i = 1, 2.

(iii) If p2qi = 1 for some i = 1, 2 then a
p2
2 bi is sufficiently small.

(iv) p2qi < 1 < p2qj, for some i, j = 1, 2, i 6= j, and a
p2
2 bi is sufficiently small.
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Then, there exist d∗ ≥ 0, d∗ > 0 with d∗ < d∗ such that for any d ∈ (d∗, d∗),
there exists (u, v) a non-negative solution to (1.6) satisfying

lim
x→0
|x|N−2(u(x), v(x)) = (0, d).

Moreover, if p2qi ≥ 1, i = 1, 2 then d∗ = 0, and if p2qi ≤ 1, i = 1, 2 then
d∗ =∞.

For the general case we have the following previous result, see [8].

Theorem 1.4 Let p1 > 0, p2 > 0, q1 > 0 and q2 > 0. Let ai, bi i = 1, 2 be
non-negative constants. Assume that

pi <
N

N − 2
, qi <

N

N − 2
, i = 1, 2 (1.9)

Assume that one of the following holds:

(i) piqj > 1, for all i, j = 1, 2.

(ii) piqj < 1, for all i, j = 1, 2.

(iii) If piqj = 1 for some i = 1, 2 and some j = 1, 2 then a
pi
i bj is sufficiently

small.

(iv) piqj < 1 < pkql, for some i, j, k, l = 1, 2 and a
pi
i bj is sufficiently small.

Then, there exist c > 0, d > 0 and (u, v) a non-negative solution to (1.1) such
that

lim
x→0
|x|N−2(u(x), v(x)) = (c, d).

Here we prove the following general existence result of non negative non-
trivial solutions to (1.1). Set

Γ(p, q) :=
N − 2

p+ 1
+

N

q + 1
− (N − 2). (1.10)

Theorem 1.5 Let pi, qi, i = 1, 2, positive numbers. Then, there exists a non-
negative nontrivial solution (u, v) of (1.1) if one of the following holds:

(i) a1 > 0, b1 > 0, and p2 < N/(N − 2), q2 < N/(N − 2)

min{Γ(p1, q1),Γ(q1, p1),Γ(p2, q1),Γ(q2, p1)} > 0,

with small coefficient aj ( respectively bj ) for some j = 1, 2 if pj ≤ 1 (
respectively qj ≤ 1) and 1 ≤ max

i=1,2
{pi, qi}.

(ii) a1 = 0, b1 > 0, p2 < N/(N − 2) and

min{Γ(q1, p2),Γ(q2, p2)} > 0,

with small coefficient a2 ( respectively bj) if p2 ≤ 1 (respectively qj ≤ 1)
for some j = 1, 2, and 1 ≤ max

i=1,2
{p2, qi}.
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(iii) a1 = 0 = b1, and
max{Γ(p2, q2),Γ(q2, p2)} > 0,

with small coefficient a2 ( respectively b2) if p2 ≤ 1 (respectively q2 ≤ 1)
and 1 ≤ max{p2, q2}.

2 Proof of Theorem 1.5

We note that for p and q non-negative numbers the condition Γ(p, q) > 0 is
equivalent to

p(2− (N − 2)q) +N > 0.

Moreover, if pq > 1,

Γ(p, q) = (ζ − (N − 2))(pq − 1), ζ =
2(p+ 1)

pq − 1

Γ(q, p) = (ξ − (N − 2))(pq − 1), ξ =
2(q + 1)

pq − 1
.

Recall that u(x) = C1|x|−ζ , v(x) = C2|x|−ξ for some positive constants C1 and
C2 is a non-negative solution of

−∆u = vp, −∆v = uq

if Γ(p, q) < 0 and Γ(q, p) < 0. This particular solution also plays a fundamental
role for example for the system

−∆u = vp, ∆v = uq,

where this solution exists if Γ(p, q) < 0 and Γ(q, p) > 0.

Proof of Theorem 1.5. Set

fi(t) = ait
pi , gi(t) = bit

qi , i = 1, 2.

We will construct radially symmetric non-negative solutions to (1.1), by mono-
tone iteration as follows. Let d > 0, (u1, v1) = (0, dm), wherem(r) := |x|2−N−1
and let (un, vn) be given by (un+1, vn+1) = T (un, vn) where T = (T1, T2) is the
operator given by

T1(u, v)(r) =

∫ 1
r

s1−N
∫ 1
s

tN−1f1(v(t))dtds

+

∫ 1
r

s1−N
∫ s

0

tN−1f2(v(t))dtds, (2.1)

T2(u, v)(r) = dm(r) +

∫ 1
r

s1−N
∫ 1
s

tN−1g1(u(t))dtds

+

∫ 1
r

s1−N
∫ s

0

tN−1g2(u(t))dtds,
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We are looking for α, δ and C such that

T1(Cr
α, Crδ) ≤ Crα, T2(Cr

α, Crδ) ≤ Crδ

and v1 = dm(r) ≤ Crδ. Hence, the sequence (un, vn) satisfies

un ≤ Cr
α, vn ≤ Cr

δ for all n ∈ N,

and the convergence of (un, vn) to a solution of (1.1) follows.
To find C, d, α and δ we use the following: Let κ be any number such that

κ+N 6= 0, and define

φ(κ) := min{2−N, κ+ 2}.

Then

mκ(r) :=

∫ 1
r

s1−N
∫ 1
s

tN−1+κdtds ≤ Krφ(κ), (2.2)

where K = K(N, κ).
Moreover, for any κ satisfying κ+N > 0, and κ+ 2 6= 0, set

ψ(κ) := min{0, κ+ 2}.

We have

hκ :=

∫ 1
r

s1−N
∫ s

0

tN−1+κdtds ≤ Krψ(κ), (2.3)

where K = K(N, κ). Hence,

T1(Cr
α, Crδ) = a1C

p1mp1δ + a2C
p2hp2δ.

From (2.2) and (2.3) and if we choose p1δ +N 6= 0 and p2δ +N > 0 we obtain

T1(Cr
α, Crδ) ≤ K

(
a1C

p1rφ(p1δ) + a2C
p2rψ(p2δ)

)
. (2.4)

We note that φ(p1δ) ≤ 2−N < ψ(p2δ), and thus

T1(Cr
α, Crδ) ≤ K (a1C

p1 + a2C
p2) rσ , (2.5)

where

σ :=

{
φ(p1δ) if a1 6= 0,
ψ(p2δ) if a1 = 0.

Therefore, if α ≤ σ andK(a1Cp1+a2Cp2) ≤ C, we obtain T1(Crα, Crδ) ≤ Crα.
Arguing as above, we have

T2(Cr
α, Crδ) ≤ dr2−N +K

(
b1C

q1rφ(q1α) + b2C
q2rψ(q2α)

)
, (2.6)

with q1α+N 6= 0, q2α+ 2 6= 0, and q2α+N > 0. Therefore,

T2(Cr
α, Crδ) ≤ (d+K (b1C

q1 + b2C
q2 )) rρ, (2.7)
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where

ρ :=

{
φ(q1α) if b1 6= 0,
2−N if b1 = 0.

Hence,

T2(Cr
α, Crδ) ≤ Crδ ,

if δ ≤ ρ and d+K(b1Cq1 + b2Cq2 ) ≤ C.
Next we prove the existence of α, δ, C and d under the hypothesis of the

theorem. The existence of C and d, is classical. We can choose d = C/2 and
for i = 1, 2

KaiC
pi ≤ C/2, KbiC

qi ≤ C/4.

Therefore, if either for all i , pi < 1 and qi < 1, or pi > 1 and qi > 1, the existence
of C follows. By the contrary if max{pi, qi, i = 1, 2} ≥ 1 and min{pi, qi, i =
1, 2} ≤ 1, we obtain existence with a restriction on the coefficients.
We summarize the conditions that α and δ must satisfy as follows:

α ≤

{
min{2−N, p1δ + 2} if a1 6= 0
min{0, p2δ + 2} if a1 = 0

δ ≤

{
min{2−N, q1α+ 2} if b1 6= 0
2−N if b1 = 0.

Moreover, we need that

p2δ +N > 0, q2α+N > 0, (2.8)

We also used that p1δ +N 6= 0, q1α+N 6= 0, p2δ +2 6= 0, q2α+ 2 6= 0. These
last conditions are not relevant since we can take α and δ smaller and hence
these new α and δ satisfy the conditions.

Case (i). Assume first that a1 > 0 and b1 > 0. If p1 < N/(N − 2), and since
Γ(p1, q1) > 0, and Γ(p2, q1) > 0, we can take

α = 2−N, δ = min{2−N, 2− (q1 − ε)(N − 2)},

where ε > 0 is such that

Γ(p1, q1 − ε) > 0, and Γ(p2, q1 − ε) > 0.

Now, since q2 < N/(N − 2), we have that q2α+N > 0. From p2 < N/(N − 2)
and Γ(p2, q1 − ε) > 0, we also have p2δ + N > 0. It remains to prove that
α = 2−N ≤ p1δ + 2, which follows easily from Γ(p1, q1 − ε) > 0.
If p1 ≥ N/(N − 2), from Γ(p1, q1) > 0 we deduce that q1 < N/(N − 2).

Thus, we may proceed as before but now with

δ = 2−N, α = p1(2 −N) + 2.
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Case (ii). Assume that a1 = 0 and b1 > 0. Let us choose

δ = 2−N, α = min{0, 2− (p2 − ε)(N − 2)},

where ε > 0 is such that Γ(q1, p2 − ε) > 0 and Γ(q2, p2 − ε) > 0. Then the
conclusion follows as in the above case.

Case (iii). Assume that b1 = 0 and a1 = 0. Assume that p2 ≤ q2. Since
Γ(q2, p2) > 0, then p2 < N/(N − 2). Let us choose

δ = 2−N, and α = min{0, 2− (p2 − ε)(N − 2)},

and thus the conclusion follows by taking Γ(q2, p2 − ε) > 0.
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[3] M.F.Bidaut-Véron and P. Grillot, Asymptotic behaviour of elliptic system
with mixed absorption and source terms, Asymptot. Anal., (1999), 19, 117-
147.
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