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Compression on the digital unit sphere ∗

Mohamed Allali

Abstract

A method for compressing functions on the unit sphere is presented.
This method is based on a Ramanujan set of rotations, and generates
an equidistributed system of points. This method is flexible and easy to
implement as it needs only few transformations to cover the whole unit
sphere with spherical caps.

1 Introduction

One of the most common applications of wavelet theory is data compression.
We propose a new method to compress square integrable functions on the unit
sphere. The main tools used in this analysis are a Ramanujan set of rotations
and planar wavelets. Ramanujan sets of rotations are introduced in Section
2 and our focus is on SM5 , a special set from the Ramanujan set of rotations.
Starting with a point on the digital sphere and using SM5 we can generate points
on the sphere. The equidistribution of these generated points and the uniformity
of this distribution in terms of quadrature on the sphere is studied in Section 3.
In the algorithm proposed in Section 5, the method of covering the sphere by
means of spherical caps of fixed radius is needed. Therefore we derive in Section
4 a precise formula to cover the unit sphere with a given radius.

2 A Ramanujan set of rotations

In order to study covering and equidistribution on the unit sphere, we shall
introduce a special set called the Ramanujan set of rotations [4].

Let S2 = {x ∈ R3; |x| = 1} be the unit sphere and let dσ denote the usual
rotation invariant measure on S2 defined by∫

R3
f(x) dx =

∫ ∞
0

∫
S2
f(rσ) dσ r2 dr,

where f is a continuous compactly supported function on R3. We are interested
in the Hilbert space L2(S2) of square integrable functions on the sphere, with
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16 Compression on the digital unit sphere

the usual scalar product:

(f, g) =
∫
S2
f(σ)g(σ) dσ (f, g ∈ L2(S2)).

The corresponding norm of a function f ∈ L2(S2) is ‖f‖ =
√

(f, f). The group
G = SO(3) of proper rotations preserving the dot product acts on this space as
follows:

ρ(γ)f(σ) = f(γ−1σ), (2.1)

where γ ∈ G, σ ∈ S2, and f ∈ L2(S2)). Each operator ρ(γ) defined in (1)
is unitary. For any f, g ∈ L2(S2) the function G 3 γ → (ρ(γ)f, g) ∈ C is
continuous. Moreover, ρ(γ1)ρ(γ2) = ρ(γ1γ2) for any γ1, γ2 ∈ G. In other words,
(ρ, L2(S2)) is a unitary representation of the group G [3].

Let S ⊆ SO(3) be a finite symmetric set. In other words, the number of
elements of S, denoted by |S| = 2N, is even and γ ∈ S if and only if γ−1 ∈ S.
Let (TSf)(x) =

∑
γ∈S f(γx), where f ∈ L2(S2). Furthermore, let u(x) = 1,

x ∈ S2, denote the unit function and H0 = Cu. We would like to approximate
the projection PH0 by 1

|S|TS for suitable S. The first problem is to agree on a way
to measure the error for such an approximation. For an operator T : L2(S2)→
L2(S2) let ‖T‖ be the operator norm of T . Explicitly, ‖T‖ is the supremum of
the numbers ‖T (f)‖, where f ∈ L2(S2) and ‖f‖ = (

∫
|f(x)|2dx)1/2 = 1. The

orthogonal projection PH0 : L2(S2)→ H0 is given by:

PH0f = (
1

4π

∫
S2
f(x) dx )u

where f ∈ L2(S2). We agree that our approximation is best when the norm

‖ 1
|S|

TS − PH0‖

is minimal.

Theorem 2.1 For any finite symmetric set S ⊆ SO(3)

‖ 1
|S|

TS − PH0‖ ≥ 2

√
|S| − 1
|S|

.

A set where the equality holds is called a Ramanujan set. Let p be a
prime, equal to 1 modulo 4. Then there exists in [4] an explicitly described
Ramanujan set, Sp, with |Sp| = p+ 1.

3 Equidistribution on the unit sphere

Of practical importance is the problem of generating equidistributed points on
the sphere. The problem of generating a large number of points on the sphere
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has many applications in various fields of computation such as quadrature, plac-
ing grids on S2, tomography, coding theory, etc. See [2, 6, 7], for example. The
advantage of an equidistributed system of points lies in the fact that relatively
few samplings of the data are needed, and approximate integration can be per-
formed by computation of a mean value, i.e. the arithmetical mean.

Let Sp = {γ1, . . . , γ p+1
2
, γ−1

1 , . . . , γ−1
p+1

2
} be a Ramanujan set as defined earlier,

and let SMp ⊆ SO(3) denote the set of reduced words of length at most M =
1, 2, 3, . . . in Sp (by reduced we mean all the obvious cancellations such as γγ−1

have been carried out). It is easy to verify that

∣∣SMp ∣∣ =
pM+1 + pM − p− 1

p− 1
. (3.1)

The following theorem gives the quadrature error bound for the Ramanujan
set and it is near-optimal for the numerical integration of functions on S2.

Theorem 3.1 ∥∥∥∥∥ 1∣∣SMp ∣∣TSMp − PH0

∥∥∥∥∥ ≤ const
log(

∣∣SMp ∣∣)√∣∣SMp ∣∣ .
Example 3.1. For p = 5, the construction can be described concisely. S5 =
{A,B,C,A−1, B−1, C−1}, where A, B, and C are rotations about the X, Y , and
Z axes, each through an angle of arccos(− 3

5 ). Therefore, SM5 = {A,B,C,A−1,
B−1, C−1, AA,AB,AB−1, . . . }. A substitution in (2) using p = 5, the set SM5
contains 3

2 (5M − 1) elements of rotations. This construction is just the simplest
one from an infinite family; for each prime p congruent to 1 modulo 4, there is
a construction involving p + 1 generator rotations, which corresponds to ways
of writing p as the sum of four squares of integers with the first addend being
positive and odd [4].

We will use the set SM5 discussed in Example 1 to generate points on the unit
sphere. A stereographic projection can be used to relate points in the complex
plane C to points on the sphere. To every point ξ = (ξ1, ξ2, ξ3)T on the unit
sphere, except the north pole (0, 0, 1)T , we associate a complex number

z =
ξ1 + iξ2
1− ξ3

.

Under this stereographic projection the fractional linear transformations in the
complex plane correspond to rotations on the sphere. Taking this into account,
it is convenient to actually compute with points in C and to use fractional
transformations instead of rotations. The rotation group SO(3) is mapped onto
SU(2), with homographic action on C :

z −→ az + b

cz + d
,

(
a b
c d

)
∈ SU(2).
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So z transforms to z̃ as
z̃ =

az + b

cz + d
.

The A, B, and C correspond to the linear fractional transformations defined by
the matrices

Ap =
1√
5

(
1 + 2i 0

0 1− 2i

)
, Bp =

1√
5

(
1 2
−2 1

)
and

Cp =
1√
5

(
1 2i
2i 1

)
.

The final step in the process is to project z̃ back to the unit sphere via the
inverse stereographic projection. A rotated point ξ̃ = (ξ̃1, ξ̃2, ξ̃3)T on the unit
sphere is related to z̃ by

(ξ̃1, ξ̃2, ξ̃3)T = (
2<(z̃)

1 + |z̃|2
,

2=(z̃)
1 + |z̃|2

,
|z̃|2 − 1
1 + |z̃|2

).

4 Covering of the sphere

This led to the investigation of the general question: how many spherical caps
of radius h do we need to cover the unit sphere? We are looking for an explicit
formula for the number of spherical caps needed and an exact positioning of the
centers of the spherical caps that cover the whole unit sphere without giving
any preferences to any region on the sphere.

We will use in this work the Ramanujan set of rotations only in the case
when p = 5. Let A ⊆ S2 be a spherical cap with center y ∈ S2 and radius h.
The area |A| = 2πh. Denote by χA the characteristic function of A. In order
for the set{γA}γ∈SM5 to cover the whole unit sphere, one has to make sure that
for every x ∈ S2, there exists at least one spherical cap, say γA, where γ ∈ SM5 ,
such that x ∈ γA.

Theorem 4.1 Let CM = 5
M
2 (M + 1 + M√

5
), and let k = 4 (16+

√
π)

π . Then, for
every cap A ⊆ S2 and for all x ∈ S2 we have∣∣∣|A| − 1∣∣SM5 ∣∣

∑
γ∈SM5

χγA(x)
∣∣∣ ≤ 3

41/3
(4π)1/3

[ CM∣∣SM5 ∣∣k
]2/3

.

Furthermore, in order to use [1, Theorem 4.1] to guarantee the covering of
the sphere, we need the following lemma.

Lemma 4.1 ∣∣∣|A| − 1∣∣SM5 ∣∣
∑
γ∈SM5

χγA(x)
∣∣∣ < |A| ⇒ ⋃

γ∈SM5

γA = S2.
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Proof. As γA ⊆ S2, then
⋃
γ∈SM5

γA ⊆ S2. Now, letting x ∈ S2 we have∣∣∣|A| − 1∣∣SM5 ∣∣
∑
γ∈SM5

χγA(x)
∣∣∣ < |A| ⇒ ∑

γ∈SM5

χγA(x) 6= 0.

So, we can see that there exists a γ ∈ SM5 such that χγA(x) = 1. This is
equivalent to saying that x ∈ γA. As γA ⊆

⋃
γ∈SM5

, the lemma follows. Based
on this fact and on Theorem 4.1, we reach a covering if

3
41/3

(4π)1/3
[ CM∣∣SM5 ∣∣k

]2/3
< 2πh. (4.1)

As n = 3
2 (5M − 1), then M = log5( 2n

3 + 1), and 5
M
2 =

√
2
3n+ 1. Inequality (3)

can be simplified as follows√
2
3n+ 1

[
1 + (1 + 1√

5
) log5( 2n

3 + 1)
]

n
<

1
6

√
2
3π

2

16 +
√
π
h3/2.

The left hand side of the previous inequality is less than
√

2
√

(2/3)
√
n 2(1 + 1√

5
) log5 n

n

and so we have proven the following proposition.

Proposition 4.1 If n satisfies the inequality

log n√
n

<

√
5(log 5)π2

12
√

2(
√

5 + 1)(16 +
√
π)
h3/2,

then the sphere covering is guaranteed,⋃
γ∈SM5

γA = S2 .

5 Compression on the unit sphere

We propose a method for compressing functions on the sphere based solely on a
Ramanujan set of rotations and planar wavelets. This method was inspired by
the fact that a rigorous method needs to perform uniformly well independently
of the location of the support of the function on the sphere, and for functions
supported in a small (relatively flat) subset of S2, this method should be similar
to the one obtained from the theory of wavelets on R2.

The 2-sphere S2 can not be embedded homeomorphically into the Euclidean
plane R2. For, if a topological mapping of S2 onto a subset M of R2 existed,
then M would be, like S2, compact and simply connected and consequently
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isomorphic to the closed disk. The Euler number of the disk (χ = 1), however,
differs from that of the sphere (χ = 2). Thus there is no atlas of S2 which
consists of only one chart. To put it another way, every chart of the sphere has
a singularity. This fact, known to cartographers for many centuries, complicates
the positioning of points on the sphere considerably. Let

SP : S2 \ {North Pole} → R
2

be the stereographic projection, (see [5]). Let Ψ be an orthonormal basis of
L2(R2) constructed using tensor products of some orthogonal wavelet basis of
L2(R). Let SP ∗(Ψ) ⊆ L2(S2) be the orthonormal basis of L2(S2) obtained by
pulling back the functions from Ψ to the sphere, and normalizing them appro-
priately, using the Jacobian of the stereographic projection. Then SP ∗(Ψ) is
an orthonormal basis of L2(S2). However, the members of this basis supported
near the South Pole look very different than the members supported near the
North Pole as the North Pole is a singular point. In order to avoid this singu-
larity we shall rotate the North Pole, using a well distributed set of rotations,
namely the Ramanujan set of rotations SM5 . What follows is a description of
our new method for compressing functions on the unit sphere.

Let F (ξ1, ξ2, ξ3) be a function belonging to L2(S2). We project it onto the
complex plane via the stereographic projection SP . Let us find first the Jacobian
J of this transformation, taking into consideration the fact that ξ2

1 +ξ2
2 +ξ2

3 = 1

J =

∣∣∣∣∣ ∂x∂ξ1 ∂x
∂ξ2

∂y
∂ξ1

∂y
∂ξ2

∣∣∣∣∣
−1

.

Furthermore, we have

∂ξ3
∂ξ1

=
−ξ1
ξ3

and
∂ξ3
∂ξ2

=
−ξ2
ξ3

.

Using this fact we have the following expression for J

J =

∣∣∣∣∣∣∣
1−ξ3−

ξ21
ξ3

(1−ξ3)2

−ξ1ξ2
ξ3

(1−ξ3)2

−ξ1ξ2
ξ3

(1−ξ3)2

1−ξ3−
ξ22
ξ3

(1−ξ3)2

∣∣∣∣∣∣∣
−1

.

After simplification we get

J =
−1

ξ3(1− ξ3)2
.

The previous expression can be written in terms of z = ξ1+iξ2
1−ξ3 . If we write ξ3

in terms of z as

ξ3 =
|z|2 − 1
1 + |z|2

then an expression of |J | in terms of z is

|J(z)| = 4|1− |z|2|
1 + |z|2

.
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The new function on the complex plane is

f(x, y) = F (
2x

1 + |z|2
,

2y
1 + |z|2

,
|z|2 − 1
1 + |z|2

) · |J(z)|1/2

where z = x + iy and |z| =
√
x2 + y2. Using the two dimensional wavelets on

the plane we can therefore expand f in terms of the wavelet basis in L2(R2).
For any function f ∈ L2(R2) we have

f(x, y) =
3∑
i=1

∑
j,k,l

(f, ψ̃i(2jx− k, 2jy − l))ψ̃i(2jx− k, 2jy − l)

where ψ̃1 = ψ1⊗ψ2, ψ̃2 = ψ1⊗φ2 and ψ̃3 = φ1⊗ψ2 with j, k, l ∈ Z and ψ1, ψ2,
φ1 and φ2 are respectively the one dimensional wavelets and scaling functions.
Decomposing the function we get

f(x, y) = Aγ0(x, y) +Dγ0(x, y)

where Aγ0 , and Dγ0 are respectively the approximation function and the detail
function on the plane. As no rotation is performed, we have used γ0 = id. The
next step in the algorithm is to rotate the function F on the unit sphere and
then project it to the complex plane, but as the rotation group SO(3) is mapped
onto SU(2), with homographic action on C:

z 7→ az + b

cz + d
,

(
a b
c d

)
∈ SU(2)

we will project F first onto the plane and then use the above transformation
which is much easier to implement than the regular 3×3 rotations on the sphere.
The scheme goes as follow:

F (ξ1, ξ2, ξ3) −→ f(z) −→ f(
az + b

cz + d
) · 1
|cz + d|2

where z = ξ1+iξ2
1−ξ3 . Furthermore, the matrix

(
a b
c d

)
belongs to SU(2) and it

corresponds to reduced words formed by Ap, Bp, and Cp discussed in Section 3.
We decompose this new rotated function into the wavelet basis functions

to get this time the approximation and detail functions Aγj and Dγj where γj
belongs to the Ramanujan set SM5 . We choose the set SM5 and not any other
arbitrary set of rotations for the main reason that this set generates a uniform
distribution on the sphere. Moreover we derived a precise formula in Proposition
1 that provides us with the number of spherical caps of radius h needed to cover
the whole unit sphere. We have then

f(<(z̃),=(z̃)) = Aγj (<(z̃),=(z̃)) +Dγj (<(z̃),=(z̃))
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where

z̃ =
ajz + bj
cjz + dj

,

and (
aj bj
cj dj

)
∈ SU(2).

Suppose that we stop this process at level M , then we need to pick the
rotation that will assure the best approximation, say γj0 . We may choose γj0
so that

‖Aγj0 (<(z̃),=(z̃))‖ = max
γj∈SM5

‖Aγj (<(z̃),=(z̃))‖.

Using the following decomposition

f(<(z̃),=(z̃)) = Aγj0 (<(z̃),=(z̃)) +Dγj0
(<(z̃),=(z̃)),

the details and approximations at the first level of resolution are at hand, we
can compress now the function on the plane based on standard compression
procedures on the plane to get f̃((<(z̃),=(z̃)) as the compressed function.

The original F (ξ1, ξ2, ξ3) is defined on the unit sphere, hence the compressed
function needs to be projected and rotated back on the sphere. This time, the
rotation will precede the projection because we are still processing signals on
the complex plane. If

z̃ =
az + b

cz + d

then

z =
−dz̃ + b

cz̃ − a
.

The rotation γj0
−1 is associated with

(
ãj0 b̃j0
c̃j0 d̃j0

)
which satisfy

(
ãj0 b̃j0
c̃j0 d̃j0

)
=
(
−dj0 bj0
cj0 −aj0

)

where
(
aj0 bj0
cj0 dj0

)
is the matrix associated with γj0 . Note that both matrices(

aj0 bj0
cj0 dj0

)
and

(
ãj0 b̃j0
c̃j0 d̃j0

)
belong to SU(2). The function f̃ is now a function

of <(z) and =(z) where z =
−dz̃ + b

cz̃ − a
.

The final step in the algorithm is to use the inverse stereographic projection
to pull back the function f̃ to the unit sphere. The Jacobian of the inverse
stereographic projection is

1
J

= −ξ3(1− ξ3)2.
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Finally, the compressed function F̃ on the unit sphere is

F̃ (ξ1, ξ2, ξ3) = f̃(
2<(z)

1 + ‖z‖2
,

2=(z)
1 + ‖z‖2

,
|z|2 − 1
1 + |z|2

) · 1

|J(z)|1/2
.

For the algorithm to perform uniformly well independently of the location of
the support of the function on the sphere we shall show that functions supported
on a small region Ω of S2 benefit from the proposed algorithm. This will follow
from the next theorem.

Theorem 5.1 The algorithm described above is based on a finite set of numbers
( finite impulse response filters). Suppose a function f ∈ L2(S2) is supported in
a spherical cap Ωh, of radius h centered at ξ ∈ S2. let Ω denote the spherical cap
of radius 2h centered at the south pole (0, 0,−1)T . Let M > 0 be the smallest
integer satisfying the inequality

log n√
n

<

√
5(log 5)π2

12
√

2(
√

5 + 1)(16 +
√
π)
h3/2, where n =

3
2

(5M − 1).

Then there is a rotation γ0 ∈ SM5 such that γ0Ωh ⊆ Ω. In particular, our
algorithm will approximate the function f as well as if f was supported in Ω.
As a consequence, the performance of the algorithm does not depend on the
location of the support of the function f .

Proof. The main components of our algorithm are the three matrices Ap, Bp,
and Cp described in Section 3, and the wavelet finite impulse response filters on
the plane. Therefore, the algorithm is based on a finite set of numbers.

We have shown in Proposition 1 that if M is the level of rotations of SM5 ,
then it suffices that n satisfies the following inequality for the covering of the
unit sphere to be achieved

log n√
n

<

√
5(log 5)π2

12
√

2(
√

5 + 1)(16 +
√
π)
h3/2, where n =

3
2

(5M − 1).

So ⋃
γ∈SM5

γΩh = S2.

Hence
Ω ⊆

⋃
γ∈SM5

γΩh.

Since the radius of Ω is twice larger as the radius of Ωh we see that there is a
γ0 ∈ SM5 such that

γ0Ωh ⊆ Ω.

Therefore, the performance of the algorithm is checked for any arbitrary region
on the unit sphere.
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