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Approximating parameters in nonlinear reaction

diffusion equations ∗

Robert R. Ferdinand

Abstract

We present a model describing population dynamics in an environ-
ment. The model is a nonlinear, nonlocal, reaction diffusion equation with
Neumann boundary conditions. An inverse method, involving minimiza-
tion of a least-squares cost functional, is developed to identify unknown
model parameters. Finally, numerical results are presented which display
estimates of these parameters using computationally generated data.

1 Introduction

In [4] parameter estimation in a nonlinear reaction diffusion equation is discussed
and numerical results are presented. In this paper, a similar model is considered
with a non-singular, nonlocal diffusion term and Neumann boundary conditions.
Model solution is approximated using a Galerkin approximation scheme using
finite elements. Certain model parameters are then estimated using an inverse
method procedure. Although a similar inverse problem has been considered in
[1], the model there has a singular diffusion term, Dirichlet boundary conditions
and the solution is estimated using a finite-difference scheme. Also, several
inverse problems have also been presented and studied in [2, 3, 4, 5, 6]. In this
paper, we consider the following initial boundary value problem which describes
population dynamics in an environment:

ut − a(l(u(·, t)))uxx = h(u) + f(t) (t, x) ∈ Ω̂1 × Ω2

ux(t, 0) = 0 = ux(t, xmax) t ∈ Ω1

u(0, x) = u0(x) x ∈ Ω2.

(1.1)

Here, l(u(·, t)) =
∫ xmax

0

g(x)u(t, x)dx, with Ω1 = [0, Tmax], Ω̂1 = (0, Tmax] and

Ω2 = [0, xmax]. u(t, x) represents population density of organizm with size x at
time t. a(l) is the non-singular, nonlinear, nonlocal diffusion term with kernel
g(x) ∈ L2(Ω2). The logistic function h(u) = u(1− u) and f(t) are the reaction
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terms. Neumann boundary conditions are given while initial condition u0(x)
represents initial population density.

This paper is organized in the following fashion. In Section 2, a least squares
method is developed to identify unknown parameters a and f from observed
data zi. Numerical examples are presented in Section 3 which illustrate the
estimation of these parameters from computationally generated data.

2 The Inverse Problem

In this section a numerical method is developed to solve the following infinite
dimensional least squares problem: Given observations z(ti, x) at times {ti}Ki=1

with 0 ≤ t1 < t2 < · · · < tK ≤ Tmax and position x ∈ Ω2, find a parameter q̂ ∈ Q
(an infinite dimensional compact set to be specified later) which minimizes the
performance index given by the following least-squares cost functional:

J(q) = Φ(u(·; q); z) =
K∑
i=0

∫ xmax

0

|u(ti, x; q)− z(ti, x)|2 dx, (2.1)

where for each q ∈ Q, the notation u(q) = u(t, x; q) represents the parameter
dependent solution of the model equation (1.1). This numerical method involves
two levels of numerical approximation. The first approximates u, the solution
to (1.1), while the second approximates the parameter space Q. Galerkin ap-
proximation is used to approximate the model solution. Similar methods have
been used to approximate other heat flow models in [2, 4].

Starting with the first level, equation (1.1) is written in weak form as follows:

〈ut, φ〉+ a(l(u)) 〈ux, φx〉 = 〈[h(u) + f(t)] , φ〉
u(0, x) = u0(x).

(2.2)

Now setting

uN (t, x) =
N∑
i=0

wNi (t)φNi (x)

in (2.2), where
{
φNj
}N
j=0

represent linear B-splines defined on a uniform partition
0 = x0 < x1 < x2 < · · · < xN = xmax of [0, xmax], we arrive at

ΛN ẇN (t) +GN
(
wN (t); a

)
= ΥN

(
t, wN (t)

)
ΛNwN (0) =

(
wN
)0
,

(2.3)

where t ∈ [0, Tmax] and wN (t) =
(
wN0 , w

N
1 , · · · , wNN

)
∈ RN+1. Here,

• ΛN is an (N + 1)× (N + 1) Gram matrix whose (i, j)th entry is given by
ΛNi,j =

〈
φNi , φ

N
j

〉
.

•
(
wN
)0 is an (N + 1)-dimensional vector whose ith element is given by(

wN
)0
i

=
〈
u0, φNi

〉
.
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• Furthermore, we have

ΥN
0

(
t, wN (t)

)
= 0

ΥN
i

(
t, wN (t)

)
= ∆x

[
h(wNi (t)) + f(t)

]
for i = 1, · · · , N

GN0 (α; a) = a
( N∑
i=1

g(xi)wNi (t)∆x
)(α0 − α1

∆x

)
GNN (α; a) = a

( N∑
i=1

g(xi)wNi (t)∆x
)(αN − αN−1

∆x

)

and for i = 1, · · · , N − 1, α ∈ RN+1,

GNi (α; a) = a
( N∑
i=1

g(xi)wNi (t)∆x
)(−αi−1 + 2αi − αi+1

∆x

)
.

Second level of the numerical scheme involves approximating the infinite dimen-
sional parameter space by a sequence

{
QM

}
of finite dimensional spaces. Thus

we estimate function a as a one-dimensional function of l, independent of t and
x and estimate function f as one-dimensional function of t on these

{
QM

}
,

where M = (M1,M2). This results in the following approximations for a and f :

(IM1a)(l) =
M1∑
j=0

a
(
la + j

( l̂a − la
M1

))
ψjM1

(
l ; la, l̂a

)
, (2.4)

where l ∈ R and
{
ψjM1

(l ; la, l̂a)
}M1

j=0
are linear B-splines defined on uniform

partition of interval [la, l̂a]. Similarly,

(IM2f) (t) =
M2∑
j=0

f
( j

M2
Tmax

)
λjM2

(t ;Tmax) , (2.5)

where t ∈ [0, Tmax] and
{
λjM2

(t ;Tmax)
}M2

j=0
are linear B-splines defined on uni-

form partition of interval [0, Tmax].
Thus in the finite space of dimension M = (M1,M2), solve the following

initial-value problem:

ΛN ẇN (t) +GN
(
wN (t); aM1

)
= ΥN

(
t, wN (t)

)
ΛNwN (0) =

(
wN
)0
.

(2.6)

The definitions of all symbols in (2.6) are same as those in (2.3) with the fol-
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lowing exceptions:

ΥN
0

(
t, wN (t)

)
= 0

ΥN
i

(
t, wN (t)

)
= ∆x

[
h
(
wNi (t)

)
+ fM2(t)

]
for i = 1, · · · , N.

GN0 (α; aM1) = aM1

( N∑
i=1

g(xi)wNi (t)∆x
)(α0 − α1

∆x

)
GNN (α; aM1) = aM1

( N∑
i=1

g(xi)wNi (t)∆x
)(αN − αN−1

∆x

)
and for i = 1, · · · , N − 1, α ∈ RN+1,

GNi (α; aM1) = aM1

( N∑
i=1

g(xi)wNi (t)∆x
)(−αi−1 + 2αi − αi+1

∆x

)
.

Thus, for the sake of computations, we consider the following approximation to
our infinite dimensional minimization problem defined in (2.1)

min
q∈QM

JN (qM ) = Φ(uN (·; qM ) ; z) =
K∑
i=0

∫ xmax

0

∣∣uN (ti, x; qM )− z(ti, x)
∣∣2 dx.

In several cases the space of linear splines can be taken to be QM .
In the next section, numerical examples are presented which shows our nu-

merical scheme actually works.

3 Numerical Results

To numerically test the least-squares method, computational data z(ti, x) is
generated. The parameters in model equation (1.1) are chosen as follows:

f(t) = 2 + sin(100t), a(l) = 1/(l + 1)

h(u) = u(1− u), g(x) = 1 + x2, u0(x) = x(1− x).

Equation (1.1) is solved using Galerkin approximation described earlier and
parameters given above. In these computations, ∆t = 10−4, ∆x = 0.125 and
the constants xmax and Tmax are chosen as 1 and 0.05, respectively. Observations
z(ti, xj) are then collected at points ti, i = 0, · · · , 250, where ti = 0.0002 ∗ i and
xj , j = 0, · · · , 8, where xj = 0.125j.

All parameters are assumed to be known except a(l) and f(t). For an admis-
sible parameter set Q, let D = CB ([0, T ]×<), the space of bounded continuous
functions on [0, T ] × < with the supremum norm. For fixed values of σ, â and
l̂, Q is chosen as the D closure of the set A× F where

A =
{
a ∈ C(0,∞), such that a′ < σ and a(l) = â for l > l̂

}
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Figure 1: Exact versus estimated f(t) = 2 + sin(100t) with M1 = 5
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Figure 2: Exact versus estimated f(t) = 2 + sin(100t) with M1 = 11

and
F = {f ∈ C[0, T ] such that |f(t1)− f(t2)| ≤ L|t1 − t2|} ,

where L is a Lipschitz constant for f . It is easily verifiable that Q is a com-
pact subset of D. Further, looking at equation (2.4), limM1→∞ IM1 (a) = a
in CB ([0, T ]× R), uniformly in a, for a ∈ Q. Also, from equation (2.5),
limM2→∞ IM2 (f) = f in CB ([0, T ]×<), uniformly in f , for f ∈ Q (see [7]).
Hence, if aM1(l) and fM2(t) are given by

aM1(l) =
M1∑
j=0

νjM1
ψjM1

(
l ; laM1

, l̂aM1

)
and

fM2 (t) =
M2∑
j=0

βjM2
λjM2

(t ;Tmax) ,
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Figure 3: Exact versus estimated a(l) = 1/(l + 1) with M2 = 5
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Figure 4: Exact versus estimated a(l) = 1/(l + 1) with M2 = 11

respectively, then the least squares problem involves the identification of the
(M1+3) coefficients

{
νjM1

}M1

j=0
, laM1

and l̂aM1
and (M2+1) coefficients

{
βjM2

}M2

j=0
,

from a compact subset of <M1+M2+4. Initial guesses are as follows: νj =
1, j = 0, · · · ,M1, βj = 2, j = 0, · · · ,M2, laM1

= 0 and l̂aM1
= 1. The sub-

routine LMDIF1, obtained from NETLIB, is used in the computations. This
FORTRAN software is an application of the Levenberg-Marquardt algorithm.
Computations were executed on a SCO Unix 5.0.5 machine at East Central
University, consisting of two 550 mhz Xeon processors in parallel. The first
two figures which immediately follow, show a comparison between exact and
estimated function f(t) for M1 = 5 and 11, respectively with dots and solid
line representing estimated and exact function, respectively. It can be seen
from these figures that as the value of M1 and subsequently the number of ap-
proximating elements increases, the estimated function gets closer to the exact
function, thereby demonstrating a convergence to the minimizer of the original
least squares cost functional. The last two figures show the same for function
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a(l) for M2 = 5 and 11, respectively . Values of the least squares cost functional
at the end of the computer program range from between 10−13 to 10−8 in these
experiments with execution time being approximately 2 minutes in each case,
showing the numerical scheme to be working effectively.
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