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Symbolic computation of Appell polynomials

using Maple ∗

H. Alkahby, G. Ansong, P. Frempong-Mireku, & A. Jalbout

Abstract

This work focuses on the symbolic computation of Appell polynomials
using the computer algebra system Maple. After describing the tradi-
tional approach of constructing Appell polynomials, the paper examines
the operator method of constructing the same Appell polynomials. The
operator approach enables us to express the Appell polynomial as Bessel
function whose coefficients are Euler and Bernuolli numbers. We have also
constructed algorithms using Maple to compute Appell polynomials based
on the methods we have described. The achievement is the construction
of Appell polynomials for any function of bounded variation.

1 Introduction

The aim of this work is to give a new method of constructing and studying
the properties of a definite class of polynomials called Appell polynomials. This
sequence of polynomials Pn(x), of degree n, is defined by the recurrence relation

d

dx
Pn(x) = Pn−1(x), (1)

or equivalently,

∃A(t) =
∞∑
n=0

ant
n, (a0 6= 0) : A(t)etx =

∞∑
n=0

Pn(x)tn.

Each A(t) is called a generating function and will generate a set of Appell
polynomials. In the interval [−1, 1], even polynomials of the type defined by
(1) have two zero points at −1 and 1. Two explicit methods of construction of
Appell polynomials may be obtained by
1.) the traditional method and by
2.) the operator method.
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2 Symbolic computation of Appell polynomials using Maple

The explicit expression derived for Pn(x) using the generating function
f(x) = (ekx + e−kx)/(ek + e−k), could be expressed in terms of Bessel pow-
ers. The coefficients of this Appell polynomial are the product of Euler and
Bernoulli numbers. The behavior of this Appell polynomials in the interval
(−1, 1) and outside the interval (−1, 1) could also be studied. Hence, enabling
one to obtain the zeros of the polynomial Pn(x).

The importance of this construction is to provide us with a powerful tool
for solving boundary value problems in hydrodynamics and many other areas
of application. In particular, this model could be viewed as a fluid flow with
nodes at −1 and 1. It also provides a solution to the linear differential equation
of the form:

n∑
r=0

Lr(x)
dry(x)
dxr

= λy(x) (2)

where Lr(x) is a polynomial in x of degree r, λ is a parameter and under
the condition that the generating function is A(t) = eQ(t), where Q(t) is a
polynomial in t.

2 Operators in a linear space

Let L = {v, u, . . .} be a given linear vector space of possibly infinite dimension.
Suppose that an algebra of operators D, I, P, . . . is defined in the vector space
L. If the operator D on the vector v is given by

Dv = 0,

where the vector v ∈ L, then the set of vectors {v} is called the zero-space of
the operator D. The members of this space will be denoted by c. Hence,

Dc = 0.

Also, c will be called the formal constant of the operator D. Next, let us
introduce the operator I with the property

DI = 1. (3)

From (2) it is clear that the operator I is the right inverse for the D operator.
If the operator P is defined to be

P = 1− ID,

then clearly, P is the projection operator for the vector v on the zero-space of
the operator D, since

D(Pv) = Dv −Dv = 0. (4)

The relation given by (3) shows that Pv = c. The power of the operator I will
be defined in the usual form as In = IIn−1, and I0 = 1, from which one can
obtain the relation

DIn = In−1. (5)
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The nth order of the power of the formal variable x generated by the operator
I with coefficients c is the expression given by

n!Inc = cxn.

Clearly, the following expression holds

Dxnc = nxn−1c.

Now, consider the expression of the form

v = c0 + Ic1 + . . .+ Incn,

which is called a polynomial operator. The formula for computing the coeffi-
cients is:

ci = PDiv.

In terms of the variable x, one can write

v = c0 + c1x+ . . .+ cnx
n,

which is a polynomial of order n with coefficients c0, c1, . . . , cn. Thus, the for-
mula for the coefficients could be written as

ci =
1
i!
PDiv.

It must be noted that the powers of this special kind of variable generate a
differential operator. Now, consider a linear vector space L, the vectors of
which consist of matrices with dimension 2x2, and components u11, u12, u21,
u22, which are functions of one variable x. Thus, if u is such a vector then

u =
(
u11(x) u12(x)
u21(x) u22(x)

)
.

The differential operator D takes the form

D =
(

0 d
dx

d
dx 0

)
.

It is a straight forward computation to obtain the formula

Dnu =



(
d2iu11
dx2i

d2iu12
dx2i

d2iu21
dx2i

d2iu22
dx2i

)
, n = 2i

(
d2i+1u11
dx2i+1

d2i+1u12
dx2i+1

d2i+1u21
dx2i+1

d2i+1u22
dx2i+1

)
, n = 2i+ 1,
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and

PDnu =



(
d2iu11
dx2i |x1

d2iu12
dx2i |x1

d2iu21
dx2i |x2

d2iu22
dx2i |x2

)
, n = 2i

(
d2i+1u11
dx2i+1 |x1

d2i+1u12
dx2i+1 |x1

d2i+1u21
dx2i+1 |x2

d2i+1u22
dx2i+1 |x2

)
, n = 2i+ 1.

To perform the expansion for an arbitrary function u by the constructed
formal powers, it is necessary to use the form of the n-th derivative of

u =
(
u11(x) u12(x)
u21(x) u22(x)

)
.

The integral operators I1 and I2 are defined by I1 =
∫ x
x1=0

dξ and I2 =
∫ x
x2=1

dξ.
The following notation will be used:

y2i(x) = y2i ∗ 1 = (2i)!(I1I2)i ∗ 1,

and
y2i+1(x) = y2i+1 ∗ 1 = (2i+ 1)!I2(I1I2)i ∗ 1.

Similarly, the expression (I2I1)i ∗ 1 and I1(I2I1)i ∗ 1 are denoted by

ŷ2i(x) = ŷ2i ∗ 1 = (I2I1)i ∗ 1,

and
ŷ2i+1(x) = ŷ2i+1 ∗ 1 = I1(I2I1)i ∗ 1

respectively. The expressions yn and ŷn are called the general Bessel powers.
The computation of the Bessel’s powers to the order n = 16 for x1 = 0 and
x2 = 1 will be shown later.

The integral takes the following form

I =
(

0
∫ x
x1
dξ∫ x

x2
dξ 0

)
=
(

0 I1
I2 0

)
,

where the lower limit of the integrals can differ. Without loss of generalityone
can take x1 = 0, and x2 = 1 For the projection operator, it has the form

P = 1− ID =
(
. . . |x1=0 0

0 . . . |x2=0

)
.

The formal powers are also given by the expression

xnc = n!



(
(I1I2)iC11 (I1I2)iC12

(I2I1)iC21 (I2I1)iC22

)
, n = 2i

(
I1(I2I1)iC21 I1(I2I1)iC22

I2(I1I2)iC11 I2(I1I2)iC12

)
, n = 2i+ 1,

where C is the formal constant for the operator D and

C =
(
C11 C12

C21 C22

)
.
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3 A Class of Appell Polynomials

Let Pn denote a polynomial of degree n of a variable x. Consider a class of
polynomials which satisfy the conditions

dP0

dx
= 0,

dPn
dx

= Pn−1 (6)

The class of polynomials defined below is called Appell polynomials. In fact,
there are large numbers of varying forms of this kind of Appells polynomials.
An arbitrary constant is obtained each time (6) is integrated sequentially. For
example,

y1 =
∫
dx = x+ C0

y2 = 2
∫
y1dx = 2

∫
(x+ C0)dx = x2 + 2xC0 + C1

y3 = 3
∫
y2dx = 3

∫
(x2 + 2xC0 + C1)dx

= x3 + 3x2C0 + 3xC1 + C2

...

yn = n

∫
yn−1dx = xn + nxn−1C0 + . . .+ Cn−1.

The above can be represented in a compact form as an Abel-Goncarov integral

Pn(x) =
∫ x

α0

dx1

∫ x1

α1

dx2

∫ x2

α2

dx3 . . .

∫ xn−1

αn−1

dxn,

where

αi =
{

1, i = λmod(λ+ 1),
0, i 6= λmod(λ+ 1).

for a regular monotonic polynomials on [0, 1] with type numbers, λ.
When defining Appell polynomials, it is important to add an additional

condition, due to the constants which arise in the equations. This condition
may cause the polynomial to have zeros at definite points on the real-axis. Let
all the polynomials of even degree P2i have zeros at the points −1, 1. Then by
performing the integration and sequentially determining the constants, one gets
the following sequence of equations

y2 = x2 − 1,
y4 = x4 − 6x2 + 5,

y6 = x6 − 15x4 + 75x2 − 61,
y8 = x8 − 28x6 + 350x4 − 1708x2 + 1385,

y10 = x10 − 45x8 − 1050x6 − 12810x4 + 62325x2 − 50521.
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4 Using Generating function

When constructing Appell polynomials with two zero-points, the method of
generating functions may the used. It may be shown that there exists a func-
tional sequence, the differential of which gives the Appell polynomials with two
zero-points. Consider the function

f(x) =
ekx + e−kx

ek + e−k
. (7)

The Taylor expansion to the degree of k can be easily computed. The coefficients
C2i, of the expansion are found by the formula

C2i =
d2i

dk2i

(
ekx + e−kx

ek + e−k

) ∣∣∣
k=0

. (8)

From the Taylor expansion, it is clear that C2i is a function of one variable, say
x. Hence, f(x) can be written in terms of C2i as

f(x) =
ekx + e−kx

ek + e−k
=
∞∑
i=0

C2i(x)k2i. (9)

It can also be demonstrated that C2i is related to the Bessel powers

y2i(x;−1,+1),

with two zero-points. The connection is given by the relation

C2i =
1

(2i)!
y2i(x;−1,+1). (10)

Thus, the expansion for f(x) which is given by the sum

f(x) =
∞∑
i=0

C2i(x)k2i, (11)

satisfies the following properties

d2

dx2
f(x) = k2f(x). (12)

Equation (12) could be generalized to take the following form

d2i

dx2i
f(x) = k2if(x). (13)

The series given in (11) is called an Appell polynomial with two zero-points.
Therefore, the set of polynomials obtained by the traditional method in section
3, converges in even powers x2iC. These polynomials are called Appell polyno-
mials. Thus, a sequence of Appell polynomials, if the values of the zero-points
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are related to x1 = 0, and x2 = 1, can also be easily computed. An example of
this kind of Appell polynomial is shown below:

y2 = x2 − x,
y4 = x4 − 2x3 + x,

y6 = x6 − 3x5 + 5x3 − 3x,
y8 = x8 − 4x7 + 14x5 − 28x2 + 17x,

y10 = x10 − 5x9 + 30x7 − 126x5 + 255x3 − 155x
y12 = x12 − 6x11 + 55x9 − 396x7 + 1683x5 − 3410x 3 + 2073x .

Substitute the sum given in (11) into (12) to obtain
∞∑
i=0

k2i(C2i)′′ =
∞∑
i=0

k2i(C2i) (14)

where C ′′2 = 1 and C ′′0 = 0. Generalizing the obtained relation, one gets

(2i)!C
′′

2i = 2i(2i− 1)C2i−2(2i− 2)!,

or
y2i
′′

= (2i− 1)y2i−2.

An explicit expression for y2i in the form of a polynomial can be obtained. For
this, one uses the Leibnitz formula for finding the differential of order 2i from a
differentiable function. Thus, one obtains

y2i(x;−1, 1) =
i∑

j=0

C(2i, 2j)x2i−2j d
2j

dk2j

(
1

ek + e−k

)∣∣∣∣∣∣
k=0

. (15)

The expression

2
d2j

dk2j
(ek + e−k)−1 = E2j (16)

where the E2j are the Euler numbers. Therefore, the formula simplifies to

y2i(x;−1, 1) =
i∑

j=0

x2i−2jC(2i, 2j)E2j . (17)

The Euler numbers could be computed from Eq. (16). An example of computing
Euler numbers E2j for 2j = 0, 2, 4, ... by this method is shown in Table 1.

5 Computation of Appell Polynomials Using
Stieltjes Integral

As pointed out by Thone [1] Appell polynomials can be given in terms of Stieltjes
integrals. This enables us to give a new characterization to Appell polynomials
that expands its applications to functional methods. The definition of bounded
variation is important to the construction.
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2j 0 2 4 6 8 10 12 14
E 1 -1 5 -61 1385 -50521 270276 19936098

Table 1: Euler numbers

Definition A real valued function f is of bounded variation on a closed in-
terval [a, b] if for any partition π,

∑n
j=1 |∆fj | ≤ M,for M > 0 and ∆fj =

f(xj)− f(xj−1).

Theorem 1 If α(x) is a function of bounded variation on [a, b] and the integrals

µn =
∫ b

a

xndα(x), n = 0, 1, 2, . . . , µ0 6= 0

all exist then ∃{φn(x)}, n = 0, 1, . . ., φn(x) is of degree n such that∫ b

a

φ[r]
n (x)dα(x) = δrn =

{
0 n 6= r
1 n = r

(18)

Sketch of Proof: If

φn(x) = anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a0 (19)

Applying (18) to (19) yields a system of equation which has a unique solution
if n!(n− 1)!(n− 2)! . . . ..1µn+1

0 6= 0. Since u0 6= 0, the solution is as follows

an+1−r =

∣∣∣∣∣∣∣∣∣∣∣

µ0 0 0 . . . 0 1
µ0
1! µ0 0 . . . 0 0
µ2
2!

µ1
1! µ0 . . . 0 0

...
...

...
...

...
µr−1

(r−1)!!
µr−2

(r−2)!!
µr−3

(r−3)!! . . . µ0
1! 0

∣∣∣∣∣∣∣∣∣∣∣
(n+ 1− r)!µr0

This solution is used to find the Appel polynomials for any function of bounded
variation. Some examples are demonstrated in the next section.

6 Symbolic Algebra and Appell Polynomials

Now, we demonstrate how a symbolic algebra system can aid us in the construc-
tion of Appell polynomials. This would enable us to generate Appell polyno-
mials of any order say (k). The name of the algorithms are apPoly(n1,n2,n3)
and apPolyeb(n1,n2,n3) where n1 is the degree of the polynomials, (n2, n3) are
the two zeros of the polynomial which could be 0, 1 or −1, 1. The Maple func-
tion needed when constructing Appell polynomials by the traditional method
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is int. The program to do this is given in appendix 1. The algorithm ap-
pelPoly(f,x,a,b,n), where (f, x) is a function of bounded variation and the vari-
ables a and b are the lower and upper limits of integration, and n is the degree of
the polynomials, computes the general Appell polynomials for a given function
of bounded variation. The first example has the two zeros at −1, 1 and the
second has the two zeros at 0, 1.

for i to 4 do apPoly(2*i,-1,1) od;
y2 = x2 − 1

y4 = x4 − 6x2 + 5
y6 = x6 − 15x4 + 75x2 − 61

y8 = x8 − 28x6 + 350x4 − 1708x2 + 1385
y10 = x10 − 45x8 + 1050x6 − 12810x4 + 62325x2 − 50521

for i to 4 do apPoly(2*i,0,1) od;
y2 = x2 − x

y4 = x4 − 2x3 + x

y6 = x6 − 3x5 + 5x3 − 3x
y8 = x8 − 4x7 + 14x5 − 28x3 + 17x

y10 = x10 − 5x9 + 30x7 − 126x5 + 255x3 − 155x

The operator method began with the function given in (7) whose Taylor
expansion in k to the order 12 is given by the Maple command

taylor(f(x), k=0, 12);

1 +
(
x2

2
− 1

2

)
k2 +

(
x24
24

+
5x2

24
− x2

4

)
k4 +

(
5
48
− 61

720
+

x6

720
− x4

48

)
k6

+
(
−61x2

1440
+

277
8064

+
x8

40320
+

5x4

576
− x6

1440

)
k8

+
(

277x2

16128
− 50521

3628800
+

x10
3628800

− 61x4

17280
+

x6

3456
− x8

80640

)
k10

All the coefficients could be extracted by the following Maple command:

for i to 5 do coeff(tt,k,2*i) od;

x2

2
− 1

2
x4

24
− x2

4
+

5
24

x6

720
− x4

48
+

5x2

48
− 61

720
x8

40320
− x6

1440
+

5x4

576
− 61x2

1440
+

277
8064

x10

3628800
− x8

80640
+

x6

3456
− 61x4

17280
+

277x2

16128
− 50521

3628800
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Equation (16) is used to build the symbolic computation algorithm for com-
puting Appell polynomials. The coefficients are expressed in terms of Bernuolli
and Euler numbers. The algorithm is given in appendix 2. The arguments of
the function are the order of the polynomils and the two end points. The follow-
ing is an illustrative symbolic computation by the algorithm, which computes 3
Appell polynomials.

for i from 2 by 2 to 6 do y^i:=apPolyed(i,-1,1) od;

y2 = x2 − Eu(0)
y4 = x4C(4, 0)Eu(0) + x2C(4, 2)Eu(2) + C(4, 4)Eu(4)

y6 = x6C(6, 0)Eu(0) + x4C(6, 2)Eu(2) + x2C(6, 4)Eu(4) + C(6, 6)Eu(6)

Maple can be asked to simplify the coefficients. The command for evaluating
the coefficients of Appell polynomials of order 12 is given as:

for i from 2 by 2 to 16 do y^i:=Eval(subs(C=binomial, Eu=euler,
apPolyed(i,-1,1))); od;

y2 := x2 − 1
y4 := x4 − 6x2 + 5

y6 := x6 − 15x4 + 75x2 − 61
y8 := x8 − 28x6 + 350x4 − 1708x2 + 1385

y10 := x10 − 45x8 + 1050x6 − 12810x4 + 62325x2 − 50521
y12 := x12 − 66x10 + 2475x8 − 56364x6 + 685575x4 − 3334386x2 + 2702765

Using Theorem 1, a set of Appell polynomial and their graphs for the func-
tion of bounded variation f(x)=x on [0,1]is shown below. The graphs of lower de-
grees passes through the maximum and minimum points of the graphs of higher
degree. Hence, Appell polynomials always contain the optimization function.
One can easily calculate the optimization points by location the intersection of
any two successive points. This property of Appell polynomials makes it natural
candidate for optimization problems.

f1 := −1
2

+ x

f2 :=
1
12
− 1

2
x+

1
2
x

f3 :=
1
12
x− 1

4
x2 +

1
6
x3

f4 := − 1
720

+
1
24
x2 − 1

12
x3 +

1
24
x4
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Figure 1: Appell Polynomial for f(x) = x, [0, 1]

Conclusion. We have demonstrated a new approach for the computation of
Appell polynomials using Maple. Both the elementary and operator methods
basically yield the same result. This fact confirms the correctness of the ap-
proach used in the construction. The interesting part of the work is the symbolic
algebra system construction of Appell polynimials, which can be used to gen-
erate a set of Appell polynomial for any function of bounded variation. In the
future, work will be done on using Appell polynomials to solve linear differential
equation of form defined by Equation two.

Appendix 1

This algorithm computes Appell polynomials

apPoly:=proc(n,n1,n2) local a1, a2, a3, y, i;
%n order of the polynomial
%n1, n2 the two zero points

if not ((n1=-1 and n2=1) or (n1=1 and n2=-1) or (n1=0 and n2=1)
or (n1=1 and n2=0)) then ERROR(‘ n1, n2= 0, -1 or 1‘) fi;
if n1=0 and n2=1 then aa1:=n1; aa2:=n2;
elif n1=1 and n2=0 then aa1:=n2; aa2:=n1;
elif n1=-1 and n2=1 then aa1:=n1; aa2:=n2;
else aa1:=n2; aa2:=n1;
fi;
if n < 1 or type(n, odd) then ERROR(‘ n must be even.‘);
elif n = 2 and aa1=-1 and aa2=1 then y2:=x^2-1;
elif n = 2 and aa1=0 and aa2=1 then y2:=x^2-x;
elif n > 2 and aa1=-1 and aa2=1 then y2:=x^2-1;
elif n > 2 and aa1=0 and aa2=1 then y2:=x^2-x;
fi;
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if n > 2 then

for i from 1 to n/2-1 do
y.(2*i+1):=(2*i+1)*(int(y.(2*i),x)+c);
y.(2*i+2):=(2*i+2)*(int(y.(2*i+1),x)+d);
a1:=subs(x= aa2, y.(2*i+2)=0);
a2:=subs(x=aa1, y.(2*i+2)=0);
a3:=solve({a1, a2}, {c,d});
y.(2*i+2):=subs(op(a3), y.(2*i+2)) ;

od;
fi;
y^n=";

end;

Appendix 2

Algorithm for computing Appell Polynomial in terms of
Binomial (C) and Euler (Eu) function
apPolyeb:=proc(n,n1,n2) local aa1, aa2;
if not ((n1=-1 and n2=1) or (n1=1 and n2=-1)) then
ERROR(‘ n1, n2= -1 or 1‘) fi;
if n1=-1 and n2=1 then aa1:=n1; aa2:=n2;

else aa1:=n2; aa2:=n1; fi;
if n < 1 or type(n,odd) then
ERROR(‘ n must be even and greater than 1.‘);
elif n = 2 and aa1=-1 and aa2=1 then y2:=x^2-Eu(0);
elif n > 2 then

Appell:=sum(x^(2*n/2-2*j)*C(n,2*j)*Eu(2*j), j=0..n/2);
fi; end;

Appendix 3

appelpoly := proc (f, x, a, b, n) local i, j, r, ii;
co.n := 1/(n!*int(diff(f,x),x = a .. b)); with(linalg):

for r from 2 to n+1 do
co.(n+1-r) := matrix(r,r,[]);

for i to r do for j to r do
co.(n+1-r)[1,r] := 1;
if i = j and j <> r then
co.(n+1-r)[i,j] := int(diff(f,x),x = a .. b);

co.(n+1-r)[r,r] := 0 elif j < i then
co.(n+1-r)[i,j] := int(x^(i-j)*diff(f,x),x = a .. b)/(i-j)!

elif i < j then co.(n+1-r)[i,j] := 0 fi od od;
co.(n+1-r) := det(convert(co.(n+1-r),matrix))/
((n+1-r)!*int(diff(f,x),x = a .. b)^r);
add(co.ii*x^ii,ii = 0 .. n) od end
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